請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77886完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 何昊哲(Hao-Che Ho) | |
| dc.contributor.author | Ting-Yu Chen | en |
| dc.contributor.author | 陳亭妤 | zh_TW |
| dc.date.accessioned | 2021-07-11T14:36:42Z | - |
| dc.date.available | 2025-08-20 | |
| dc.date.copyright | 2020-08-28 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-18 | |
| dc.identifier.citation | [1]. ABADI, M., AGARWAL, A., BARHAM, P., BREVDO, E., CHEN, Z., CITRO, C., CORRADO, G. S., DAVIS, A., DEAN, J. DEVIN, M. 2016a. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467. [2]. ABADI, M., BARHAM, P., CHEN, J., CHEN, Z., DAVIS, A., DEAN, J., DEVIN, M., GHEMAWAT, S., IRVING, G. ISARD, M. Tensorflow: A system for large-scale machine learning. 12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16), 2016b. 265-283. [3]. ADRIAN, L., ADRIAN, R. J. WESTERWEEL, J. 2011. Particle image velocimetry, Cambridge university press. [4]. AL-AMRI, S. S., KALYANKAR, N. V. KHAMITKAR, S. D. 2010. A comparative study of removal noise from remote sensing image. arXiv preprint arXiv:1002.1148. [5]. BARKER, D. FOURNEY, M. 1977. Measuring fluid velocities with speckle patterns. Optics letters, 1, 135-137. [6]. BAY, H., TUYTELAARS, T. VAN GOOL, L. Surf: Speeded up robust features. European conference on computer vision, 2006. Springer, 404-417. [7]. BOYAT, A. K. JOSHI, B. K. 2015. A review paper: noise models in digital image processing. arXiv preprint arXiv:1505.03489. [8]. BRADLEY, A. A., KRUGER, A., MESELHE, E. A. MUSTE, M. V. 2002. Flow measurement in streams using video imagery. Water Resources Research, 38, 51-1-51-8. [9]. CAI, S., ZHOU, S., XU, C. GAO, Q. 2019. Dense motion estimation of particle images via a convolutional neural network. Experiments in Fluids, 60, 73. [10]. CLEVERT, D.-A., UNTERTHINER, T. HOCHREITER, S. 2015. Fast and accurate deep network learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289. [11]. COSTA, J. E., SPICER, K. R., CHENG, R. T., HAENI, F. P., MELCHER, N. B., THURMAN, E. M., PLANT, W. J. KELLER, W. C. 2000. Measuring stream discharge by non‐contact methods: A proof‐of‐concept experiment. Geophysical Research Letters, 27, 553-556. [12]. CROSBY, D., BREAKER, L. GEMMILL, W. 1993. A proposed definition for vector correlation in geophysics: Theory and application. Journal of Atmospheric and Oceanic Technology, 10, 355-367. [13]. DUDDERAR, T. SIMPKINS, P. 1977. Laser speckle photography in a fluid medium. Nature, 270, 45-47. [14]. FUJITA, I. KOMURA, S. 1994. Application of video image analysis for measurements of river-surface flows. Proceedings of hydraulic engineering, 38, 733-738. [15]. FUJITA, I., MUSTE, M. KRUGER, A. 1998. Large-scale particle image velocimetry for flow analysis in hydraulic engineering applications. Journal of hydraulic Research, 36, 397-414. [16]. FUKUSHIMA, K. 1980. A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern., 36, 193-202. [17]. GERLACH, A., PREUSS, E., THAMSEN, P. U. LYKHOLT-USTRUP, F. 2017. Numerical simulations of the internal flow pattern of a vortex pump compared to the Hamel-Oseen vortex. Journal of Mechanical Science and Technology, 31, 1711-1719. [18]. GONZALES, R. C. WOODS, R. E. 2002. Digital image processing. Prentice hall New Jersey. [19]. GROUSSON, R. MALLICK, S. 1977. Study of flow pattern in a fluid by scattered laser light. Applied Optics, 16, 2334-2336. [20]. HAUET, A., KRUGER, A., KRAJEWSKI, W. F., BRADLEY, A., MUSTE, M., CREUTIN, J.-D. WILSON, M. 2008. Experimental system for real-time discharge estimation using an image-based method. Journal of Hydrologic Engineering, 13, 105-110. [21]. HE, K., ZHANG, X., REN, S. SUN, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. Proceedings of the IEEE international conference on computer vision, 2015. 1026-1034. [22]. HE, K., ZHANG, X., REN, S. SUN, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition, 2016. 770-778. [23]. HOOPER, J. W. 1959. Simultaneous equations and canonical correlation theory. Econometrica: Journal of the Econometric Society, 245-256. [24]. HORN, B. K. SCHUNCK, B. G. 1981. Determining optical flow. Artificial intelligence, 17, 185-203. [25]. JOHNSON, E. 2015. The remote monitoring of surface velocity, bathymetry and discharge in rivers and open channel flows. [26]. JUPP, P. E. MARDIA, K. V. 1980. A general correlation coefficient for directional data and related regression problems. Biometrika, 67, 163-173. [27]. KALCHBRENNER, N., GREFENSTETTE, E. BLUNSOM, P. 2014. A convolutional neural network for modelling sentences. arXiv preprint arXiv:1404.2188. [28]. KEANE, R. D. ADRIAN, R. J. 1992. Theory of cross-correlation analysis of PIV images. Applied scientific research, 49, 191-215. [29]. KIM, Y. 2006. Uncertainty analysis for non-intrusive measurement of river discharge using image velocimetry, The University of Iowa. [30]. KRIZHEVSKY, A., SUTSKEVER, I. HINTON, G. E. Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 2012. 1097-1105. [31]. LECUN, Y., BOTTOU, L., BENGIO, Y. HAFFNER, P. 1998. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86, 2278-2324. [32]. LEE, Y., YANG, H. YIN, Z. 2017. PIV-DCNN: cascaded deep convolutional neural networks for particle image velocimetry. Experiments in Fluids, 58, 171. [33]. LOWE, D. G. 2004. Distinctive image features from scale-invariant keypoints. International journal of computer vision, 60, 91-110. [34]. MAAS, A. L., HANNUN, A. Y. NG, A. Y. Rectifier nonlinearities improve neural network acoustic models. Proc. icml, 2013. 3. [35]. MUSTE, M. 2004. Flow diagnostic in hydraulic modeling using image velocimetry. J. Hydraul. Eng., 130, 175-185. [36]. MUSTE, M., XIONG, Z., KRUGER, A. FUJITA, I. Error estimation in PIV applied to large-scale flows. Proceedings of the third International Workshop on PIV, 1999. [37]. NAIR, V. HINTON, G. E. Rectified linear units improve restricted boltzmann machines. ICML, 2010. [38]. NOBACH, H. HONKANEN, M. 2005. Two-dimensional Gaussian regression for sub-pixel displacement estimation in particle image velocimetry or particle position estimation in particle tracking velocimetry. Experiments in fluids, 38, 511-515. [39]. OKAMOTO, K., NISHIO, S., SAGA, T. KOBAYASHI, T. 2000. Standard images for particle-image velocimetry. Measurement Science and Technology, 11, 685. [40]. OLIPHANT, T. E. 2007. Python for scientific computing. Computing in Science Engineering, 9, 10-20. [41]. PUST, O. Piv: Direct cross-correlation compared with fft-based cross-correlation. Proceedings of the 10th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 2000. 114. [42]. RAFFEL, M., WILLERT, C. E., SCARANO, F., KôHLER, C. J., WERELEY, S. T. KOMPENHANS, J. 2018. Particle image velocimetry: a practical guide, Springer. [43]. RANTZ, S. E. 1982. Measurement and computation of streamflow, US Department of the Interior, Geological Survey. [44]. RUBLEE, E., RABAUD, V., KONOLIGE, K. BRADSKI, G. ORB: An efficient alternative to SIFT or SURF. 2011 International conference on computer vision, 2011. Ieee, 2564-2571. [45]. RUSSAKOVSKY, O., DENG, J., SU, H., KRAUSE, J., SATHEESH, S., MA, S., HUANG, Z., KARPATHY, A., KHOSLA, A. BERNSTEIN, M. 2015. Imagenet large scale visual recognition challenge. International journal of computer vision, 115, 211-252. [46]. SAFFMAN, P. G. 1992. Vortex dynamics, Cambridge university press. [47]. SAINATH, T. N., MOHAMED, A.-R., KINGSBURY, B. RAMABHADRAN, B. Deep convolutional neural networks for LVCSR. 2013 IEEE international conference on acoustics, speech and signal processing, 2013. IEEE, 8614-8618. [48]. SCHLICHTING, V. H. 1933. Laminare strahlausbreitung. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 13, 260-263. [49]. SIMONYAN, K. ZISSERMAN, A. 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556. [50]. SUN, Y., WANG, X. TANG, X. Deep convolutional network cascade for facial point detection. Proceedings of the IEEE conference on computer vision and pattern recognition, 2013. 3476-3483. [51]. SZEGEDY, C., LIU, W., JIA, Y., SERMANET, P., REED, S., ANGUELOV, D., ERHAN, D., VANHOUCKE, V. RABINOVICH, A. Going deeper with convolutions. Proceedings of the IEEE conference on computer vision and pattern recognition, 2015. 1-9. [52]. THIELICKE, W. STAMHUIS, E. 2014. PIVlab–towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. Journal of Open Research Software, 2. [53]. WILLERT, C. E. GHARIB, M. 1991. Digital particle image velocimetry. Experiments in fluids, 10, 181-193. [54]. ZHANG, Y.-D., PAN, C., SUN, J. TANG, C. 2018. Multiple sclerosis identification by convolutional neural network with dropout and parametric ReLU. Journal of computational science, 28, 1-10. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77886 | - |
| dc.description.abstract | 流量是設計及管理水利工程中的重要考量因子,準確的流量能在最低的施工成本中達到其興建目的,製造安全及經濟雙贏的結果,而準確的流速才能計算出準確的流量。在流速量測中,若以人工進行接觸式的量測,需要花費較多時間,在大流量時亦不易量測,因此非接觸式的量測成為近年來重要發展的項目。其中粒子影像測速法(PIV)是一常被討論的非接觸式量測法,透過影像對的匹配計算單位時間的位移量以推估出流速。在影像匹配方法大多採用互相關性演算法(DCC),透過計算影相對間之強度分佈來進行匹配影像,然連續影像之強度分佈易受到攝影設備對焦、環境光照、陰影等環境及人為影響。故本研究嘗試採用卷積神經網路(CNN)提取二維特徵的優勢,透過模式訓練學習以辨識匹配影像對。 本研究將使用人造粒子影像以確保有真實值能夠評估DCC法及CNN法的差異,在流場選擇上使用穩態均勻流、渦流、射流,並在三種流場分別加入不同的雜訊及光照,再利用DCC法及CNN法進行流速計算,其中考慮了子圖像的尺寸、輸入資料的尺寸、不同層數及深度的卷積神經網路配合不同的激活函數。根據本研究所使用的方法,子圖像為 時兩方法皆有最佳表現;若輸入資料的尺寸選用原始子圖像的尺寸,則需要四層卷積層的神經網路才能良好的計算出流速,而若先將子圖像縮放為 時,則僅需要兩層卷積層的神經網路;改變激活函數的影響在本研究方法中並不明顯;而擁有四層卷積層的神經網路在面對不同尺寸的子圖像時,會表現的較僅有兩層卷積層的神經網路穩定。並且在擁有四層卷積層的神經網路中,加深卷積層深度對其計算結果沒有明顯幫助。在面對雜訊時,DCC法的誤差急劇上升,而CNN法相對穩定,如在穩態均勻流中添加35%高斯雜訊時,DCC法較CNN法誤差增加3.6倍。依本研究所使用的案例,CNN法可以取代DCC法在PIV中的計算。 | zh_TW |
| dc.description.abstract | The discharge of flow is an important consideration in the design and management of water conservancy. An accurate flow can achieve its construction purpose at the lowest cost, and create a safe and economic win-win result additionally. Since the contact flow measurement techniques is performed manually, it not only takes much time but also difficult to perform at a large flow rate. Therefore, non-contact measurement techniques has become a hotspot in recent years. Particle image velocimetry (PIV) is widely used in measuring the surface flow velocity and estimating the discharge in the field. The method of PIV to estimate the flow velocity is to calculate the displacement by matching image pairs. Direct cross-correlation algorithm (DCC) matches the images by calculating the intensity distribution between the shadows. However, the intensity distribution of the continuous image is susceptible to environmental and human influences such as camera equipment focusing, ambient lighting, and shadows. Therefore, this study attempts to use the advantages of Convolutional Neural Network (CNN), extract two-dimensional features, to identify matching image pairs. In this study, the artificial particle images are used to ensure that there are real velocity values to evaluate the difference between the DCC method and the CNN method. Uniform and steady flow, vortex flow, and jet flow are used in the flow field selection. The results show that the CNN method is more stable than the DCC method when noise and light are adding in the images. In this study, we choose three types of convolutional neural Networks with combinations of different depths and convolutional layer, and changing the activation function. The aim is to find a suitable convolutional neural Network framework. According to the method used in this study, the effect of the activation function is not obvious. A neural Network with four convolutional layers will perform better than a neural Network with two convolutional layers when faced with different size sub-images. With a neural Network with four convolutional layers, deepening the depth of the convolutional layer does not help significantly. In the face of noise, the error of the DCC method rises sharply, and the CNN method is relatively stable. For example, when 35% Gaussian noise is added to the steady uniform flow, the DCC method has an error of 3.6 times that of the CNN method. According to the case used in this research, the CNN method can replace the calculation of DCC method in PIV. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:36:42Z (GMT). No. of bitstreams: 1 U0001-1708202001045200.pdf: 9713934 bytes, checksum: 5ad70ab1991bf2159b1a26e44206f84f (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員審定書 I 謝誌 II 摘要 III Abstract IV 目錄 VI 圖目錄 IX 表目錄 XII 第1章 緒論 1 1.1 研究動機與目的 1 1.2 研究流程 4 1.3 研究架構 5 第2章 文獻回顧 6 2.1 粒子影像測速法(Particle Image Velocimetry, PIV) 6 2.2 卷積神經網路(Convolutional Neural Network, CNN) 10 2.3 卷積神經網路應用於粒子影像測速法 13 第3章 研究方法 15 3.1 粒子影像測速法 15 3.2 互相關性演算法 17 3.3 卷積神經網路 18 3.3.1 卷積神經網路演算法 18 3.3.2 卷積神經網路簡介 20 3.3.3 卷積層層數與深度 23 3.3.4 激活函數 25 3.4 雜訊(Noise) 27 3.4.1 光照 27 3.4.2 隨機雜訊 28 3.5 誤差評估 31 3.5.1 向量相關係數 31 3.5.2 均方根誤差 32 第4章 研究案例概述 33 4.1 網路學習之開發環境與軟硬體配備 33 4.1.1 硬體設備 33 4.1.2 程式語言 33 4.1.3 TensorFlow 34 4.2 模擬案例設計 35 4.2.1 人造粒子影像 35 4.2.2 PIVlab 38 4.2.3 流場 39 第5章 研究結果與討論 43 5.1 子圖像(IA)尺寸影響 45 5.2 卷積神經網路架構之率定 48 5.2.1 激活函數選擇 48 5.2.2 輸入資料尺寸影響 49 5.2.3 卷積神經網路層數與深度之影響 49 5.3 添加雜訊對PIV評估流速之影響 51 5.3.1 光照 51 5.3.2 隨機雜訊 51 5.3.3 誤差分布 52 第6章 結論與建議 69 6.1 結論 69 6.2 建議 70 參考文獻 71 附錄 附錄-1 | |
| dc.language.iso | zh-TW | |
| dc.subject | 流速測量 | zh_TW |
| dc.subject | 粒子影像測速法 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 卷積類神經網路 | zh_TW |
| dc.subject | 互相關性 | zh_TW |
| dc.subject | DCC | en |
| dc.subject | PIV | en |
| dc.subject | CNN | en |
| dc.subject | CNN framework | en |
| dc.subject | Surface velocity | en |
| dc.title | 最佳卷積神經網路架構在水流表面流速之探討 | zh_TW |
| dc.title | Optimized CNN Framework for Free-Surface Velociemetry | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 韓仁毓(Jen-Yu Han),甯方璽(Fang-Shii Ning) | |
| dc.subject.keyword | 粒子影像測速法,深度學習,卷積類神經網路,流速測量,互相關性, | zh_TW |
| dc.subject.keyword | PIV,CNN,CNN framework,Surface velocity,DCC, | en |
| dc.relation.page | 92 | |
| dc.identifier.doi | 10.6342/NTU202003648 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-19 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-08-20 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1708202001045200.pdf 未授權公開取用 | 9.49 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
