請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77897完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 冀宏源(HUNG-YUAN CHI) | |
| dc.contributor.author | Hsin-Wen Chen | en |
| dc.contributor.author | 陳信雯 | zh_TW |
| dc.date.accessioned | 2021-07-11T14:36:56Z | - |
| dc.date.available | 2025-08-19 | |
| dc.date.copyright | 2020-08-28 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-17 | |
| dc.identifier.citation | 1. Wilkins, A.S. and R. Holliday, The evolution of meiosis from mitosis. Genetics, 2009. 181(1): p. 3-12. 2. Handel, M.A. and J.C. Schimenti, Genetics of mammalian meiosis: regulation, dynamics and impact on fertility. Nat Rev Genet, 2010. 11(2): p. 124-36. 3. Baudat, F., Y. Imai, and B. de Massy, Meiotic recombination in mammals: localization and regulation. Nat Rev Genet, 2013. 14(11): p. 794-806. 4. de Massy, B., Initiation of meiotic recombination: how and where? Conservation and specificities among eukaryotes. Annu Rev Genet, 2013. 47: p. 563-99. 5. Lam, I. and S. Keeney, Mechanism and regulation of meiotic recombination initiation. Cold Spring Harb Perspect Biol, 2014. 7(1): p. a016634. 6. Keeney, S., C.N. Giroux, and N. Kleckner, Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell, 1997. 88(3): p. 375-84. 7. Keeney, S., Spo11 and the Formation of DNA Double-Strand Breaks in Meiosis. Genome Dyn Stab, 2008. 2: p. 81-123. 8. Keeney, S. and M.J. Neale, Initiation of meiotic recombination by formation of DNA double-strand breaks: mechanism and regulation. Biochem Soc Trans, 2006. 34(Pt 4): p. 523-5. 9. Neale, M.J., J. Pan, and S. Keeney, Endonucleolytic processing of covalent protein-linked DNA double-strand breaks. Nature, 2005. 436(7053): p. 1053-7. 10. Neale, M.J. and S. Keeney, Clarifying the mechanics of DNA strand exchange in meiotic recombination. Nature, 2006. 442(7099): p. 153-8. 11. Robert, T., et al., A new light on the meiotic DSB catalytic complex. Semin Cell Dev Biol, 2016. 54: p. 165-76. 12. Krejci, L., et al., Homologous recombination and its regulation. Nucleic Acids Res, 2012. 40(13): p. 5795-818. 13. Ehmsen, K.T. and W.D. Heyer, Biochemistry of Meiotic Recombination: Formation, Processing, and Resolution of Recombination Intermediates. Genome Dyn Stab, 2008. 3: p. 91. 14. Gadelle, D., et al., Phylogenomics of type II DNA topoisomerases. Bioessays, 2003. 25(3): p. 232-42. 15. Buhler, C., et al., Reconstitution of DNA topoisomerase VI of the thermophilic archaeon Sulfolobus shibatae from subunits separately overexpressed in Escherichia coli. Nucleic Acids Res, 1998. 26(22): p. 5157-62. 16. Corbett, K.D., P. Benedetti, and J.M. Berger, Holoenzyme assembly and ATP-mediated conformational dynamics of topoisomerase VI. Nat Struct Mol Biol, 2007. 14(7): p. 611-9. 17. Buhler, C., et al., DNA topoisomerase VI generates ATP-dependent double-strand breaks with two-nucleotide overhangs. J Biol Chem, 2001. 276(40): p. 37215-22. 18. Schultz, S.C., G.C. Shields, and T.A. Steitz, Crystal structure of a CAP-DNA complex: the DNA is bent by 90 degrees. Science, 1991. 253(5023): p. 1001-7. 19. Aravind, L., D.D. Leipe, and E.V. Koonin, Toprim--a conserved catalytic domain in type IA and II topoisomerases, DnaG-type primases, OLD family nucleases and RecR proteins. Nucleic Acids Res, 1998. 26(18): p. 4205-13. 20. Dutta, R. and M. Inouye, GHKL, an emergent ATPase/kinase superfamily. Trends Biochem Sci, 2000. 25(1): p. 24-8. 21. Corbett, K.D. and J.M. Berger, Structure of the topoisomerase VI-B subunit: implications for type II topoisomerase mechanism and evolution. EMBO J, 2003. 22(1): p. 151-63. 22. Graille, M., et al., Crystal structure of an intact type II DNA topoisomerase: insights into DNA transfer mechanisms. Structure, 2008. 16(3): p. 360-70. 23. Bergerat, A., et al., An atypical topoisomerase II from Archaea with implications for meiotic recombination. Nature, 1997. 386(6623): p. 414-7. 24. Wu, H., et al., Purification, folding, and characterization of Rec12 (Spo11) meiotic recombinase of fission yeast. Protein Expr Purif, 2004. 38(1): p. 136-44. 25. Yeh, H.Y., et al., Functional characterization of the meiosis-specific DNA double-strand break inducing factor SPO-11 from C. elegans. Sci Rep, 2017. 7(1): p. 2370. 26. Shingu, Y., et al., A DNA-binding surface of SPO11-1, an Arabidopsis SPO11 orthologue required for normal meiosis. FEBS J, 2010. 277(10): p. 2360-74. 27. Stacey, N.J., et al., Arabidopsis SPO11-2 functions with SPO11-1 in meiotic recombination. Plant J, 2006. 48(2): p. 206-16. 28. Hartung, F., et al., An archaebacterial topoisomerase homolog not present in other eukaryotes is indispensable for cell proliferation of plants. Curr Biol, 2002. 12(20): p. 1787-91. 29. Hartung, F., et al., The catalytically active tyrosine residues of both SPO11-1 and SPO11-2 are required for meiotic double-strand break induction in Arabidopsis. Plant Cell, 2007. 19(10): p. 3090-9. 30. Vrielynck, N., et al., A DNA topoisomerase VI-like complex initiates meiotic recombination. Science, 2016. 351(6276): p. 939-43. 31. Robert, T., et al., The TopoVIB-Like protein family is required for meiotic DNA double-strand break formation. Science, 2016. 351(6276): p. 943-9. 32. Sissi, C., et al., DNA gyrase requires DNA for effective two-site coordination of divalent metal ions: further insight into the mechanism of enzyme action. Biochemistry, 2008. 47(33): p. 8538-45. 33. Deweese, J.E., A.B. Burgin, and N. Osheroff, Human topoisomerase IIalpha uses a two-metal-ion mechanism for DNA cleavage. Nucleic Acids Res, 2008. 36(15): p. 4883-93. 34. Sissi, C. and M. Palumbo, Effects of magnesium and related divalent metal ions in topoisomerase structure and function. Nucleic Acids Res, 2009. 37(3): p. 702-11. 35. Wendorff, T.J. and J.M. Berger, Topoisomerase VI senses and exploits both DNA crossings and bends to facilitate strand passage. Elife, 2018. 7. 36. Li, J., G.W. Hooker, and G.S. Roeder, Saccharomyces cerevisiae Mer2, Mei4 and Rec114 form a complex required for meiotic double-strand break formation. Genetics, 2006. 173(4): p. 1969-81. 37. Ma, L., et al., Functional organization of protein determinants of meiotic DNA break hotspots. Sci Rep, 2017. 7(1): p. 1393. 38. Tang, Y., et al., MTOPVIB interacts with AtPRD1 and plays important roles in formation of meiotic DNA double-strand breaks in Arabidopsis. Sci Rep, 2017. 7(1): p. 10007. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77897 | - |
| dc.description.abstract | 在進行減數分裂時,同源重組 (homologous recombination) 對於同源染色體能否正確分配到子細胞中及遺傳訊息的彼此互換,扮演著不可或缺的角色。減數分裂重組反應的發生,主要是藉由DNA雙股斷裂來啟動。在過去的研究中,SPO11已經被充分證明是造成DNA雙股斷裂的重要酵素,更被認為是屬於第II型拓樸異構酶VI (type II topoisomerase VI, Topo VI) 中A次單元 (subunit) 的同源物。目前已知拓撲異構酶VI是由A和B兩個次單元所組成,可藉由ATP的結合與水解形成循環達到調節DNA拓樸構型之目的。然而,至今卻沒有生化實驗的證據可以證實 SPO11單獨存在即可在體外 (in vitro) 造成DNA雙股斷裂;以及是否需要類Topo VIB蛋白 (Topo VIB-like protein) 的協助,才能使SPO11具有造成DNA雙股斷裂的酵素活性。直到最近,在阿拉伯芥 (A. thaliana) 植物中找到了減數分裂時期的類Topo VIB蛋白,MTOPVIB。透過結構模擬的方式,MTOPVIB和古細菌S. shibatae Topo VIB具有高度的結構相似性;值得注意的是,MTOPVIB不但會與SPO11蛋白產生交互作用,也參與在減數分裂時期DNA雙股斷裂的形成。但是,MTOPVIB的生化特性至今仍是尚未被解開的謎,舉凡:(1) MTOPVIB是否具有結合並水解ATP的活性?(2) 在MTOPVIB存在的情況下可否活化SPO11的酵素活性?為了深入研究這些問題,我們首先成功的純化出MTOPVIB及MTOPVIB-SPO11複合物。我們的研究結果指出,MTOPVIB蛋白本身是具有結合DNA的能力,並對雙股DNA有較高的親和力;然而,MTOPVIB不具和ATP結合的能力,並且無法活化SPO11造成DNA雙股斷裂的活性。有趣的是,我們的研究結果猜測類Topo VI複合物 (topoisomerase VI-like complex) 與雙股DNA的結合能力可能主要是由MTOPVIB次單元所提供。綜觀上述,我們的研究成果成功的闡釋A. thaliana MTOPVIB和MTOPVIB-SPO11複合物的生化特性,並提供SPO11與典型type II topoisomerase VI在反應機制上可能的差異。 | zh_TW |
| dc.description.abstract | Meiotic recombination is essential for proper chromosome segregation and for shuffling genetic information during meiosis. SPO11, the type II topoisomerase VI A-like protein, has been well documented to generate DNA double-strand breaks (DSBs) for the initiation of meiotic recombination. Topoisomerase VI consists of A and B subunits to regulate DNA topology through the cycle of ATP binding and hydrolysis. However, no biochemical evidence shows whether SPO11 alone is sufficient to make DSBs in vitro and whether TopoVIB-like protein is a prerequisite for activation of SPO11-mediated DNA cleavage. Recently, Arabidopsis thaliana topoisomerase VI B-like protein, MTOPVIB (meiosis-specific topoisomerase VIB-like), is identified as a structural homolog of archaeon S. shibatae Topo VIB subunit. Importantly, MTOPVIB interacts with SPO11 and is essential for the DSBs formation during meiosis. It remains enigmatic whether MTOPVIB is akin to its Topo VIB ortholog harboring ATPase activity and activating SPO11 activity. Here, we successfully purify the recombinant MTOPVIB protein and MTOPVIB-SPO11 complex. Our results reveal that MTOPVIB is a bona fide DNA-binding protein with a preference for duplex DNA, but lacks the ability of binding nucleotide cofactor ATP and the activation of SPO11-mediated DNA cleavage in vitro. Interestingly, the results suggest that MTOPVIB is the major DNA-binding subunit of topoisomerase VI-like complex. In conclusion, our findings provide insights into the biochemical characteristics of A. thaliana MTOPVIB and MTOPOVIB-SPO11 complex. Importantly, the mechanistic divergence between SPO11 and classical type II topoisomerase is also elucidated in this study. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:36:56Z (GMT). No. of bitstreams: 1 U0001-1608202022581100.pdf: 3325651 bytes, checksum: 1ee2b290e44229f1765b3c7025be019d (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 論文口試委員審定書 I 誌謝 II 中文摘要 III ABSTRACT V CHAPTER 1 INTRODUCTION 1 1-1 The Biology of Meiosis 1 1-2 Spo11-mediated DSBs and Meiotic Recombination 2 1-3 The relationship between Spo11 and Topoisomerase VI 3 1-4 Formation of meiotic DSBs in Arabidopsis thaliana 4 1-5 The biological function of Arabidopsis thaliana MTOPVIB 4 1-6 Motivation of my study 6 CHAPTER 2 MATERIALS AND METHODS 8 2-1 DNA substrates 8 2-2 Plasmids 9 2-3 Insect cell expression system 9 2-4 Protein expression and purification 11 2-4.1 MTOPVIB 11 2-4.2 MTOPVIB-SPO11 complex 13 2-5 Immunoblot analysis 14 2-6 ATP-agarose pulldown assay 15 2-7 Surface plasmon resonance 16 2-8 Electrophoresis mobility shift assay (EMSA) 17 2-9 DNA cleavage assay 18 CHAPTER 3 RESULTS 19 3-1 Purification of Arabidopsis thaliana MTOPVIB 19 3-2 Topo VIB, but not MTOPVIB, possesses ATP-binding ability 20 3-3 MOPVIB is a bona fide DNA-binding protein and shows the DNA-binding preference for dsDNA 21 3-4 Purification of Arabidopsis thaliana MTOPVIB-SPO11 complex 23 3-5 MTOPVIB and Topo VIB are both the major DNA-binding regions of MTOPVIB-SPO11 complex and topoisomerase VI 24 3-6 MTOPVIB-SPO11 complex is not sufficient to generate DSBs in vitro 25 CHAPTER 4 CONCLUSION AND DISCUSSION 26 4-1 Summary of key findings 26 4-2 The GHKL domain in Topo VIB-like proteins 27 4-3 The functional roles of MTOPVIB’s DNA-binding activity 28 4-4 The composition of MTOPVIB-SPO11 complex and MTOPVIB 29 4-5 The meiotic DSBs machinery 30 FIGURES AND FIGURE LEGENDS 32 REFERENCES 42 APPENDIX 45 | |
| dc.language.iso | en | |
| dc.subject | SPO11 | zh_TW |
| dc.subject | 減數分裂時的重組反應 | zh_TW |
| dc.subject | DNA雙股斷裂 | zh_TW |
| dc.subject | 拓樸異構酶VI | zh_TW |
| dc.subject | MTOPVIB | zh_TW |
| dc.subject | MTOPVIB | en |
| dc.subject | DNA double-strand breaks | en |
| dc.subject | Topoisomerase VI | en |
| dc.subject | SPO11 | en |
| dc.subject | Meiotic recombination | en |
| dc.title | "探討植物阿拉伯芥中,減數分裂時期之類拓樸異構酶VI (the meiosis-specific topoisomerase VIB-like protein), MTOPVIB, 的生化特性" | zh_TW |
| dc.title | Biochemical characterization of Arabidopsis thaliana MTOPVIB, the meiosis-specific topoisomerase VIB-like protein | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 詹迺立(NEI-LI CHAN),李弘文(HUNG-WEN LI),王中茹(CHUNG-JU WANG) | |
| dc.subject.keyword | 減數分裂時的重組反應,DNA雙股斷裂,拓樸異構酶VI,SPO11,MTOPVIB, | zh_TW |
| dc.subject.keyword | Meiotic recombination,DNA double-strand breaks,Topoisomerase VI,SPO11,MTOPVIB, | en |
| dc.relation.page | 47 | |
| dc.identifier.doi | 10.6342/NTU202003631 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-18 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-08-19 | - |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1608202022581100.pdf 未授權公開取用 | 3.25 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
