Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77891
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳益群(Yi-Chun Wu)
dc.contributor.authorLing-Chu Huangen
dc.contributor.author黃翎筑zh_TW
dc.date.accessioned2021-07-11T14:36:49Z-
dc.date.available2022-09-04
dc.date.copyright2017-09-04
dc.date.issued2017
dc.date.submitted2017-08-15
dc.identifier.citationZhang, P., Na, H., Liu, Z., Zhang, S., Xue, P., Chen, Y., … Liu, P. (2012). Proteomic Study and Marker Protein Identification of Caenorhabditis elegansLipid Droplets. Molecular & Cellular Proteomics : MCP, 11(8), 317–328. http://doi.org/10.1074/mcp.M111.016345
Coolon, J.D., Jones, K.L., Todd, T.C., Carr, B.C., and Herman, M.A. (2009). Caenorhabditis elegans genomic response to soil bacteria predicts environment-specific genetic effects on life history traits. PLoS Genet 5, e1000503.
Lapierre, L.R., Silvestrini, M.J., Nunez, L., Ames, K., Wong, S., Le, T.T., Hansen, M., and Melendez, A. (2013). Autophagy genes are required for normal lipid levels in C. elegans. Autophagy 9, 278-286.
Liu, Z., Li, X., Ge, Q., Ding, M., and Huang, X. (2014). A lipid droplet-associated GFP reporter-based screen identifies new fat storage regulators in C. elegans. J Genet Genomics 41, 305-313.
MacNeil, L.T., Watson, E., Arda, H.E., Zhu, L.J., and Walhout, A.J. (2013). Diet-induced developmental acceleration independent of TOR and insulin in C. elegans. Cell 153, 240-252.
Ogura, K., Okada, T., Mitani, S., Gengyo-Ando, K., Baillie, D.L., Kohara, Y., and Goshima, Y. (2010). Protein phosphatase 2A cooperates with the autophagy-related kinase UNC-51 to regulate axon guidance in Caenorhabditis elegans. Development 137, 1657-1667.
Padmanabhan, S., Mukhopadhyay, A., Narasimhan, S.D., Tesz, G., Czech, M.P., and Tissenbaum, H.A. (2009). A PP2A regulatory subunit regulates C. elegans insulin/IGF-1 signaling by modulating AKT-1 phosphorylation. Cell 136, 939-951.
Seshacharyulu, P., Pandey, P., Datta, K., and Batra, S.K. (2013). Phosphatase: PP2A structural importance, regulation and its aberrant expression in cancer. Cancer Lett 335, 9-18.
Singh, R., Kaushik, S., Wang, Y., Xiang, Y., Novak, I., Komatsu, M., Tanaka, K., Cuervo, A.M., and Czaja, M.J. (2009). Autophagy regulates lipid metabolism. Nature 458, 1131-1135.
Sutter, B.M., Wu, X., Laxman, S., and Tu, B.P. (2013). Methionine inhibits autophagy and promotes growth by inducing the SAM-responsive methylation of PP2A. Cell 154, 403-415.
Thiam, A.R., Farese, R.V., Jr., and Walther, T.C. (2013). The biophysics and cell biology of lipid droplets. Nat Rev Mol Cell Biol 14, 775-786.
Watson, E., MacNeil, L.T., Ritter, A.D., Yilmaz, L.S., Rosebrock, A.P., Caudy, A.A., and Walhout, A.J. (2014). Interspecies systems biology uncovers metabolites affecting C. elegans gene expression and life history traits. Cell 156, 759-770.
Zhang, H., Chang, J.T., Guo, B., Hansen, M., Jia, K., Kovacs, A.L., Kumsta, C., Lapierre, L.R., Legouis, R., Lin, L., et al. (2015). Guidelines for monitoring autophagy in Caenorhabditis elegans. Autophagy 11, 9-27.
Avery, L., and You, Y.J. (2012). C. elegans feeding. WormBook, 1-23.
Chen, L., McCloskey, T., Joshi, P.M., and Rothman, J.H. (2008). ced-4 and proto-oncogene tfg-1 antagonistically regulate cell size and apoptosis in C. elegans. Curr Biol 18, 1025-1033.
Devaskar, S.U., and Raychaudhuri, S. (2007). Epigenetics--a science of heritable biological adaptation. Pediatr Res 61, 1R-4R.
Kao, G., Tuck, S., Baillie, D., and Sundaram, M.V. (2004). C. elegans SUR-6/PR55 cooperates with LET-92/protein phosphatase 2A and promotes Raf activity independently of inhibitory Akt phosphorylation sites. Development 131, 755-765.
Levine, B., and Kroemer, G. (2008). Autophagy in the pathogenesis of disease. Cell 132, 27-42.
MacNeil, L.T., Watson, E., Arda, H.E., Zhu, L.J., and Walhout, A.J. (2013). Diet-induced developmental acceleration independent of TOR and insulin in C. elegans. Cell 153, 240-252.
Martinez-Lopez, N., Garcia-Macia, M., Sahu, S., Athonvarangkul, D., Liebling, E., Merlo, P., Cecconi, F., Schwartz, Gary J., and Singh, R. (2016). Autophagy in the CNS and Periphery Coordinate Lipophagy and Lipolysis in the Brown Adipose Tissue and Liver. Cell Metabolism 23, 113-127.
Ogura, K., Okada, T., Mitani, S., Gengyo-Ando, K., Baillie, D.L., Kohara, Y., and Goshima, Y. (2010). Protein phosphatase 2A cooperates with the autophagy-related kinase UNC-51 to regulate axon guidance in Caenorhabditis elegans. Development 137, 1657-1667.
Schlaitz, A.L., Srayko, M., Dammermann, A., Quintin, S., Wielsch, N., MacLeod, I., de Robillard, Q., Zinke, A., Yates, J.R., 3rd, Muller-Reichert, T., et al. (2007). The C. elegans RSA complex localizes protein phosphatase 2A to centrosomes and regulates mitotic spindle assembly. Cell 128, 115-127.
Seshacharyulu, P., Pandey, P., Datta, K., and Batra, S.K. (2013). Phosphatase: PP2A structural importance, regulation and its aberrant expression in cancer. Cancer Lett 335, 9-18.
Singh, R., Kaushik, S., Wang, Y., Xiang, Y., Novak, I., Komatsu, M., Tanaka, K., Cuervo, A.M., and Czaja, M.J. (2009). Autophagy regulates lipid metabolism. Nature 458, 1131-1135.
Sutter, B.M., Wu, X., Laxman, S., and Tu, B.P. (2013). Methionine inhibits autophagy and promotes growth by inducing the SAM-responsive methylation of PP2A. Cell 154, 403-415.
Thiam, A.R., Farese, R.V., Jr., and Walther, T.C. (2013). The biophysics and cell biology of lipid droplets. Nat Rev Mol Cell Biol 14, 775-786.
Watson, E., MacNeil, L.T., Ritter, A.D., Yilmaz, L.S., Rosebrock, A.P., Caudy, A.A., and Walhout, A.J. (2014). Interspecies systems biology uncovers metabolites affecting C. elegans gene expression and life history traits. Cell 156, 759-770.
Zhang, H., Chang, J.T., Guo, B., Hansen, M., Jia, K., Kovacs, A.L., Kumsta, C., Lapierre, L.R., Legouis, R., Lin, L., et al. (2015). Guidelines for monitoring autophagy in Caenorhabditis elegans. Autophagy 11, 9-27.
Ahmadian, M., Abbott, M.J., Tang, T., Hudak, C.S., Kim, Y., Bruss, M., Hellerstein, M.K., Lee, H.Y., Samuel, V.T., Shulman, G.I., et al. (2011). Desnutrin/ATGL is regulated by AMPK and is required for a brown adipose phenotype. Cell Metab 13, 739-748.
Avery, L., and You, Y.J. (2012). C. elegans feeding. WormBook, 1-23.
Chen, L., McCloskey, T., Joshi, P.M., and Rothman, J.H. (2008). ced-4 and proto-oncogene tfg-1 antagonistically regulate cell size and apoptosis in C. elegans. Curr Biol 18, 1025-1033.
Cingolani, F., and Czaja, M.J. (2016). Regulation and Functions of Autophagic Lipolysis. Trends Endocrinol Metab 27, 696-705.
Coolon, J.D., Jones, K.L., Todd, T.C., Carr, B.C., and Herman, M.A. (2009). Caenorhabditis elegans genomic response to soil bacteria predicts environment-specific genetic effects on life history traits. PLoS Genet 5, e1000503.
Devaskar, S.U., and Raychaudhuri, S. (2007). Epigenetics--a science of heritable biological adaptation. Pediatr Res 61, 1R-4R.
Fujiwara, N., Usui, T., Ohama, T., and Sato, K. (2016). Regulation of Beclin 1 Protein Phosphorylation and Autophagy by Protein Phosphatase 2A (PP2A) and Death-associated Protein Kinase 3 (DAPK3). J Biol Chem 291, 10858-10866.
Johansen, T.E.H.a.T. (2011). Following autophagy step by step.
Kao, G., Tuck, S., Baillie, D., and Sundaram, M.V. (2004). C. elegans SUR-6/PR55 cooperates with LET-92/protein phosphatase 2A and promotes Raf activity independently of inhibitory Akt phosphorylation sites. Development 131, 755-765.
Lapierre, L.R., Silvestrini, M.J., Nunez, L., Ames, K., Wong, S., Le, T.T., Hansen, M., and Melendez, A. (2013). Autophagy genes are required for normal lipid levels in C. elegans. Autophagy 9, 278-286.
Levine, B., and Kroemer, G. (2008). Autophagy in the pathogenesis of disease. Cell 132, 27-42.
Liu, Z., Li, X., Ge, Q., Ding, M., and Huang, X. (2014). A lipid droplet-associated GFP reporter-based screen identifies new fat storage regulators in C. elegans. J Genet Genomics 41, 305-313.
MacNeil, L.T., Watson, E., Arda, H.E., Zhu, L.J., and Walhout, A.J. (2013). Diet-induced developmental acceleration independent of TOR and insulin in C. elegans. Cell 153, 240-252.
Martinez-Lopez, N., Garcia-Macia, M., Sahu, S., Athonvarangkul, D., Liebling, E., Merlo, P., Cecconi, F., Schwartz, Gary J., and Singh, R. (2016). Autophagy in the CNS and Periphery Coordinate Lipophagy and Lipolysis in the Brown Adipose Tissue and Liver. Cell Metabolism 23, 113-127.
Mizushima, N., Yoshimori, T., and Levine, B. (2010). Methods in mammalian autophagy research. Cell 140, 313-326.
Niso-Santano, M., Malik, S.A., Pietrocola, F., Bravo-San Pedro, J.M., Marino, G., Cianfanelli, V., Ben-Younes, A., Troncoso, R., Markaki, M., Sica, V., et al. (2015). Unsaturated fatty acids induce non-canonical autophagy. EMBO J 34, 1025-1041.
Ogura, K., Okada, T., Mitani, S., Gengyo-Ando, K., Baillie, D.L., Kohara, Y., and Goshima, Y. (2010). Protein phosphatase 2A cooperates with the autophagy-related kinase UNC-51 to regulate axon guidance in Caenorhabditis elegans. Development 137, 1657-1667.
Padmanabhan, S., Mukhopadhyay, A., Narasimhan, S.D., Tesz, G., Czech, M.P., and Tissenbaum, H.A. (2009). A PP2A regulatory subunit regulates C. elegans insulin/IGF-1 signaling by modulating AKT-1 phosphorylation. Cell 136, 939-951.
Qadota, H., Inoue, M., Hikita, T., Koppen, M., Hardin, J.D., Amano, M., Moerman, D.G., and Kaibuchi, K. (2007). Establishment of a tissue-specific RNAi system in C. elegans. Gene 400, 166-173.
Schlaitz, A.L., Srayko, M., Dammermann, A., Quintin, S., Wielsch, N., MacLeod, I., de Robillard, Q., Zinke, A., Yates, J.R., 3rd, Muller-Reichert, T., et al. (2007). The C. elegans RSA complex localizes protein phosphatase 2A to centrosomes and regulates mitotic spindle assembly. Cell 128, 115-127.
Seshacharyulu, P., Pandey, P., Datta, K., and Batra, S.K. (2013). Phosphatase: PP2A structural importance, regulation and its aberrant expression in cancer. Cancer Lett 335, 9-18.
Singh, R., Kaushik, S., Wang, Y., Xiang, Y., Novak, I., Komatsu, M., Tanaka, K., Cuervo, A.M., and Czaja, M.J. (2009). Autophagy regulates lipid metabolism. Nature 458, 1131-1135.
Sutter, B.M., Wu, X., Laxman, S., and Tu, B.P. (2013). Methionine inhibits autophagy and promotes growth by inducing the SAM-responsive methylation of PP2A. Cell 154, 403-415.
Thiam, A.R., Farese, R.V., Jr., and Walther, T.C. (2013). The biophysics and cell biology of lipid droplets. Nat Rev Mol Cell Biol 14, 775-786.
Thomas A. Millward, S.Z.a.B.A.H. (1999). Regulation of protein kinase cascades by protein phosphatase 2A.
Ward, C., Martinez-Lopez, N., Otten, E.G., Carroll, B., Maetzel, D., Singh, R., Sarkar, S., and Korolchuk, V.I. (2016). Autophagy, lipophagy and lysosomal lipid storage disorders. Biochim Biophys Acta 1861, 269-284.
Watson, E., MacNeil, L.T., Ritter, A.D., Yilmaz, L.S., Rosebrock, A.P., Caudy, A.A., and Walhout, A.J. (2014). Interspecies systems biology uncovers metabolites affecting C. elegans gene expression and life history traits. Cell 156, 759-770.
Wong, P.M., Feng, Y., Wang, J., Shi, R., and Jiang, X. (2015). Regulation of autophagy by coordinated action of mTORC1 and protein phosphatase 2A. Nat Commun 6, 8048.
Zhang, H., Chang, J.T., Guo, B., Hansen, M., Jia, K., Kovacs, A.L., Kumsta, C., Lapierre, L.R., Legouis, R., Lin, L., et al. (2015). Guidelines for monitoring autophagy in Caenorhabditis elegans. Autophagy 11, 9-27.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77891-
dc.description.abstract食物的含量及營養組成成分是已被證實會影響生物體許多生理功能如生長速率、生殖能力、壽命長短。在我們的實驗中發現,當線蟲餵食 Comamonas sp. DA1877 比餵食 Eschericia coli OP50有較低的脂肪含量。然而,飲食如何改變線蟲的生理現象仍未被完全了解。我們和其他實驗室發現在餵食DA1877的線蟲中,S-腺苷甲硫氨酸合成酶 (S-adenosylmethionine synthetase,sams-1) 會參與在甲基化反應 (Methylation cycle) 途徑中進而影響像是生長加速及脂肪含量下降的生理現象。在酵母菌中,sams-1的產物SAM 透過甲基移轉作用反應酶 (Ppm1p) 造成蛋白磷酸酶2 (PP2Ac)的甲基化進而促進酵母菌的生長以及抑制酵母菌自噬作用的發生。而let-92是PP2Ac在線蟲的同源基因。因此,我們想要探討let-92參與在DA1877調控的脂肪含量下降的角色。我們發現線蟲餵食在兩種不同食物中,體內 PP2Ac 蛋白質表現量是相似的,但餵食DA1877食物的線蟲體內則有較高的甲基化PP2A蛋白表現量。利用RNA干擾實驗我們發現let-92對於線蟲食用DA1877線蟲所造成脂肪降低的情形是必須的。脂肪的消耗及利用主要會經由脂肪自噬作用(lipophagy) 和脂肪分解 (lipolysis)兩種途徑。我們發現自噬作用的起始在DA1877餵食的線蟲中是活化的,而且let-92 對於促進DA1877自噬作用是重要的。接下來,我們發現自噬作用相關基因,unc-51功能缺失時,餵食DA1877食物會造成線蟲體內油滴變大顆,和抑制let-92的情形類似。雖然我們發現let-92經由自噬作用促進脂肪降解, ATGL-1調控的脂肪分解 (lipolysis) 似乎並不參與在其中。另外,我們也探討了PP2A是否參與在DA1877所調控的生長加速。我們發現抑制let-92造成餵食OP50的線蟲生長速率減緩,餵食DA1877的線蟲則沒有改變其生長速度。此外,當線蟲在酵母菌中甲基移轉作用反應酶Ppm1p的同源基因B0285.4及PP2A B regulatory subunit基因,pptr-1和pptr-2並不是DA1877所造成生長加速的主因。總結以上的實驗,我們認為餵食DA1877的線蟲可能透過let-92的後轉譯修飾,促進自噬作用的進行將線蟲脂肪降解,而DA1877所造成的生長加速情形則並非經由let-92的調控。zh_TW
dc.description.abstractThe amount and nutritional content of diet are essential factors that have been shown to affect many organismal life-history traits, such as development rate, fertility and lifespan. In our previous studies, when fed the soil bacteria Comamonas sp. DA1877, C. elegans showed lower lipid contents compared to worms fed laboratory standard food Escherichia coli OP50. But how diets alter various physiological processes of worms are still unclear and whether they are modulated through similar component remain to be elucidated. We and other lab have shown that S-adenosylmethionine synthetase (sams-1) which participates in the methionine/S-adenosylmethionine (SAM) cycle is required to mediate several physiological processes such as developmental acceleration and lipid reduction on DA1877-fed worms. In budding yeast, SAM, the product of sams-1 promotes growth and inhibits autophagy through the action of methylatransferase Ppm1p, which modifies the catalytic subunit of protein phosphatase 2 (PP2Ac). Thus in this study, we investigated the role of PP2A in DA1877-mediated lipid reduction. We found worms have similar PP2Ac protein on both diets, but more methylated PP2Ac protein than worms fed OP50. We found let-92 is required for DA1877-mediated lipid content decrease in intestinal cells of worms. Consumption and utilization of lipid droplets could through lipophagy or lipolysis. We demonstrated the initiation of autophagy is more active in DA1877-fed worms and let-92 is essential to promote the activation of autophagy. Moreover, deficiency of the autophagy-related gene, unc-51 enlarged lipid droplet sizes in DA1877-fed worms, similar to let-92 (RNAi). While let-92 promotes lipid degradation through autophagy, ATGL-1 dependent lipolysis does not be seem to play a role in this regulation. On the other hand, we investigated the involvement of PP2A in DA1877-mediated developmental acceleration. Knockdown of let-92 resulted in delayed developmental rate in OP50-fed worms than ones fed DA1877. Further, disruption of methyltransferase, B0285.4, which encodes worm homologue of Ppm1p, and PP2A B regulatory subunit genes, pptr-1 and pptr-2 does not suppress DA1877-mediated developmental acceleration. Together, based on our studies, we proposed that diet DA1877 may regulate let-92 activity through post-translational modification to promote autophagy resulting in enhanced worms lipid utilization in the worms, whereas DA1877-mediated developmental acceleration is in a let-92 independent manner.en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:36:49Z (GMT). No. of bitstreams: 1
ntu-106-R04b43012-1.pdf: 2448172 bytes, checksum: 2f2bb5f286a49b4e6960ac06e14df2ab (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents致謝…………………………………………………………………………………… I
中文摘要……………………………………………………………………………...II
Abstract………………………………………………………………………………IV
Introduction……………………………………………………………………………1
Materials and Methods………………………………………………………………….
C. elegans strains…………………………………………………………………7
Bacterial strain……………………………………………………………………7
Body volumes calculation………………………………………………………...7
Western blot analysis……………………………………………………………..8
C. elegans synchronization……………………………………………………….8
Image acquisition…………………………………………………………………9
Oil Red O staining………………………………………………………………...9
BODIPY 493/503 staining………………………………………………………10
Developmental rate assay……………………………………………………….10
let-92 double-stranded RNA construct…………………………………………..11
Bacteria mixing………………………………………………………………….11
Results…………………………………………………………………………………..
DA1877 affects C. elegans developmental rate, body growth and lipid contents..13
let-92/PP2Ac is required for small lipid droplet sizes and reduced lipid content in worms fed DA1877 but not OP50 in intestinal cells……………………………..14
Autophagy may be more active in DA1877-fed worms and let-92 seems essential to promote autophagy…………………………………………………..……….17
DA1877-fed worms have more autophagosomes but less autolysosomes than those fed OP50………………………………………………………………………...18
DA1877-mediated lipid content reduction depends on the autophagy gene, unc-51………………………………………………………………………………..20
Knockdown of let-92 resulted in elevated level of ATGL-1::GFP in DA1877-fed worms…………………………………………………………………………...21
let-92/PP2Ac transcriptional and translational expression in worms fed on OP50 and DA1877 diets……………………………………………………………….22
PP2A may be differentially regulated by diets through post-translational modification…………………………………………………………………….23
Methyltranferase B0285.4 is a general regulator for lipid content, and does not function differently in DA1877- or OP50- fed worms…………………………...24
sams-1 may act in same or in parallel to let-92 to regulate lipid storage in DA1877-fed worms…………………………………………………………………...…..25
Knockdown of let-92 resulted in delayed developmental rate when worms fed on OP50.....................................................................................................................26
Methyltranferase B0285.4 is a general regulator for development rate, and does not regulate development of DA1877- or OP50- fed worms specifically………27
PP2A B regulatory subunit genes, pptr-1 and pptr-2 does not responsible for DA1877-mediated developmental acceleration…………………………………28
Discussion………………………………………………………………………………
The role of let-92 in DA1877-mediated autophagy……………………………..30
Different approaches to address autophagy flux in DA1877-fed worms………..31
The role of unc-51 in DA1877-fed worms………………………………………33
Autophagy and lipophagy in DA1877-fed worms………………………………34
The crosstalk between lipophagy and lipolysis……………………………….....34
Figure……………………………………………………………………………….......
Figure 1. DA1877 diet affects C. elegans developmental rate, body growth and lipid contents…………………………………………………………………….36
Figure 2. let-92 regulates lipid storage in the intestinal cells of DA1877-fed worms but not OP50-fed worms………………………………………………………...38
Figure 3. Autophagy is more active in wildtype worms on DA1877 than OP50 and let-92 seems essential to promote this DA1877-dependent autophagy………….42
Figure 4. Worms have more autophagosome but less autolysosome on DA1877 than OP50……………………………………………….....................................44
Figure 5. Loss of unc-51 suppressed DA1877-mediated lipid content reduction..45
Figure 6. Knockdown of let-92 resulted in an elevated level of ATGL-1::GFP…47
Figure 7. let-92/PP2Ac transcriptional and translational expression are similar in worms fed OP50 and DA1877 diets……………………………………………..48
Figure 8. PP2A may be differentially regulated by diets through post-translational modification…………………………………………………………………….49
Figure 9. sams-1 may act in same or in parallel to let-92 lipid storage in DA1877-fed worms……………………………………………………………………….51
Supplementary Table……………………………………………………………………
Table S1. Knockdown of let-92 affects worms hatched rate at different extent in the worms fed OP50 and DA1877……………………………………………….52
Supplementary Figure…………………………………………………………………..
Figure S1. PP2A affects worms developmental rate on both OP50 and DA1877 diets……………………………………………………………………………..52
Reference……………………………………………………………………………..55
dc.language.isoen
dc.title探討蛋白磷酸酶參與飲食調控線蟲脂肪儲存及生長速率所扮演的角色zh_TW
dc.titleThe role of PP2A in dietary regulation of lipid storage and developmental rate in C. elegansen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許翱麟(Ao-Lin Hsu),金翠庭(Tsiu-Ting Ching),王昭雯(Chao-Wen Wang),蔡欣祐(Hsin-Yue Tsai)
dc.subject.keyword蛋白磷酸?,脂肪含量,自噬作用,脂肪分解,生長速率,zh_TW
dc.subject.keywordlet-92/PP2Ac,lipid content,autophagy,lipolysis,developmental rate,en
dc.relation.page59
dc.identifier.doi10.6342/NTU201703095
dc.rights.note有償授權
dc.date.accepted2017-08-15
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-R04b43012-1.pdf
  目前未授權公開取用
2.39 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved