Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77910
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳瑞華(Ruey-Hwa Chen)
dc.contributor.authorMin-Chi Yangen
dc.contributor.author楊閔棋zh_TW
dc.date.accessioned2021-07-11T14:37:13Z-
dc.date.available2022-08-31
dc.date.copyright2017-08-31
dc.date.issued2017
dc.date.submitted2017-08-12
dc.identifier.citationAcloque, H., Adams, M.S., Bronner-Fraser, M., Fishwick, K., and Nieto, M.A. (2009). Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. 119, 1438-1449.
Anbanandam, A., Albarado, D.C., Nguyen, C.T., Halder, G., Gao, X., and Veeraraghavan, S. (2006). Insights into transcription enhancer factor 1 (TEF-1) activity from the solution structure of the TEA domain. Proceedings of the National Academy of Sciences of the United States of America 103, 17225-17230.
Arlt, A., Vorndamm, J., Breitenbroich, M., Folsch, U.R., Kalthoff, H., Schmidt, W.E., and Schafer, H. (2001). Inhibition of NF-kappaB sensitizes human pancreatic carcinoma cells to apoptosis induced by etoposide (VP16) or doxorubicin. Oncogene 20, 859-868.
Arumugam, T., and Logsdon, C.D. (2011). S100P: a novel therapeutic target for cancer. Amino acids 41, 893-899.
Arumugam, T., Simeone, D.M., Schmidt, A.M., and Logsdon, C.D. (2004). S100P stimulates cell proliferation and survival via receptor for activated glycation end products (RAGE). J Biol Chem 279, 5059-5065.
Atianand, M.K., and Fitzgerald, K.A. (2014). Long non-coding RNAs and control of gene expression in the immune system. Trends in molecular medicine 20, 623-631.
Austermann, J., Nazmi, A.R., Muller-Tidow, C., and Gerke, V. (2008). Characterization of the Ca(2+)-regulated Ezrin-S100P Interaction. 283, 29331-29340.
Becker, T., Gerke, V., Kube, E., and Weber, K. (1992). S100P, a novel Ca(2+)-binding protein from human placenta. cDNA cloning, recombinant protein expression and Ca2+ binding properties. Eur J Biochem 207, 541-547.
Bild, A.H., Yao, G., Chang, J.T., Wang, Q., Potti, A., Chasse, D., Joshi, M.B., Harpole, D., Lancaster, J.M., Berchuck, A., et al. (2006). Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439, 353-357.
Bissell, M.J., and Hines, W.C. (2011). Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nature medicine 17, 320-329.
Bode, A.M., and Dong, Z. (2004). Post-translational modification of p53 in tumorigenesis. Nature reviews Cancer 4, 793-805.
Bretscher, A., Edwards, K., and Fehon, R.G. (2002). ERM proteins and merlin: integrators at the cell cortex. Nat Rev Mol Cell Biol 3, 586-599.
Brown, J.M. (2000). Exploiting the hypoxic cancer cell: mechanisms and therapeutic strategies. Molecular medicine today 6, 157-162.
Bulk, E., Hascher, A., Liersch, R., Mesters, R.M., Diederichs, S., Sargin, B., Gerke, V., Hotfilder, M., Vormoor, J., Berdel, W.E., et al. (2008). Adjuvant therapy with small hairpin RNA interference prevents non-small cell lung cancer metastasis development in mice. Cancer research 68, 1896-1904.
Cabili, M.N., Trapnell, C., Goff, L., Koziol, M., Tazon-Vega, B., Regev, A., and Rinn, J.L. (2011). Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25, 1915-1927.
Carmeliet, P., and Jain, R.K. (2011). Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov 10, 417-427.
Carninci, P., Kasukawa, T., Katayama, S., Gough, J., Frith, M.C., Maeda, N., Oyama, R., Ravasi, T., Lenhard, B., Wells, C., et al. (2005). The transcriptional landscape of the mammalian genome. Science 309, 1559-1563.
Chaffer, C.L., and Weinberg, R.A. (2011). A perspective on cancer cell metastasis. Science 331, 1559-1564.
Chen, H.I., and Sudol, M. (1995). The WW domain of Yes-associated protein binds a proline-rich ligand that differs from the consensus established for Src homology 3-binding modules. Proceedings of the National Academy of Sciences of the United States of America 92, 7819-7823.
Cheng, G.Z., Chan, J., Wang, Q., Zhang, W., Sun, C.D., and Wang, L.H. (2007). Twist transcriptionally up-regulates AKT2 in breast cancer cells leading to increased migration, invasion, and resistance to paclitaxel. Cancer research 67, 1979-1987.
Chu, Y.W., Yang, P.C., Yang, S.C., Shyu, Y.C., Hendrix, M.J., Wu, R., and Wu, C.W. (1997). Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. American journal of respiratory cell and molecular biology 17, 353-360.
Clarke, C., Madden, S.F., Doolan, P., Aherne, S.T., Joyce, H., O'Driscoll, L., Gallagher, W.M., Hennessy, B.T., Moriarty, M., Crown, J., et al. (2013). Correlating transcriptional networks to breast cancer survival: a large-scale coexpression analysis. Carcinogenesis 34, 2300-2308.
Clucas, J., and Valderrama, F. (2015). ERM proteins in cancer progression. J Cell Sci 128, 1253.
Consortium, E.P., Birney, E., Stamatoyannopoulos, J.A., Dutta, A., Guigo, R., Gingeras, T.R., Margulies, E.H., Weng, Z., Snyder, M., Dermitzakis, E.T., et al. (2007). Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799-816.
Dakhel, S., Padilla, L., Adan, J., Masa, M., Martinez, J.M., Roque, L., Coll, T., Hervas, R., Calvis, C., Messeguer, R., et al. (2014). S100P antibody-mediated therapy as a new promising strategy for the treatment of pancreatic cancer. Oncogenesis 3, e92.
DeNardo, D.G., Barreto, J.B., Andreu, P., Vasquez, L., Tawfik, D., Kolhatkar, N., and Coussens, L.M. (2009). CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 16, 91-102.
Derrien, T., Johnson, R., Bussotti, G., Tanzer, A., Djebali, S., Tilgner, H., Guernec, G., Martin, D., Merkel, A., Knowles, D.G., et al. (2012). The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22, 1775-1789.
Diaz-Gimeno, P., Horcajadas, J.A., Martinez-Conejero, J.A., Esteban, F.J., Alama, P., Pellicer, A., and Simon, C. (2011). A genomic diagnostic tool for human endometrial receptivity based on the transcriptomic signature. Fertility and sterility 95, 50-60, 60.e51-15.
Diederichs, S., Bulk, E., Steffen, B., Ji, P., Tickenbrock, L., Lang, K., Zanker, K.S., Metzger, R., Schneider, P.M., Gerke, V., et al. (2004). S100 family members and trypsinogens are predictors of distant metastasis and survival in early-stage non-small cell lung cancer. Cancer research 64, 5564-5569.
Djebali, S., Davis, C.A., Merkel, A., Dobin, A., Lassmann, T., Mortazavi, A., Tanzer, A., Lagarde, J., Lin, W., Schlesinger, F., et al. (2012). Landscape of transcription in human cells. Nature 489, 101-108.
Du, M., Wang, G., Ismail, T.M., Gross, S., Fernig, D.G., Barraclough, R., and Rudland, P.S. (2012). S100P dissociates myosin IIA filaments and focal adhesion sites to reduce cell adhesion and enhance cell migration. J Biol Chem 287, 15330-15344.
Erler, J.T., Bennewith, K.L., Cox, T.R., Lang, G., Bird, D., Koong, A., Le, Q.T., and Giaccia, A.J. (2009). Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell 15, 35-44.
Fehon, R.G., McClatchey, A.I., and Bretscher, A. (2010). Organizing the cell cortex: the role of ERM proteins. Nat Rev Mol Cell Biol 11, 276-287.
Fidler, I.J. (2003). The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nature reviews Cancer 3, 453-458.
Gary, R., and Bretscher, A. (1995). Ezrin self-association involves binding of an N-terminal domain to a normally masked C-terminal domain that includes the F-actin binding site. Molecular Biology of the Cell 6, 1061-1075.
Giampieri, S., Manning, C., Hooper, S., Jones, L., Hill, C.S., and Sahai, E. (2009). Localized and reversible TGFbeta signalling switches breast cancer cells from cohesive to single cell motility. Nature cell biology 11, 1287-1296.
Gibadulinova, A., Pastorek, M., Filipcik, P., Radvak, P., Csaderova, L., Vojtesek, B., and Pastorekova, S. (2016). Cancer-associated S100P protein binds and inactivates p53, permits therapy-induced senescence and supports chemoresistance. Oncotarget 7, 22508-22522.
Guerreiro Da Silva, I.D., Hu, Y.F., Russo, I.H., Ao, X., Salicioni, A.M., Yang, X., and Russo, J. (2000). S100P calcium-binding protein overexpression is associated with immortalization of human breast epithelial cells in vitro and early stages of breast cancer development in vivo. International journal of oncology 16, 231-240.
Guo, L., and Teng, L. (2015). YAP/TAZ for cancer therapy: opportunities and challenges (review). International journal of oncology 46, 1444-1452.
Gupta, G.P., and Massague, J. (2006). Cancer metastasis: building a framework. Cell 127, 679-695.
Gupta, G.P., Nguyen, D.X., Chiang, A.C., Bos, P.D., Kim, J.Y., Nadal, C., Gomis, R.R., Manova-Todorova, K., and Massague, J. (2007). Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature 446, 765-770.
Gupta, R.A., Shah, N., Wang, K.C., Kim, J., Horlings, H.M., Wong, D.J., Tsai, M.C., Hung, T., Argani, P., Rinn, J.L., et al. (2010). Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464, 1071-1076.
Gutschner, T., Hammerle, M., Eissmann, M., Hsu, J., Kim, Y., Hung, G., Revenko, A., Arun, G., Stentrup, M., Gross, M., et al. (2013). The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer research 73, 1180-1189.
Guttman, M., Donaghey, J., Carey, B.W., Garber, M., Grenier, J.K., Munson, G., Young, G., Lucas, A.B., Ach, R., Bruhn, L., et al. (2011). lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477, 295-300.
Hanahan, D., and Weinberg, R.A. (2011). Hallmarks of cancer: the next generation. Cell 144, 646-674.
Hao, Y., Chun, A., Cheung, K., Rashidi, B., and Yang, X. (2008). Tumor suppressor LATS1 is a negative regulator of oncogene YAP. J Biol Chem 283, 5496-5509.
Hilman, D., and Gat, U. (2011). The evolutionary history of YAP and the hippo/YAP pathway. Molecular biology and evolution 28, 2403-2417.
Hong, W., and Guan, K.L. (2012). The YAP and TAZ transcription co-activators: key downstream effectors of the mammalian Hippo pathway. Seminars in cell & developmental biology 23, 785-793.
Hsu, Y.L., Hung, J.Y., Liang, Y.Y., Lin, Y.S., Tsai, M.J., Chou, S.H., Lu, C.Y., and Kuo, P.L. (2015a). S100P interacts with integrin alpha7 and increases cancer cell migration and invasion in lung cancer. Oncotarget 6, 29585-29598.
Hsu, Y.L., Hung, J.Y., Liang, Y.Y., Lin, Y.S., Tsai, M.J., Chou, S.H., Lu, C.Y., and Kuo, P.L. (2015b). S100P interacts with integrin α7 and increases cancer cell migration and invasion in lung cancer. Oncotarget 6, 29585-29598.
Huarte, M., Guttman, M., Feldser, D., Garber, M., Koziol, M.J., Kenzelmann-Broz, D., Khalil, A.M., Zuk, O., Amit, I., Rabani, M., et al. (2010). A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142, 409-419.
Hung, T., Wang, Y., Lin, M.F., Koegel, A.K., Kotake, Y., Grant, G.D., Horlings, H.M., Shah, N., Umbricht, C., Wang, P., et al. (2011). Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nature genetics 43, 621-629.
Islam, S., Kjallquist, U., Moliner, A., Zajac, P., Fan, J.B., Lonnerberg, P., and Linnarsson, S. (2011). Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res 21, 1160-1167.
Joyce, J.A., and Pollard, J.W. (2009). Microenvironmental regulation of metastasis. Nature reviews Cancer 9, 239-252.
Jung, H., Lee, M.S., Jang, E.J., Ahn, J.H., Kang, N.S., Yoo, S.E., Bae, M.A., Hong, J.H., and Hwang, E.S. (2009). Augmentation of PPARgamma-TAZ interaction contributes to the anti-adipogenic activity of KR62980. Biochemical pharmacology 78, 1323-1329.
Kanai, F., Marignani, P.A., Sarbassova, D., Yagi, R., Hall, R.A., Donowitz, M., Hisaminato, A., Fujiwara, T., Ito, Y., Cantley, L.C., et al. (2000). TAZ: a novel transcriptional co-activator regulated by interactions with 14-3-3 and PDZ domain proteins. The EMBO journal 19, 6778-6791.
Karin, M., Cao, Y., Greten, F.R., and Li, Z.W. (2002). NF-kappaB in cancer: from innocent bystander to major culprit. Nature reviews Cancer 2, 301-310.
Kim, B., Lee, H.J., Choi, H.Y., Shin, Y., Nam, S., Seo, G., Son, D.S., Jo, J., Kim, J., Lee, J., et al. (2007). Clinical validity of the lung cancer biomarkers identified by bioinformatics analysis of public expression data. Cancer research 67, 7431-7438.
Kim, M., Kim, T., Johnson, R.L., and Lim, D.S. (2015). Transcriptional co-repressor function of the hippo pathway transducers YAP and TAZ. Cell reports 11, 270-282.
Koltzscher, M., and Gerke, V. (2000). Identification of hydrophobic amino acid residues involved in the formation of S100P homodimers in vivo. Biochemistry 39, 9533-9539.
Koltzscher, M., Neumann, C., Konig, S., and Gerke, V. (2003). Ca2+-dependent Binding and Activation of Dormant Ezrin by Dimeric S100P. 14, 2372-2384.
Kotake, Y., Nakagawa, T., Kitagawa, K., Suzuki, S., Liu, N., Kitagawa, M., and Xiong, Y. (2011). Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene 30, 1956-1962.
Lai, D., Ho, K.C., Hao, Y., and Yang, X. (2011). Taxol resistance in breast cancer cells is mediated by the hippo pathway component TAZ and its downstream transcriptional targets Cyr61 and CTGF. Cancer research 71, 2728-2738.
Lamar, J.M., Stern, P., Liu, H., Schindler, J.W., Jiang, Z.G., and Hynes, R.O. (2012). The Hippo pathway target, YAP, promotes metastasis through its TEAD-interaction domain. Proceedings of the National Academy of Sciences of the United States of America 109, E2441-2450.
Lee, S., Kopp, F., Chang, T.C., Sataluri, A., Chen, B., Sivakumar, S., Yu, H., Xie, Y., and Mendell, J.T. (2016). Noncoding RNA NORAD Regulates Genomic Stability by Sequestering PUMILIO Proteins. Cell 164, 69-80.
Legg, J.W., Lewis, C.A., Parsons, M., Ng, T., and Isacke, C.M. (2002). A novel PKC-regulated mechanism controls CD44 ezrin association and directional cell motility. Nature cell biology 4, 399-407.
Lei, Q.Y., Zhang, H., Zhao, B., Zha, Z.Y., Bai, F., Pei, X.H., Zhao, S., Xiong, Y., and Guan, K.L. (2008). TAZ promotes cell proliferation and epithelial-mesenchymal transition and is inhibited by the hippo pathway. Molecular and cellular biology 28, 2426-2436.
Li, Z., Zhao, B., Wang, P., Chen, F., Dong, Z., Yang, H., Guan, K.L., and Xu, Y. (2010). Structural insights into the YAP and TEAD complex. Genes Dev 24, 235-240.
Liu, H., Li, J., Koirala, P., Ding, X., Chen, B., Wang, Y., Wang, Z., Wang, C., Zhang, X., and Mo, Y.Y. (2016). Long non-coding RNAs as prognostic markers in human breast cancer. Oncotarget 7, 20584-20596.
Loewer, S., Cabili, M.N., Guttman, M., Loh, Y.H., Thomas, K., Park, I.H., Garber, M., Curran, M., Onder, T., Agarwal, S., et al. (2010). Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nature genetics 42, 1113-1117.
Ma, L., Bajic, V.B., and Zhang, Z. (2013). On the classification of long non-coding RNAs. RNA biology 10, 925-933.
Mazzieri, R., Pucci, F., Moi, D., Zonari, E., Ranghetti, A., Berti, A., Politi, L.S., Gentner, B., Brown, J.L., Naldini, L., et al. (2011). Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells. Cancer Cell 19, 512-526.
Michalik, K.M., You, X., Manavski, Y., Doddaballapur, A., Zornig, M., Braun, T., John, D., Ponomareva, Y., Chen, W., Uchida, S., et al. (2014). Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth. Circulation research 114, 1389-1397.
Minn, A.J., Gupta, G.P., Siegel, P.M., Bos, P.D., Shu, W., Giri, D.D., Viale, A., Olshen, A.B., Gerald, W.L., and Massague, J. (2005). Genes that mediate breast cancer metastasis to lung. Nature 436, 518-524.
Mo, Y.-Y., Zou, D., and Koirala, P. (2015). Long non-coding RNAs as key regulators of cancer metastasis. Journal of Cancer Metastasis and Treatment 0, 0.
Morin-Kensicki, E.M., Boone, B.N., Howell, M., Stonebraker, J.R., Teed, J., Alb, J.G., Magnuson, T.R., O'Neal, W., and Milgram, S.L. (2006). Defects in yolk sac vasculogenesis, chorioallantoic fusion, and embryonic axis elongation in mice with targeted disruption of Yap65. Molecular and cellular biology 26, 77-87.
Murakami, M., Nakagawa, M., Olson, E.N., and Nakagawa, O. (2005). A WW domain protein TAZ is a critical coactivator for TBX5, a transcription factor implicated in Holt-Oram syndrome. Proceedings of the National Academy of Sciences of the United States of America 102, 18034-18039.
Murray, M.J., and Lessey, B.A. (1999). Embryo implantation and tumor metastasis: common pathways of invasion and angiogenesis. Seminars in reproductive endocrinology 17, 275-290.
Nagano, T., Mitchell, J.A., Sanz, L.A., Pauler, F.M., Ferguson-Smith, A.C., Feil, R., and Fraser, P. (2008). The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science 322, 1717-1720.
Ng, T., Parsons, M., Hughes, W.E., Monypenny, J., Zicha, D., Gautreau, A., Arpin, M., Gschmeissner, S., Verveer, P.J., Bastiaens, P.I., et al. (2001). Ezrin is a downstream effector of trafficking PKC-integrin complexes involved in the control of cell motility. The EMBO journal 20, 2723-2741.
Nieto, M.A. (2009). Epithelial-Mesenchymal Transitions in development and disease: old views and new perspectives. The International journal of developmental biology 53, 1541-1547.
Oka, H., Shiozaki, H., Kobayashi, K., Inoue, M., Tahara, H., Kobayashi, T., Takatsuka, Y., Matsuyoshi, N., Hirano, S., Takeichi, M., et al. (1993). Expression of E-cadherin cell adhesion molecules in human breast cancer tissues and its relationship to metastasis. Cancer research 53, 1696-1701.
Oka, T., and Sudol, M. (2009). Nuclear localization and pro-apoptotic signaling of YAP2 require intact PDZ-binding motif. Genes to cells : devoted to molecular & cellular mechanisms 14, 607-615.
Okayama, H., Kohno, T., Ishii, Y., Shimada, Y., Shiraishi, K., Iwakawa, R., Furuta, K., Tsuta, K., Shibata, T., Yamamoto, S., et al. (2012). Identification of genes upregulated in ALK-positive and EGFR/KRAS/ALK-negative lung adenocarcinomas. Cancer research 72, 100-111.
Padera, T.P., Kuo, A.H., Hoshida, T., Liao, S., Lobo, J., Kozak, K.R., Fukumura, D., and Jain, R.K. (2008). Differential response of primary tumor versus lymphatic metastasis to VEGFR-2 and VEGFR-3 kinase inhibitors cediranib and vandetanib. Molecular cancer therapeutics 7, 2272-2279.
Pandey, G.K., Mitra, S., Subhash, S., Hertwig, F., Kanduri, M., Mishra, K., Fransson, S., Ganeshram, A., Mondal, T., Bandaru, S., et al. (2014). The risk-associated long noncoding RNA NBAT-1 controls neuroblastoma progression by regulating cell proliferation and neuronal differentiation. Cancer Cell 26, 722-737.
Passaniti, A., Brusgard, J.L., Qiao, Y., Sudol, M., and Finch-Edmondson, M. (2017). Roles of RUNX in Hippo Pathway Signaling. Advances in experimental medicine and biology 962, 435-448.
Pennisi, E. (2014). Cell biology. Lengthy RNAs earn respect as cellular players. Science 344, 1072.
Penumutchu, S.R., Chou, R.H., and Yu, C. (2014a). Interaction between S100P and the anti-allergy drug cromolyn. Biochem Biophys Res Commun 454, 404-409.
Penumutchu, S.R., Chou, R.H., and Yu, C. (2014b). Structural insights into calcium-bound S100P and the V domain of the RAGE complex. PLoS One 9, e103947.
Pobbati, A.V., and Hong, W. (2013). Emerging roles of TEAD transcription factors and its coactivators in cancers. Cancer Biol Ther 14, 390-398.
Poliseno, L., Salmena, L., Zhang, J., Carver, B., Haveman, W.J., and Pandolfi, P.P. (2010). A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465, 1033-1038.
Prica, F., Radon, T., Cheng, Y., and Crnogorac-Jurcevic, T. (2016). The life and works of S100P - from conception to cancer. Am J Cancer Res 6, 562-576.
Psaila, B., and Lyden, D. (2009). The metastatic niche: adapting the foreign soil. Nature reviews Cancer 9, 285-293.
Rodriguez, A., Griffiths-Jones, S., Ashurst, J.L., and Bradley, A. (2004). Identification of mammalian microRNA host genes and transcription units. Genome Res 14, 1902-1910.
Sauvageau, M., Goff, L.A., Lodato, S., Bonev, B., Groff, A.F., Gerhardinger, C., Sanchez-Gomez, D.B., Hacisuleyman, E., Li, E., Spence, M., et al. (2013). Multiple knockout mouse models reveal lincRNAs are required for life and brain development. eLife 2, e01749.
Savagner, P. (2010). The epithelial-mesenchymal transition (EMT) phenomenon. Annals of oncology : official journal of the European Society for Medical Oncology 21 Suppl 7, vii89-92.
Sudol, M. (1994). Yes-associated protein (YAP65) is a proline-rich phosphoprotein that binds to the SH3 domain of the Yes proto-oncogene product. Oncogene 9, 2145-2152.
Sun, T.T., He, J., Liang, Q., Ren, L.L., Yan, T.T., Yu, T.C., Tang, J.Y., Bao, Y.J., Hu, Y., Lin, Y., et al. (2016). LncRNA GClnc1 Promotes Gastric Carcinogenesis and May Act as a Modular Scaffold of WDR5 and KAT2A Complexes to Specify the Histone Modification Pattern. Cancer discovery 6, 784-801.
Tano, K., Mizuno, R., Okada, T., Rakwal, R., Shibato, J., Masuo, Y., Ijiri, K., and Akimitsu, N. (2010). MALAT-1 enhances cell motility of lung adenocarcinoma cells by influencing the expression of motility-related genes. FEBS letters 584, 4575-4580.
Tichon, A., Gil, N., Lubelsky, Y., Havkin Solomon, T., Lemze, D., Itzkovitz, S., Stern-Ginossar, N., and Ulitsky, I. (2016). A conserved abundant cytoplasmic long noncoding RNA modulates repression by Pumilio proteins in human cells. Nat Commun 7, 12209.
Tsai, J.H., and Yang, J. (2013). Epithelial-mesenchymal plasticity in carcinoma metastasis. Genes Dev 27, 2192-2206.
Valastyan, S., and Weinberg, R.A. (2011). Tumor metastasis: molecular insights and evolving paradigms. Cell 147, 275-292.
Vassilev, A., Kaneko, K.J., Shu, H., Zhao, Y., and DePamphilis, M.L. (2001). TEAD/TEF transcription factors utilize the activation domain of YAP65, a Src/Yes-associated protein localized in the cytoplasm. Genes Dev 15, 1229-1241.
Vaupel, P. (2004). The role of hypoxia-induced factors in tumor progression. The oncologist 9 Suppl 5, 10-17.
Ventura, A. (2016). NORAD: Defender of the Genome. Trends Genet 32, 390-392.
Wang, G., Platt-Higgins, A., Carroll, J., de Silva Rudland, S., Winstanley, J., Barraclough, R., and Rudland, P.S. (2006). Induction of metastasis by S100P in a rat mammary model and its association with poor survival of breast cancer patients. Cancer research 66, 1199-1207.
Wang, G., Zhang, S., Fernig D , G., Spiller, D., Martin-Fernandez, M., Zhang, H., Ding, Y., Rao, Z., Rudland P , S., and Barraclough, R. (2004). Heterodimeric interaction and interfaces of S100A1 and S100P. Biochemical Journal 382, 375-383.
Wang, K., Liu, C.Y., Zhou, L.Y., Wang, J.X., Wang, M., Zhao, B., Zhao, W.K., Xu, S.J., Fan, L.H., Zhang, X.J., et al. (2015). APF lncRNA regulates autophagy and myocardial infarction by targeting miR-188-3p. Nat Commun 6, 6779.
Wang, K.C., and Chang, H.Y. (2011). Molecular mechanisms of long noncoding RNAs. Molecular cell 43, 904-914.
Werb, Z. (1997). ECM and cell surface proteolysis: regulating cellular ecology. Cell 91, 439-442.
Wickens, M., Bernstein, D.S., Kimble, J., and Parker, R. (2002). A PUF family portrait: 3'UTR regulation as a way of life. Trends Genet 18, 150-157.
Wu, X., Lim, Z.F., Li, Z., Gu, L., Ma, W., Zhou, Q., Su, H., Wang, X., Yang, X., and Zhang, Z. (2017). NORAD Expression Is Associated with Adverse Prognosis in Esophageal Squamous Cell Carcinoma. Oncology research and treatment 40, 370-374.
Wu, Y., Zhang, L., Zhang, L., Wang, Y., Li, H., Ren, X., Wei, F., Yu, W., Liu, T., Wang, X., et al. (2015). Long non-coding RNA HOTAIR promotes tumor cell invasion and metastasis by recruiting EZH2 and repressing E-cadherin in oral squamous cell carcinoma. International journal of oncology 46, 2586-2594.
Xiao, J.H., Davidson, I., Ferrandon, D., Rosales, R., Vigneron, M., Macchi, M., Ruffenach, F., and Chambon, P. (1987). One cell-specific and three ubiquitous nuclear proteins bind in vitro to overlapping motifs in the domain B1 of the SV40 enhancer. The EMBO journal 6, 3005-3013.
Xiao, J.H., Davidson, I., Matthes, H., Garnier, J.M., and Chambon, P. (1991). Cloning, expression, and transcriptional properties of the human enhancer factor TEF-1. Cell 65, 551-568.
Xu, M.Z., Chan, S.W., Liu, A.M., Wong, K.F., Fan, S.T., Chen, J., Poon, R.T., Zender, L., Lowe, S.W., Hong, W., et al. (2011). AXL receptor kinase is a mediator of YAP-dependent oncogenic functions in hepatocellular carcinoma. Oncogene 30, 1229-1240.
Yagi, R., Chen, L.F., Shigesada, K., Murakami, Y., and Ito, Y. (1999). A WW domain-containing yes-associated protein (YAP) is a novel transcriptional co-activator. The EMBO journal 18, 2551-2562.
Yap, K.L., Li, S., Munoz-Cabello, A.M., Raguz, S., Zeng, L., Mujtaba, S., Gil, J., Walsh, M.J., and Zhou, M.M. (2010). Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Molecular cell 38, 662-674.
Yokota, J. (2000). Tumor progression and metastasis. Carcinogenesis 21, 497-503.
Yuan, J.H., Yang, F., Wang, F., Ma, J.Z., Guo, Y.J., Tao, Q.F., Liu, F., Pan, W., Wang, T.T., Zhou, C.C., et al. (2014). A long noncoding RNA activated by TGF-beta promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell 25, 666-681.
Yuan, S.X., Yang, F., Yang, Y., Tao, Q.F., Zhang, J., Huang, G., Yang, Y., Wang, R.Y., Yang, S., Huo, X.S., et al. (2012). Long noncoding RNA associated with microvascular invasion in hepatocellular carcinoma promotes angiogenesis and serves as a predictor for hepatocellular carcinoma patients' poor recurrence-free survival after hepatectomy. Hepatology (Baltimore, Md) 56, 2231-2241.
Zhang, D., Ma, C., Sun, X., Xia, H., and Zhang, W. (2012). S100P expression in response to sex steroids during the implantation window in human endometrium. Reprod Biol Endocrinol 10, 106.
Zhang, H., Wang, G., Ding, Y., Wang, Z., Barraclough, R., Rudland, P.S., Fernig, D.G., and Rao, Z. (2003). The crystal structure at 2A resolution of the Ca2+ -binding protein S100P. J Mol Biol 325, 785-794.
Zhang, R., Wang, L., Xia, H., and Zhang, W. (2015). Spatio-temporal localization of S100P during the peri-implantation period in the mouse. Reproduction (Cambridge, England).
Zhang, X.H., Wang, Q., Gerald, W., Hudis, C.A., Norton, L., Smid, M., Foekens, J.A., and Massague, J. (2009). Latent bone metastasis in breast cancer tied to Src-dependent survival signals. Cancer Cell 16, 67-78.
Zhang, Y., Zhang, P., Wan, X., Su, X., Kong, Z., Zhai, Q., Xiang, X., Li, L., and Li, Y. (2016). Downregulation of long non-coding RNA HCG11 predicts a poor prognosis in prostate cancer. Biomed Pharmacother 83, 936-941.
Zhao, B., Li, L., Lei, Q., and Guan, K.L. (2010a). The Hippo-YAP pathway in organ size control and tumorigenesis: an updated version. Genes Dev 24, 862-874.
Zhao, B., Li, L., Tumaneng, K., Wang, C.Y., and Guan, K.L. (2010b). A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP). Genes Dev 24, 72-85.
Zhao, B., Ye, X., Yu, J., Li, L., Li, W., Li, S., Yu, J., Lin, J.D., Wang, C.Y., Chinnaiyan, A.M., et al. (2008). TEAD mediates YAP-dependent gene induction and growth control. Genes Dev 22, 1962-1971.
Zhou, Y., Huang, T., Cheng, A.S., Yu, J., Kang, W., and To, K.F. (2016). The TEAD Family and Its Oncogenic Role in Promoting Tumorigenesis. Int J Mol Sci 17.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77910-
dc.description.abstract腫瘤細胞轉移到體內其他位置是多數癌症死亡的主要原因,其涉及一連串複雜的調控過程。近年,長鏈非編碼RNA被視為癌症研究中一個新興的研究領域,更有不少長鏈非編碼RNA被發現於癌症進展和轉移中扮演關鍵角色。因此,闡明長鏈非編碼RNA如何調控腫瘤細胞的生長與轉移,可能提供我們制定用於治療癌症患者的新策略。在本論文中,我們發現了長鏈非編碼RNA NORAD的新功能—抑制肺癌和乳腺惡性腫瘤。統計分析上,我們觀察到NORAD在肺癌和乳癌中表現量較低,且NORAD表現量較低與預後不良有關。功能上,NORAD能抑制癌細胞不依賴錨定生長、裸鼠體內的腫瘤發生、癌細胞遷移和侵襲。機制上,我們則進一步的發現NORAD與促腫瘤轉移蛋白S100P之間有相互作用,且此相互作用會干擾S100P與其下游調控蛋白Ezrin的結合。這說明了,NORAD可以藉由隔離S100P,達到抑制肺癌和乳癌發生、遷移和侵襲。此外,我們也探討了在肺癌和乳癌中,NORAD表現量下降的機制。研究結果顯示,NORAD在乳癌及肺癌中,經由YAP / TAZ-TEAD,這個已知會被異常激活並促進癌細胞發展的途徑,抑制其轉錄。綜合以上,本研究闡述了NORAD 抑制腫瘤的功能和機制,以及發現了NORAD可能參與在YAP / TAZ-TEAD介導的促腫瘤網絡中。zh_TW
dc.description.abstractMetastasis is a complex process and responsible for the most cancer mortality. Recently, lncRNA is an emerging topic in cancer research and several lncRNAs play key roles in cancer progression and metastasis. In this thesis, we identify novel suppressive functions of lncRNA NORAD in the lung and breast malignancy. NORAD is downregulated in lung and breast cancers and this downregulation is associated with poor prognosis. Functionally, NORAD suppresses anchorage-independent growth in vitro and tumor growth in vivo. Additionally, NORAD inhibits migration and invasion of lung and breast cancer cells. Consistent with these tumor suppressive functions, NORAD interacts with a pro-tumor protein S100P and interferes with S100P binding to its effector Ezrin. Using rescue experiments, we show that S100P sequestration accounts for a major mechanism for the aforementioned tumor suppressive effects of NORAD. Finally, we explored the mechanism for NORAD downregulation in lung and breast cancers. Our data suggest that NORAD is repressed by YAP/TAZ-TEAD, a pathway known to be aberrantly activated in lung and breast cancers to promote cancer progression. Together, this study identifies tumor suppressive functions and mechanism of NORAD and suggest a participation of
NORAD in YAP/TAZ-TEAD-mediated pro-tumor network.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:37:13Z (GMT). No. of bitstreams: 1
ntu-106-R04b46013-1.pdf: 2314023 bytes, checksum: 4c8b3a5a5f2102312adc5e2a2aace55b (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents謝辭 i
中文摘要 ii
Abstract iii
I. Introduction 1
1. Tumor progression and metastasis 1
2. Long noncoding RNA (LncRNA) 4
2.1 Classification of lncRNA in human genome 4
2.2 Molecular mechanism of lncRNA in cellular function 6
2.3 The functions of lncRNA in tumor progression 8
3. NORAD10
4. S100P11
4.1 Structure of S100P and function in healthy tissues 11
4.2 S100P in cancer 12
5. YAP/TAZ-TEAD complex 15
5.1 Introduction of YAP/TAZ 15
5.2 TEAD family and their oncogenic role with YAP/TAZ 16
6. Rationale of the study 18
II. Material and methods 19
Cell culture19
Plasmids19
Lentivirus production and infection 20
RT/real-time PCR 20
Colony formation 21
Soft agar assay22
In vivo tumorigenesis 22
Cell migration and invasion assays 23
Proximity ligation assay (PLA) 23
Western blot24
Luciferase reporter assay and transfection 25
Statistical Analysis 25
III. Results 26
LncRNA NORAD is downregulated in lung and breast cancers and its low expression correlates with poor patient survival. 26
NORAD elicits tumor suppressive functions to compromise tumorigenesis. 26
NORAD suppresses migration and invasion in breast and lung cancer cells. 27
Identification of S100P as a NORAD interacting protein. 29
NORAD suppresses tumorigenesis, migration, and invasion by S100P sequestration.30
TEAD-family transcription factors suppress NORAD expression. 31
TEADs downregulate NORAD expression by forming a complex with YAP/TAZ.33
IV. Discussion 34
V. References 39
VI. Figures 52
VII. Appendix 67
dc.language.isoen
dc.subject癌症轉移zh_TW
dc.subjectS100Pzh_TW
dc.subjectYAP/TAZ-TEAD複合體zh_TW
dc.subject腫瘤發生zh_TW
dc.subjectNORADzh_TW
dc.subjectS100Pen
dc.subjecttumorigenesisen
dc.subjectYAP/TAZ-TEAD complexen
dc.subjectmetastasisen
dc.subjectNORADen
dc.title長鏈非編碼RNA NORAD 藉由抑制S100P調節腫瘤細胞發生、遷移及入侵zh_TW
dc.titleLong noncoding RNA NORAD regulates tumorigenesis, tumor cell migration, and invasion by targeting S100Pen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳光超(Guang-Chao Chen),郭津岑(Jean-Cheng Kuo)
dc.subject.keywordNORAD,S100P,腫瘤發生,癌症轉移,YAP/TAZ-TEAD複合體,zh_TW
dc.subject.keywordNORAD,S100P,tumorigenesis,metastasis,YAP/TAZ-TEAD complex,en
dc.relation.page69
dc.identifier.doi10.6342/NTU201702341
dc.rights.note有償授權
dc.date.accepted2017-08-14
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-R04b46013-1.pdf
  未授權公開取用
2.26 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved