請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77882完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林清富(Ching-Fuh Lin) | |
| dc.contributor.author | Po-Tsun Kuo | en |
| dc.contributor.author | 郭柏村 | zh_TW |
| dc.date.accessioned | 2021-07-11T14:36:38Z | - |
| dc.date.available | 2022-08-31 | |
| dc.date.copyright | 2017-08-31 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-16 | |
| dc.identifier.citation | 1. BP Energy Outlook | Energy economics | BP Global, “http://www.bp.com/en/global/corporate/energy-economics/energy-outlook.html”
2. International Energy Agency, “ENERGY SUPPLY SECURITY 2014”, http://pansci.asia/archives/71021 3. Solar International Energy Agency, “http://www.iea.org/topics/renewables/subtopics/solar/” 4. 產業觀察, “https://mma.sinopac.com/MMA7txt/research/Weekly/20160222/0402.pdf” 5. 太陽能電池之發展與所遭遇的問題,“http://www.tpvia.org.tw/upload/2012/08/20120807102617.pdf” 6. D. Carlson and C. Wronski, 'Amorphous silicon solar cell', Applied Physics Letters, vol. 28, no. 11, pp. 671-673, 1976. 7. “Best Research-Cell Efficiencies”, https://phys.org/news/2016-02-solar-cell-efficiency-nrel.html 8. M. Green, K. Emery, Y. Hishikawa, W. Warta and E. Dunlop, 'Solar cell efficiency tables (version 46)', Progress in Photovoltaics: Research and Applications, vol. 23, no. 7, pp. 805-812, 2015. 9. D. Mitzi, S. Wang, C. Feild, C. Chess and A. Guloy, 'Conducting Layered Organic-inorganic Halides Containing <110>-Oriented Perovskite Sheets', Science, vol. 267, no. 5203, pp. 1473-1476, 1995. 10. D. Mitzi, K. Chondroudis and C. Kagan, 'Organic-inorganic electronics', IBM Journal of Research and Development, vol. 45, no. 1, pp. 29-45, 2001. 11. M. Green, A. Ho-Baillie and H. Snaith, 'The emergence of perovskite solar cells', Nature Photonics, vol. 8, no. 7, pp. 506-514, 2014. 12. H. Snaith, 'Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells', The Journal of Physical Chemistry Letters, vol. 4, no. 21, pp. 3623-3630, 2013. 13. A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, 'Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells', Journal of the American Chemical Society, vol. 131, no. 17, pp. 6050-6051, 2009. 14. J. Im, C. Lee, J. Lee, S. Park and N. Park, '6.5% efficient perovskite quantum-dot-sensitized solar cell', Nanoscale, vol. 3, no. 10, pp. 4088-4089, 2011. 15. H. Kim, C. Lee, J. Im, K. Lee, T. Moehl, A. Marchioro, S. Moon, R. Humphry-Baker, J. Yum, J. Moser, M. Grätzel and N. Park, 'Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%', Scientific Reports, vol. 2, no. 1, pp. 1-7, 2012. 16. M. Lee, J. Teuscher, T. Miyasaka, T. Murakami and H. Snaith, 'Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites', Science, vol. 338, no. 6107, pp. 643-647, 2012. 17. A. Marchioro, J. Teuscher, D. Friedrich, M. Kunst, R. van de Krol, T. Moehl, M. Grätzel and J. Moser, 'Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells', Nature Photonics, vol. 8, no. 3, pp. 250-255, 2014. 18. W. Yang, J. Noh, N. Jeon, Y. Kim, S. Ryu, J. Seo and S. Seok, 'High-performance photovoltaic perovskite layers fabricated through intramolecular exchange', Science, vol. 348, no. 6240, pp. 1234-1237, 2015. 19. M. Green, A. Ho-Baillie and H. Snaith, 'The emergence of perovskite solar cells', Nature Photonics, vol. 8, no. 7, pp. 506-514, 2014. 20. H. Zhou, Q. Chen, G. Li, S. Luo, T. Song, H. Duan, Z. Hong, J. You, Y. Liu and Y. Yang, 'Interface engineering of highly efficient perovskite solar cells', Science, vol. 345, no. 6196, pp. 542-546, 2014. 21. H. Kim, S. Im and N. Park, 'Organolead Halide Perovskite: New Horizons in Solar Cell Research', The Journal of Physical Chemistry C, vol. 118, no. 11, pp. 5615-5625, 2014. 22. B. Cohen, 'Mutations in M2 alter the selectivity of the mouse nicotinic acetylcholine receptor for organic and alkali metal cations', The Journal of General Physiology, vol. 100, no. 3, pp. 373-400, 1992. 23. T. Koh, K. Fu, Y. Fang, S. Chen, T. Sum, N. Mathews, S. Mhaisalkar, P. Boix and T. Baikie, 'Formamidinium-Containing Metal-Halide: An Alternative Material for Near-IR Absorption Perovskite Solar Cells', The Journal of Physical Chemistry C, vol. 118, no. 30, pp. 16458-16462, 2014. 24. L. Ono, M. Leyden, S. Wang and Y. Qi, 'Organometal halide perovskite thin films and solar cells by vapor deposition', J. Mater. Chem. A, vol. 4, no. 18, pp. 6693-6713, 2016. 25. 翁敏航主編(2010)。《Solar Cell 太陽能電池》(初版,83-90頁)。台北市:台灣東華書局股份有限公司。 26. F. Matthews and R. Rawlings, Composite materials. Cambridge: Woodhead Pub., pp.283-288, 2008. 27. V. D’Innocenzo, G. Grancini, M. Alcocer, A. Kandada, S. Stranks, M. Lee, G. Lanzani, H. Snaith and A. Petrozza, 'Excitons versus free charges in organo-lead tri-halide perovskites', Nature Communications, vol. 5, pp. 17019-17047, 2014. 28. A. Marchioro, J. Teuscher, D. Friedrich, M. Kunst, R. van de Krol, T. Moehl, M. Grätzel and J. Moser, 'Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells', Nature Photonics, vol. 8, no. 3, pp. 250-255, 2014. 29. G. Niu, X. Guo and L. Wang, 'Review of recent progress in chemical stability of perovskite solar cells', J. Mater. Chem. A, vol. 3, no. 17, pp. 8970-8980, 2015. 30. S. Stranks, G. Eperon, G. Grancini, C. Menelaou, M. Alcocer, T. Leijtens, L. Herz, A. Petrozza and H. Snaith, 'Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber', Science, vol. 342, no. 6156, pp. 341-344, 2013. 31. J. Ball, M. Lee, A. Hey and H. Snaith, 'Low-temperature processed meso-superstructured to thin-film perovskite solar cells', Energy & Environmental Science, vol. 6, no. 6, pp. 1739-1743, 2013. 32. J. Im, H. Kim and N. Park, 'Morphology-photovoltaic property correlation in perovskite solar cells: One-step versus two-step deposition of CH3NH3PbI3', APL Materials, vol. 2, no. 8, pp. 081510-081511, 2014. 33. G. Eperon, V. Burlakov, P. Docampo, A. Goriely and H. Snaith, 'Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells', Advanced Functional Materials, vol. 24, no. 1, pp. 151-157, 2013. 34. K. Liang, D. Mitzi and M. Prikas, 'Synthesis and Characterization of Organic−Inorganic Perovskite Thin Films Prepared Using a Versatile Two-Step Dipping Technique', Chemistry of Materials, vol. 10, no. 1, pp. 403-411, 1998. 35. J. Burschka, N. Pellet, S. Moon, R. Humphry-Baker, P. Gao, M. Nazeeruddin and M. Grätzel, 'Sequential deposition as a route to high-performance perovskite-sensitized solar cells', Nature, vol. 499, no. 7458, pp. 316-319, 2013. 36. J. Im, I. Jang, N. Pellet, M. Grätzel and N. Park, 'Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells', Nature Nanotechnology, vol. 9, no. 11, pp. 927-932, 2014. 37. T. Song, Q. Chen, H. Zhou, C. Jiang, H. Wang, Y. (Michael) Yang, Y. Liu, J. You and Y. Yang, 'Perovskite solar cells: film formation and properties', J. Mater. Chem. A, vol. 3, no. 17, pp. 9032-9050, 2015. 38. Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao and J. Huang, 'Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers', Energy Environ. Sci., vol. 7, no. 8, pp. 2619-2623, 2014. 39. C. Bi, Y. Yuan, Y. Fang and J. Huang, 'Low-Temperature Fabrication of Efficient Wide-Bandgap Organolead Trihalide Perovskite Solar Cells', Advanced Energy Materials, vol. 5, no. 6, pp. 1401616-140162, 2014. 40. M. Liu, M. Johnston and H. Snaith, 'Efficient planar heterojunction perovskite solar cells by vapour deposition', Nature, vol. 501, no. 7467, pp. 395-398, 2013. 41. M. Sessolo, C. Momblona, L. Gil-Escrig and H. Bolink, 'Photovoltaic devices employing vacuum-deposited perovskite layers', MRS Bulletin, vol. 40, no. 08, pp. 660-666, 2015. 42. M. Era, T. Hattori, T. Taira and T. Tsutsui, 'Self-Organized Growth of PbI-Based Layered Perovskite Quantum Well by Dual-Source Vapor Deposition', Chemistry of Materials, vol. 9, no. 1, pp. 8-10, 1997. 43. P. Luo, Z. Liu, W. Xia, C. Yuan, J. Cheng and Y. Lu, 'Uniform, Stable, and Efficient Planar-Heterojunction Perovskite Solar Cells by Facile Low-Pressure Chemical Vapor Deposition under Fully Open-Air Conditions', ACS Applied Materials & Interfaces, vol. 7, no. 4, pp. 2708-2714, 2015. 44. T. Zhang, M. Yang, Y. Zhao and K. Zhu, 'Controllable Sequential Deposition of Planar CH3NH3PbI3Perovskite Films via Adjustable Volume Expansion', Nano Letters, vol. 15, no. 6, pp. 3959-3963, 2015. 45. C. Chen, H. Kang, S. Hsiao, P. Yang, K. Chiang and H. Lin, 'Efficient and Uniform Planar-Type Perovskite Solar Cells by Simple Sequential Vacuum Deposition', Advanced Materials, vol. 26, no. 38, pp. 6647-6652, 2014. 46. L. Polander, P. Pahner, M. Schwarze, M. Saalfrank, C. Koerner and K. Leo, 'Hole-transport material variation in fully vacuum deposited perovskite solar cells', APL Materials, vol. 2, no. 8, pp. 081503-081514, 2014. 47. Q. Chen, H. Zhou, Z. Hong, S. Luo, H. Duan, H. Wang, Y. Liu, G. Li and Y. Yang, 'Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process', Journal of the American Chemical Society, vol. 136, no. 2, pp. 622-625, 2014. 48. H. Zhang, J. Shi, X. Xu, L. Zhu, Y. Luo, D. Li and Q. Meng, 'Mg-doped TiO2boosts the efficiency of planar perovskite solar cells to exceed 19%', J. Mater. Chem. A, vol. 4, no. 40, pp. 15383-15389, 2016. 49. L. Hu, J. Peng, W. Wang, Z. Xia, J. Yuan, J. Lu, X. Huang, W. Ma, H. Song, W. Chen, Y. Cheng and J. Tang, 'Sequential Deposition of CH3NH3PbI3on Planar NiO Film for Efficient Planar Perovskite Solar Cells', ACS Photonics, vol. 1, no. 7, pp. 547-553, 2014. 50. X. Li, D. Bi, C. Yi, J. Decoppet, J. Luo, S. Zakeeruddin, A. Hagfeldt and M. Gratzel, 'A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells', Science, vol. 353, no. 6294, pp. 58-62, 2016. 51. C. Liu, J. Fan, X. Zhang, Y. Shen, L. Yang and Y. Mai, 'Hysteretic Behavior upon Light Soaking in Perovskite Solar Cells Prepared via Modified Vapor-Assisted Solution Process', ACS Applied Materials & Interfaces, vol. 7, no. 17, pp. 9066-9071, 2015. 52. N. Jeon, J. Noh, Y. Kim, W. Yang, S. Ryu and S. Seok, 'Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells', Nature Materials, vol. 13, no. 9, pp. 897-903, 2014. 53. Y. Rong, Z. Tang, Y. Zhao, X. Zhong, S. Venkatesan, H. Graham, M. Patton, Y. Jing, A. Guloy and Y. Yao, 'Solvent engineering towards controlled grain growth in perovskite planar heterojunction solar cells', Nanoscale, vol. 7, no. 24, pp. 10595-10599, 2015. 54. J. Jung, S. Williams and A. Jen, 'Low-temperature processed high-performance flexible perovskite solar cells via rationally optimized solvent washing treatments', RSC Adv., vol. 4, no. 108, pp. 62971-62977, 2014. 55. Z. Liu and E. Lee, 'Solvent engineering of the electron transport layer using 1,8-diiodooctane for improving the performance of perovskite solar cells', Organic Electronics, vol. 24, pp. 101-105, 2015. 56. Y. Zheng, S. Yang, X. Chen, Y. Chen, Y. Hou and H. Yang, 'Thermal-Induced Volmer–Weber Growth Behavior for Planar Heterojunction Perovskites Solar Cells', Chemistry of Materials, vol. 27, no. 14, pp. 5116-5121, 2015. 57. D. Liu, L. Wu, C. Li, S. Ren, J. Zhang, W. Li and L. Feng, 'Controlling CH3NH3PbI3–xClxFilm Morphology with Two-Step Annealing Method for Efficient Hybrid Perovskite Solar Cells', ACS Applied Materials & Interfaces, vol. 7, no. 30, pp. 16330-16337, 2015. 58. J. Liu, C. Gao, X. He, Q. Ye, L. Ouyang, D. Zhuang, C. Liao, J. Mei and W. Lau, 'Improved Crystallization of Perovskite Films by Optimized Solvent Annealing for High Efficiency Solar Cell', ACS Applied Materials & Interfaces, vol. 7, no. 43, pp. 24008-24015, 2015. 59. Q. Zhou, Z. Jin, H. Li and J. Wang, 'Enhancing performance and uniformity of CH3NH3PbI3−xClx perovskite solar cells by air-heated-oven assisted annealing under various humidities', Scientific Reports, vol. 6, no. 1, pp. 1-8, 2016. 60. Q. Lin, A. Armin, R. Nagiri, P. Burn and P. Meredith, 'Electro-optics of perovskite solar cells', Nature Photonics, vol. 9, no. 2, pp. 106-112, 2014. 61. W. Nie, H. Tsai, R. Asadpour, J. Blancon, A. Neukirch, G. Gupta, J. Crochet, M. Chhowalla, S. Tretiak, M. Alam, H. Wang and A. Mohite, 'High-efficiency solution-processed perovskite solar cells with millimeter-scale grains', Science, vol. 347, no. 6221, pp. 522-525, 2015. 62. M. Kumar, S. Dharani, W. Leong, P. Boix, R. Prabhakar, T. Baikie, C. Shi, H. Ding, R. Ramesh, M. Asta, M. Graetzel, S. Mhaisalkar and N. Mathews, 'Lead-Free Halide Perovskite Solar Cells with High Photocurrents Realized Through Vacancy Modulation', Advanced Materials, vol. 26, no. 41, pp. 7122-7127, 2014. 63. F. Hao, C. Stoumpos, D. Cao, R. Chang and M. Kanatzidis, 'Lead-free solid-state organic–inorganic halide perovskite solar cells', Nature Photonics, vol. 8, no. 6, pp. 489-494, 2014. 64. H. Zhou, Q. Chen, G. Li, S. Luo, T. Song, H. Duan, Z. Hong, J. You, Y. Liu and Y. Yang, 'Interface engineering of highly efficient perovskite solar cells', Science, vol. 345, no. 6196, pp. 542-546, 2014. 65. E. Unger, E. Hoke, C. Bailie, W. Nguyen, A. Bowring, T. Heumüller, M. Christoforo and M. McGehee, 'Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells', Energy Environ. Sci., vol. 7, no. 11, pp. 3690-3698, 2014. 66. Z. Xiao, Y. Yuan, Y. Shao, Q. Wang, Q. Dong, C. Bi, P. Sharma, A. Gruverman and J. Huang, 'Giant switchable photovoltaic effect in organometal trihalide perovskite devices', Nature Materials, vol. 14, no. 2, pp. 193-198, 2014. 67. H. Chen, N. Sakai, M. Ikegami and T. Miyasaka, 'Emergence of Hysteresis and Transient Ferroelectric Response in Organo-Lead Halide Perovskite Solar Cells', The Journal of Physical Chemistry Letters, vol. 6, no. 1, pp. 164-169, 2015. 68. W. Tress, N. Marinova, T. Moehl, S. Zakeeruddin, M. Nazeeruddin and M. Grätzel, 'Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3perovskite solar cells: the role of a compensated electric field', Energy Environ. Sci., vol. 8, no. 3, pp. 995-1004, 2015. 69. Y. Zhang, M. Liu, G. Eperon, T. Leijtens, D. McMeekin, M. Saliba, W. Zhang, M. de Bastiani, A. Petrozza, L. Herz, M. Johnston, H. Lin and H. Snaith, 'Charge selective contacts, mobile ions and anomalous hysteresis in organic–inorganic perovskite solar cells', Mater. Horiz., vol. 2, no. 3, pp. 315-322, 2015. 70. Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao and J. Huang, 'Electron-hole diffusion lengths > 175 m in solution-grown CH3NH3PbI3 single crystals', Science, vol. 347, no. 6225, pp. 967-970, 2015. 71. W. Nie, H. Tsai, R. Asadpour, J. Blancon, A. Neukirch, G. Gupta, J. Crochet, M. Chhowalla, S. Tretiak, M. Alam, H. Wang and A. Mohite, 'High-efficiency solution-processed perovskite solar cells with millimeter-scale grains', Science, vol. 347, no. 6221, pp. 522-525, 2015. 72. D. Zhao, M. Sexton, H. Park, G. Baure, J. Nino and F. So, 'High-Efficiency Solution-Processed Planar Perovskite Solar Cells with a Polymer Hole Transport Layer', Advanced Energy Materials, vol. 5, no. 6, pp. 1401855-1401860, 2014 73. Q. Chen, H. Zhou, Z. Hong, S. Luo, H. Duan, H. Wang, Y. Liu, G. Li and Y. Yang, 'Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process', Journal of the American Chemical Society, vol. 136, no. 2, pp. 622-625, 2014. 74. Q. Chen, H. Zhou, T. Song, S. Luo, Z. Hong, H. Duan, L. Dou, Y. Liu and Y. Yang, 'Controllable Self-Induced Passivation of Hybrid Lead Iodide Perovskites toward High Performance Solar Cells', Nano Letters, vol. 14, no. 7, pp. 4158-4163, 2014. 75. D. Luo, L. Yu, H. Wang, T. Zou, L. Luo, Z. Liu and Z. Lu, 'Cubic structure of the mixed halide perovskite CH3NH3PbI3−xClxvia thermal annealing', RSC Adv., vol. 5, no. 104, pp. 85480-85485, 2015. 76. M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y. Cheng and L. Spiccia, 'A Fast Deposition-Crystallization Procedure for Highly Efficient Lead Iodide Perovskite Thin-Film Solar Cells', Angewandte Chemie, vol. 126, no. 37, pp. 10056-10061, 2014. 77. Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan and J. Huang, 'Solvent Annealing of Perovskite-Induced Crystal Growth for Photovoltaic-Device Efficiency Enhancement', Advanced Materials, vol. 26, no. 37, pp. 6503-6509, 2014. 78. J. Jung, S. Williams and A. Jen, 'Low-temperature processed high-performance flexible perovskite solar cells via rationally optimized solvent washing treatments', RSC Adv., vol. 4, no. 108, pp. 62971-62977, 2014. 79. Q. Zhou, Z. Jin, H. Li and J. Wang, 'Enhancing performance and uniformity of CH3NH3PbI3−xClx perovskite solar cells by air-heated-oven assisted annealing under various humidities', Scientific Reports, vol. 6, no. 1, pp. 1-8 , 2016. 80. B. Li, T. Jiu, C. Kuang, S. Ma, Q. Chen, X. Li and J. Fang, 'Chlorobenzene vapor assistant annealing method for fabricating high quality perovskite films', Organic Electronics, vol. 34, pp. 97-103, 2016. 81. G. Perumallapelli, S. Vasa and J. Jang, 'Improved morphology and enhanced stability via solvent engineering for planar heterojunction perovskite solar cells', Organic Electronics, vol. 31, pp. 142-148, 2016. 82. Y. Shao, Z. Xiao, C. Bi, Y. Yuan and J. Huang, 'Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells', Nature Communications, vol. 5, pp.5784-5792,2014. 83. K. Sun, J. Chang, F. Isikgor, P. Li and J. Ouyang, 'Efficiency enhancement of planar perovskite solar cells by adding zwitterion/LiF double interlayers for electron collection', Nanoscale, vol. 7, no. 3, pp. 896-900, 2015. 84. Y. Jiang, C. Li, H. Liu, R. Qin and H. Ma, 'Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS)–molybdenum oxide composite films as hole conductors for efficient planar perovskite solar cells', J. Mater. Chem. A, vol. 4, no. 25, pp. 9958-9966, 2016. 85. J. Jeng, Y. Chiang, M. Lee, S. Peng, T. Guo, P. Chen and T. Wen, 'CH3NH3PbI3Perovskite/Fullerene Planar-Heterojunction Hybrid Solar Cells', Advanced Materials, vol. 25, no. 27, pp. 3727-3732, 2013. 86. D. Yuan, X. Yuan, Q. Xu, M. Xu, X. Shi, Z. Wang and L. Liao, 'A solution-processed bathocuproine cathode interfacial layer for high-performance bromine–iodine perovskite solar cells', Phys. Chem. Chem. Phys., vol. 17, no. 40, pp. 26653-26658, 2015. 87. D. Liu, L. Wu, C. Li, S. Ren, J. Zhang, W. Li and L. Feng, 'Controlling CH3NH3PbI3–xClxFilm Morphology with Two-Step Annealing Method for Efficient Hybrid Perovskite Solar Cells', ACS Applied Materials & Interfaces, vol. 7, no. 30, pp. 16330-16337, 2015. 88. H. Kim and N. Park, 'Parameters AffectingI–VHysteresis of CH3NH3PbI3Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2Layer', The Journal of Physical Chemistry Letters, vol. 5, no. 17, pp. 2927-2934, 2014. 89. Reed-Hill, Robert E., Reza Abbaschian, and Reza Abbaschian(1973). Physical metallurgy principles ”(4th ed.). New York: Van Nostrand, pp. 178-180. 90. J. Duda, P. Hopkins, Y. Shen and M. Gupta, 'Exceptionally Low Thermal Conductivities of Films of the Fullerene Derivative PCBM', Physical Review Letters, vol. 110, no. 1, pp. 015902-015910, 2013. 91. E. Mosconi, C. Quarti, T. Ivanovska, G. Ruani and F. De Angelis, 'Structural and electronic properties of organo-halide lead perovskites: a combined IR-spectroscopy and ab initio molecular dynamics investigation', Phys. Chem. Chem. Phys., vol. 16, no. 30, pp. 16137-16144, 2014. 92. G. Grancini, S. Marras, M. Prato, C. Giannini, C. Quarti, F. De Angelis, M. De Bastiani, G. Eperon, H. Snaith, L. Manna and A. Petrozza, 'The Impact of the Crystallization Processes on the Structural and Optical Properties of Hybrid Perovskite Films for Photovoltaics', The Journal of Physical Chemistry Letters, vol. 5, no. 21, pp. 3836-3842, 2014. 93. X. Ren, Z. Yang, D. Yang, X. Zhang, D. Cui, Y. Liu, Q. Wei, H. Fan and S. Liu, 'Modulating crystal grain size and optoelectronic properties of perovskite films for solar cells by reaction temperature', Nanoscale, vol. 8, no. 6, pp. 3816-3822, 2016. 94. P. Calado, A. Telford, D. Bryant, X. Li, J. Nelson, B. O’Regan and P. Barnes, 'Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis', Nature Communications, vol. 7, p. 13831, 2016. 95. L. Contreras, J. Idígoras, A. Todinova, M. Salado, S. Kazim, S. Ahmad and J. Anta, 'Specific cation interactions as the cause of slow dynamics and hysteresis in dye and perovskite solar cells: a small-perturbation study', Phys. Chem. Chem. Phys., vol. 18, no. 45, pp. 31033-31042, 2016. 96. X. Chen, L. Tang, S. Yang, Y. Hou and H. Yang, 'A low-temperature processed flower-like TiO2array as an electron transport layer for high-performance perovskite solar cells', J. Mater. Chem. A, vol. 4, no. 17, pp. 6521-6526, 2016. 97. T. Zhang, H. Chen, Y. Bai, S. Xiao, L. Zhu, C. Hu, Q. Xue and S. Yang, 'Understanding the relationship between ion migration and the anomalous hysteresis in high-efficiency perovskite solar cells: A fresh perspective from halide substitution', Nano Energy, vol. 26, pp. 620-630, 2016. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77882 | - |
| dc.description.abstract | 科技發展與人口數量激增的需求下,能源議題受到國際高度重視,各界積極投入 新型能源開發,例如風力發電或是太陽能發電。太陽能因具近乎無限之蘊含量、環境 友善與易取得性,使得太陽能電池成為具有潛力的候選人之一。在各類太陽能電池中, 鈣鈦礦太陽能電池轉換效率爬升速度之快,短短數年間,效率已超過 22%以上。脫胎 自染料敏化與高分子太陽能電池,簡單製程而生產成本低廉的特性使得各方研究團隊 紛紛投入,不僅光電轉換效率良好、大面積製備的潛力且更可拓展至軟性基板上,使 得此太陽能電池的應用領域更加廣泛。本研究著重於鈣鈦礦太陽能電池元件的製備, 提出三明治蒸鍍法並將其應用於自製蒸鍍腔體。不同於一般製備方式受到高限制製作 環境影響,此方式可在相對低溫低壓的環境需求下製作高效率有機鈣鈦礦薄膜太陽能 電池。
本實驗首先以溶液製程成長鈣鈦礦薄膜,但由於無法兼具足夠厚度與薄膜均勻覆 蓋性,後改以溶液輔助製程製作,進而可得覆蓋性和薄膜均勻度皆良好之鈣鈦礦薄膜。 再者提整適當的溶液覆蓋時間、塗佈轉速與適當的基板退火參數調整,可有效精準控 制 CH3NH3I 離子的擴散距離,優化鈣鈦礦結晶品質與晶粒大小,成功將轉換效率提升 至 10.91%。 但溶液輔助製程中,鈣鈦礦容易生成過快而導致結晶雜亂與電池表面產生不導電 物(CH3NH3I)之沉澱而影響電池表現與穩定性。因此提出三明治蒸鍍法(SDT)製備鈣鈦 礦薄膜, 利用 PbI2-CH3NH3I-PbI2 三明治結構雙向滲透(double interdiffusion)特性,以極 薄鈣鈦礦基準層誘導控制 CH3NH3I 粒子的擴散行為,並且調整蒸鍍溫度控制反應動能, 使反應具備足夠能量而連續且擴散長度充足地生成品質優良的鈣鈦礦薄膜。接著進一 步將溶液改良技巧引入蒸鍍製程,利用氣相微量溶液輔助法之快速分佈且均勻覆蓋特 性,避免旋塗時的濃度梯度問題,促使鈣鈦礦快速生成粒徑大小超過 1 μm 大小之薄膜 結晶並將效率一舉突破至 14.53%且沒有遲滯效應的產生。 為進一步提升光電流的表現,改使用載子擴散距離超過一微米之 CH3NH3PbI3- xClx 鈣鈦礦材料增加光吸收量,並發現於高真空度蒸鍍環境下有效提升反應的穩定性, 將效率提升至 14.77%。接著降低 PbCl2 蒸鍍速度與利用 PEDOT:PSS 參雜氧化鉬 (MoOx ) ,提升鈣鈦礦層中的平整度並且降低 Rs 阻值,再以旋塗方式沉積 BCP,提升 電洞阻擋層之效用,可將效率提升至 14.78%。最後,利用溶液輔助退火(solvent annealing)的技巧,利用 DMSO 營造適當之氣相濃度環境,使得 MAI 粒子再次移動達 到二次結晶,大幅優化結晶狀況與提升載子分離能力,最大鈣鈦礦結晶尺寸接近 3.5 μm, 光電流可達 20.94 mA/cm2, 效率為 15.17%具些微遲滯效應之鈣鈦礦太陽能電池。 | zh_TW |
| dc.description.abstract | Due to the fast growth of population and evolution of technology, the energy issue has received extensive attention worldwide, so the world makes significant efforts on developing alternative energy such as wind energy and solar energy. Solar energy exhibits inexhaustible, eco-friendly and easy accessible properties, making it one of the best candidates for next generation energy. Among all kinds of solar cells, the perovskite solar cells have achieved over 22% power conversion efficiency in only a few years, a significant progress compared with other solar cells. Adapted from the dye-sensitized solar cells and polymer solar cells, plenty of researchers have been attracted by the advantages of low-cost fabrication process with the high conversion efficiency. Perovskite not only exploits the potential of large-area cells but also opens up the field of flexible substrates. Therefore, this thesis focuses on the perovskite solar cells. In this research, the sandwich deposition technique (SDT) process was explored to fabricate the perovskite solar cell with the homemade chamber. Different from the normal procedure often equipped with high restricted condition, this approach can be conducted under the relatively low pressure and temperature environment, which truly enables the less demanding requirements for thin-film perovskite solar cells with high efficiency.
First of all, the perovskite was deposited via the solution process first. However, both the uniform coverage and adequate thickness of thin film cannot be constructed simultaneously. To fix the problem, the PbI2 layer was deposited by the thermal evaporation which leads to the excellent coverage of perovskite films with great uniformity. The following modification focuses on the CH3NH3I-solution dipping time, spin-coating rate and post-annealing temperature. With the adequate parameters in the whole process, the precise control of reaction of CH3NH3I with PbI2 can optimize the perovskite film quality with larger grain size, which eventually raises the efficiency to 10.91%. However, rapid formation of perovskite readily leads to the small grain size and the precipitation of CH3NH3I on the surface, which has negative influences on the performance and stability of the cells. Hence, the SDT process was applied instead of the pervious solution assisted process. By taking the advantages of double interdiffusion equipped by the PbI2- CH3NH3I-PbI2 structure, the extremely thin seed perovskite layer formed by the PbI2 and CH3NH3I accurately controlled the diffusion of CH3NH3I. In addition, to achieve better crystal quality of perovskite, the heating temperature of CH3NH3I powder was tuned in 3-to-1 process to make the formation of perovskite continuously and completely. At last, modified from the solvent engineering, the vapor-phase solution assisted approach prevents the radial gradientproblem that often happened in traditional solution process. The perovskite can be merged exceeding 1 μm with the superiority of the fast and even distribution of the vaporized solution. The efficiency was boosted to 14.53% with hysteresis-free. Furthermore, in order to further promote the photocurrent density, the CH3NH3PbI3- xClx was selected for better light absorption by thicker thickness owing to the carrier diffusion length over 1 μm. The efficiency can be raised up to 14.77% with better stability under the condition of higher vacuum degree. Next, the poly(3,4-ethylenedioxythiophene)- poly(styrenesulfonate) (PEDOT:PSS) was doped with MoOx and the deposition rate of the PbCl2 was declined. After that, the bathocuproine (BCP) was deposited by the spin-coating instead of thermal evaporating. These three steps decrease the series resistance (Rs) and enhance the hole-blocking ability, yielding the efficiency of 14.78%. Moreover, the solvent annealing was introduced to the SDT process for optimizing the quality of CH3NH3PbI3-xClx. The usage of dimethyl sulfoxide (DMSO) creates a solvent-filled environment to accomplish the second diffusion of CH3NH3I, which effectively enhances the perovskite crystalline with larger grain size and carrier extracting ability. As the result, the average grain size of perovskite is 789.432 nm (the maximum grain size is close to 3.5 μm) and the photocurrent density reaches 20.94 mA/cm2, yielding the efficiency of 15.17% with only slight hysteresis phenomenon. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:36:38Z (GMT). No. of bitstreams: 1 ntu-106-R04941003-1.pdf: 23193581 bytes, checksum: 42ae898211c5b3d8f6308cac5dd14f9d (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 目錄
誌謝 I 中文摘要 II Abstract IV 圖目錄 VII 表目錄 XII 第一章 緒論 1 1.1 研究背景 1 1.1.1 世界能源與太陽能之使用發展 1 1.1.2 太陽能電池現況與發展 3 1.2文獻回顧 6 1.2.1 鈣鈦礦太陽能電池歷史沿革 6 1.2.2 鈣鈦礦晶格與電池結構 8 第二章 太陽能電池實驗原理 11 2.1太陽能電池基本理論 11 2.1.1 太陽能電池運作原理 11 2.2 鈣鈦礦太陽能電池之技術原理 16 2.2.1 鈣鈦礦太陽能電池工作機制 16 2.2.2 鈣鈦礦製備方式 18 2.2.3 量測之遲滯現象與環境穩定性 23 第三章 利用溶液輔助氣相沉積製程製備P-I-N平面異質接面鈣鈦礦型太陽能電池 28 3.1研究動機 28 3.2元件製程步驟 29 3.2.1 實驗溶液製備 29 3.2.2 元件製備流程 30 3.3結果與討論 33 3.3.1 利用兩步驟溶液製程製備鈣鈦礦主動層 33 3.3.2 利用溶液輔助氣相沉積製備鈣鈦礦主動層 35 3.4結論 46 第四章 利用三明治蒸鍍法製備CH3NH3PbI3之P-I-N平面異質接面型鈣鈦礦太陽能電池 48 4.1三明治蒸鍍法(Sandwich Deposition Technique, SDT)之介紹 48 4.2研究動機 50 4.3元件製程步驟 51 4.3.1 實驗溶液製備 51 4.3.2 元件製備流程 52 4.4結果與討論 55 4.4.1 三明治蒸鍍法應用於CH3NH3PbI3之P-I-N平面異質接面型鈣鈦礦太陽能電池。 56 4.4.2 溫度參數對於鈣鈦礦結晶與元件表現的影響。 59 4.4.3 沉積環境控制法(Deposition Environment Controlling method, DEC method)應用至三明治蒸鍍法 65 4.4結論 70 第五章 利用三明治蒸鍍法製備CH3NH3PbI3-xClx之P-I-N平面異質接面型鈣鈦礦太陽能電池 72 5.1研究動機 72 5.2元件製程步驟 72 5.2.1 實驗溶液製備 73 5.2.2 元件製備流程 74 5.3結果與討論 78 5.3.1 CH3NH3PbI3-xClx成長環境控制 78 5.3.2 結晶、材料接觸與元件穩定度之優化 87 5.3.3 溶液輔助退火(Solvent annealing, SA)之應用 94 5.4結論 104 第六章 結論與未來展望 105 6.1結論 105 6.2未來展望 107 參考資料 109 著作列表 118 期刊論文 118 研討會論文 118 | |
| dc.language.iso | zh-TW | |
| dc.subject | 鈣鈦礦太陽能電池 | zh_TW |
| dc.subject | 溶液輔助氣相沉積 | zh_TW |
| dc.subject | 大氣製程 | zh_TW |
| dc.subject | 形貌控制 | zh_TW |
| dc.subject | 雙向傳輸 | zh_TW |
| dc.subject | 三明治蒸鍍法 | zh_TW |
| dc.subject | 大氣製程 | zh_TW |
| dc.subject | 溶液退火 | zh_TW |
| dc.subject | morphology control | en |
| dc.subject | perovskite solar cell | en |
| dc.subject | atmosphere process | en |
| dc.subject | solution assisted vapor deposition | en |
| dc.subject | sandwich deposition technique (SDT) process | en |
| dc.subject | double interdiffusion | en |
| dc.subject | PEDOT:PSS | en |
| dc.subject | solvent annealing | en |
| dc.title | 利用三明治蒸鍍法製備平面異質接面型鈣鈦礦太陽能電池 | zh_TW |
| dc.title | Fabrication of Planar Heterojunction Perovskite Solar Cells via Sandwich Deposition Technique | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳奕君(I-Chun Cheng),黃定洧(Ding-Wei Huang),吳明忠(Ming-Chung Wu) | |
| dc.subject.keyword | 鈣鈦礦太陽能電池,溶液輔助氣相沉積,大氣製程,形貌控制,雙向傳輸,三明治蒸鍍法,大氣製程,溶液退火, | zh_TW |
| dc.subject.keyword | perovskite solar cell,solution assisted vapor deposition,sandwich deposition technique (SDT) process,double interdiffusion,morphology control,solvent annealing,atmosphere process,PEDOT:PSS, | en |
| dc.relation.page | 119 | |
| dc.identifier.doi | 10.6342/NTU201703439 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-16 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-R04941003-1.pdf 未授權公開取用 | 22.65 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
