請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77877完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林清富(Ching-Fuh Lin) | |
| dc.contributor.author | Cheng-Chun Chang | en |
| dc.contributor.author | 張政群 | zh_TW |
| dc.date.accessioned | 2021-07-11T14:36:31Z | - |
| dc.date.available | 2022-08-31 | |
| dc.date.copyright | 2017-08-31 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-16 | |
| dc.identifier.citation | [1] D. A. Skoog, F. J. Holler and T. A. Nieman, Principles of instrumental analysis. Philadelphia: Saunders College Pub, pp. 120-122, 1998.
[2] J. M. Hollas, Modern spectroscopy. Chichester: Wiley, pp. 247-250, 2004. [3] D. C. Harris and M. D. Bertolucci, Symmetry and spectroscopy. New York: Oxford University Press, pp. 87-92, 1978. [4] P. F. Bernath, Spectra of Atoms and Molecules. Oxford: Oxford University Press, pp. 846-854, 2005. [5] J. D. Ingle and S. R. Crouch, Spectrochemical analysis. Englewood Cliffs, N.J.: Prentice Hall, pp. 520-525, 1988. [6] B. Welz and M. Sperling, Atomic absorption spectrometry. John Wiley & Sons, pp. 62-64, 2008. [7] A. Stáhlavská, 'The use of spectrum analytical methods in drug analysis. 1. Determination of alkaline metals using emission flame photometry,' Pharmazie, Vol. 28, no. 4, pp. 238-239, 1973. [8] R. F. Hirsh, 'The Riddle of the Gaseous Nebulae,' ISIS, vol. 70, No. 2, pp. 196-200, 1979. [9] D. Sands, Introduction to crystallography. New York: W.A. Benjamin, pp. 200-210, 1969. [10] D. J. Gardiner, P. R. Graves and H. J. Bowley, Practical Raman spectroscopy. Berlin: Springer-Verlag, pp. 323-330, 1989. [11] S. J. Sweenwy, Y. Zhang and I. D. Goodyer. 'The development of a novel monolithic spectrometer chip concept,' SPIE OPTO. International Society for Optics and Photonics, pp. 82640O1-82640O13, 2012. [12] Q. Xu, B. Schmidt, S. Pradhan and M. Lipson, 'Micrometer-scale silicon electro-optic modulator,' Nature, vol. 435, pp. 325-327, 2005. [13] J. C. Maxwell, 'On physical lines of force,' The London, Edinburgh, and Dublin Philos. U.K.: Clarendon, pp. 161-175, 1873. [14] C. R. Doerr, H. Kogelink, 'Dielectric Waveguide Theory,' Journal of lightwave technology, vol. 26, No. 9, pp. 1176-1187, 2008. [15] M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light: CUP Archive, pp. 98-100, 1999. [16] Afroozed, 'Fast light generation using GaAlAs/GaAs wavegudie, ' Jurnal Teknologi (Sci Eng), vol. 57, No. 1, pp. 17-23, 2012 [17] I. Amiri, J. Ali, 'New system of chaotic signal generation based on coupling coefficients applied to an add/drop system, ' Int J Adv Eng Technol (IJAET), vol. 6, No. 1, pp. 78-87, 2013. [18] A. Nikoukar, I. Amiri and J. Ali, 'Secured binary codes generation for computer network communication,' Network technologies and communications (NTC) conference, pp. 375-382, 2011. [19] I. Amiri, 'Nanometer bandwidth soliton generation and experimental transmission within nonlinear fiber optics using an add-drop filter system,' J Comput Theor Nanosci (CTN), pp. 221-225, 2014. [20] I. Amiri, 'Optical transmission characteristics of an optical add-drop interferometer system,' Quantum Matter, pp. 64-76, 2014. [21] A. Yariv, 'Universal relations for coupling of optical power between microresonators and dielectric waveguides, ' Electron Lett, vol. 36, No. 4, pp. 321-322, 2000. [22] W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, Laser Photonics Rev. 6, No. 1, pp. 47-73, 2012. [23] A. Yariv, 'Universal relations for coupling of optical power between microresonators and dielectric waveguides, ' Electronics Letters, vol. 36, pp. 323-325, 2000. [24] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, Wiley-Interscience, pp. 35-40, 2007. [25] A. Shahidinejad, I. A. Sadegh and T. Anwar, 'Enhancement of indoor WDM-based optical wireless communication using microring resonator,' Rev Theor Sci, vol. 2, No. 3, pp. 201-210, 2014. [26] I. Amiri, J. Ali, 'Nano particle trapping by ultra-short tweezer and wells using MRR interferometer system for spectroscopy application,' Nanosci Nanotechnol Lett, vol. 5, No. 8, pp. 850-856, 2013. [27] I. Amiri, 'Optical stretcher of biological cells using sub-nanometer optical tweezers generated by an add/drop MRR system,' Nanosci Nanotechnol Lett, vol. 6, No. 2, pp. 111-117, 2014. [28] I, Amiri, J, Ali, 'Femtosecond optical quantum memory generation using optical bright soliton,' J Comput Theor Nanosci (CTN), vol. 11, No. 6, pp. 1480-1485, 2014. [29] I. Amiri, 'Generation of quantum codes using up and down link optical solition, ' Jurnal Teknologi (Sci Eng), vol. 55, pp. 97-106, 2012. [30] R. Adler, L. J. Chu, and R. M. Fano, Electromagnetic Energy Transmission and Radiation. New York, pp. 481-486, 1960. [31] A. Photonics, APSS Apollo Application Note on Micro Ring Resonator, Apollo, pp. 62-65, 2003. [32] Pornsuwanchareon PPYAN, Guided wave optics and photonics, Nova science publisher, pp. 95-100, 2009. [33] B. E. A. Saleh, M. C. Teich, Fundamentals of photonics, Wiley, 2nd, Ch. 10, pp. 3-10, 2007. [34] Pornsuwanchareon PPYAN, Guided wave optics and photonics: microring resonator design for telephone network security, Nova Science Publisher Inc., pp. 101-108, 2008. [35] I. Amiri, J. Ali, P. Yupapin, 'Enhancement of FSR and finesse using add/drop filter and PANDA Ring resonator systems,' Int J Mod Phys B, vol. 26, No. 4, 12500343, pp. 99-103, 2012. [36] M. Jalil, 'Finesse improvements of light pulses within MRR system,' In: Faculty of science postgraduate conference (FSPGC), pp. 519-526, 2010. [37] J. Ali, Narrow UV pulse generation using MRR and NRR system, In: ICAMN international conference, pp. 10-13, 2010. [38] R. G. Hunsperger, Integrated optics: theory and technology, Vol. 2: Springer, pp. 95-98, 1984. [39] K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, 'Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,' Optics letters, vol. 26, pp. 1888-1890, 2001. [40] F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, 'Size influence on the propagation loss induced by sidewall roughness in ultrasmall SOI waveguides,' Photonics Technology Letters, IEEE, vol. 16, pp. 1661-1663, 2004. [41] H. Philipp and E. Taft, 'Optical constants of silicon in the region 1 to 10 eV,' Physical Review, vol. 120, pp. 37-40, 1960. [42] A. Yariv, Optical electronics: Saunders College Pub, pp. 50-56, 1991. [43] E. Marcatili and S. Miller, 'Improved relations describing directional control in electromagnetic wave guidance,' Bell Syst. Tech. J, vol. 48, pp. 2161-2188, 1969. [44] B. E. Saleh, M. C. Teich, and B. E. Saleh, Fundamentals of photonics vol. 22: Wiley New York, pp. 234-240, 1991. [45] M. Artiglia, G. Coppa, P. Di Vita, M. Potenza, and A. Sharma, 'Mode field diameter measurements in single-mode optical fibers,' Lightwave Technology, Journal of, vol. 7, pp. 1139-1152, 1989. [46] H. Y. Kang and A. H. Lee, 'Critical dimension control in photolithography based on the yield by a simulation program,' Microelectronics Reliability, vol. 46, pp. 1006-1012, 2006. [47] F. Goodall and R. A. Lawes, 'Experience with deep UV Excimer Laser Lithography,' Microelectronic Engineering 6, pp. 61-67, 1987. [48] V. Pol, J. H. Bennewitz, T. E. Jewell, D. W. Peters, 'Excimer Laser Based Lithography: A Deep-Ultraviolet Wafer Stepper For VLSI Processing,' Opt. Eng., vol. 26, No. 4, pp. 311-318, 1987. [49] M. Altissimo, 'E-beam lithography for micro- / nanofabrication,' Biomicrofluidics, vol. 4, pp. 3-10, 2010. [50] R. Pease, 'Electron beam lithography,' Contemporary Physics, vol. 22, pp. 265-290, 1981. [51] C. Vieu, F. Carcenac, A. Pepin, Y. Chen, M. Mejias, A. Lebib, et al., 'Electron beam lithography: resolution limits and applications,' Applied Surface Science, vol. 164, pp. 111-117, 2000. [52] R. Kirchner, 'ZEP520A—A resist for electron-beam grayscale lithography and thermal reflow,'Microelectronic Engineering, vol, 153, pp. 71-76, 2016. [53] F. Karouta, 'A practical approach to reactive ion etching,' J. Phys, D: Apply. Phys. vol. 47, No. 23, pp. 112-120, 2014. [54] J. Coburn and H. F. Winters, 'Ion‐and electron‐assisted gas‐surface chemistry—An important effect in plasma etching,' Journal of Applied Physics, vol. 50, pp. 3189-3196, 1979. [55] G. S. Oehrlein, 'Reactive‐Ion Etching,' Physics Today, vol. 39, pp. 26-30, 1986. [56] B. E. E. Kastenmeier, P. J. Matsuo, J. J. Beulens and G. S. Oehrleinb, 'Chemical dry etching of silicon nitride and silicon dioxide using CF4 /O2 /N2 gas mixtures,' J. Vac. Sci. Technol. A, vol. 14, No. 5, pp. 2802-2813, 1996. [57] H. Jansem, H. Gardeniers, M. de Boer, M. Elwenspoek and J. Fluitman, 'A survey on the reactive ion etching of silicon in microtechnology,' J. Micromech. Microeng, vol. 6, pp. 14-28, 1996. [59] H. H. Sawein and M. A. Schmidt, 'Deep Reactive Ion Etching of Silicon,' MRS Online Proceedings Library Archive, pp. 546-550, 1998. [60] K. H. A. Bogart, N. F. Dalleska, G. R. Bogart, and Ellen R. Fisher, 'Plasma enhanced chemical vapor deposition of SiO2 using novel alkoxysilane precursors,' Journal of Vacuum Science & Technology A, vol. 13, pp. 476-490, 1995. [61] G. Suchaneck,V. Norkus and G. Gerlach, 'Low-temperature PECVD-deposited silicon nitride thin films for sensor applications,' Surface and Coatings Technology, vol. 142, pp. 808-812, 2001. [62] Schneider, B. John, Understanding the finite-difference time-domain method, School of electrical engineering and computer science Washington State University, pp. 123-128, 2010. [63] K. S. Yee, 'Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,' IEEE Trans, pp. 302-307, 1966. [64] J. W. Goodman, F. J. Leonberger, S.-Y. Kung, and R. A. Athale, 'Optical interconnections for VLSI systems,' Proceedings of the IEEE, vol. 72, pp. 850-866, 1984. [65] W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, et al., 'Basic structures for photonic integrated circuits in silicon-on-insulator,' Opt. Express, vol. 12, pp. 1583-1591, 2004. [66] K. Ohashi, K. Nishi, T. Shimizu, M. Nakada, J. Fujikata, J. Ushida, et al., 'On-chip optical interconnect,' Proceedings of the IEEE, vol. 97, pp. 1186-1198, 2009. [67] I. O. C. a. F.Gaffiot, 'On-chip optical interconnects for lowpower in Ultra Low-Power Electronics and Design E. Macii, Ed. ,' pp. 21-39, 2004. [68] A. Shacham, K. Bergman, and L. P. Carloni, 'Photonic networks-on-chip for future generations of chip multiprocessors,' Computers, IEEE Transactions on, vol. 57, pp. 1246-1260, 2008. [69] Absorption by atmospheric gases in the IR, visible and UV spectral regions, Lecture 6, pp. 2-6, 2009. [70] 'Lumerical Knowledge Base,' https://kb.lumerical.com/en/index.html?ref_sim_obj_surface_roughness.html [71] 'Ring resonator MODE (Design and Initial Simulation),' https://kb.lumerical.com/en/index.html?ref_sim_obj_surface_roughness.html [72] 'Ring resonator MODE (parameter extraction and Monte Carlo),' https://kb.lumerical.com/en/index.html?ref_sim_obj_surface_roughness.html [73] D. Tu, M. Liu, L. Shang, C. Xie and X. Zhu, 'A ZEP520-LOR Bilayer Resist Lift-off Process by E-Beam Lithography for Nanometer Pattern Transfer,' IEEE, pp. 624-627, 2007. [74] E. T. Wilson, K. A. Korolev and N. A. Crow, 'Bilayer lift-off process for aluminum metallization,' J. Micro/Nanolith. MEMS MOEMS, vol. 14, No. 1, pp. 50-55, 2014. [75] J. Golden, H. Miller, D. Nawrocki, J. Ross, Optimization of Bi-layer Lift-Off Resist Process, CS MANTECH Conference, pp. 96-98, 2009. [76] R. Knizikevicius, 'Simulations of Si and SiO2 Etching in SF6+O2 Plasma,' ACTA Physica polonica A, vol. 117, No. 3, pp. 120-123, 2010. [77] R. d’Agostino, 'Plasma etching of Si and SiO2 in SF6-O2 mixtures,' Journal of Applied Physics, vol. 52, pp. 162-169,, 1981. [78] G. Corrielli, A. Crespi, R. Geremia, R. Ramponi, L. Sansoni, A. Santinelli, P. Mataloni, F. Sciarrino and R. Osellame, 'Rotated waveplates in integrated waveguide optics,' nature communication, pp. 90-92, 2014. [79] T. Alder, A. Stohr, R. Heinzelmann, and D. Jager, 'High-efficiency fiber-to-chip coupling using low-loss tapered single-mode fiber,' Photonics Technology Letters, IEEE, vol. 12, pp. 1016-1018, 2000. [80] F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, M. De Vittorio, et al., 'Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling,' Microelectronic Engineering, vol. 73, pp. 397-404, 2004. [81] D. Sarid, P. J. Cressman and R. L. Holman, 'High‐efficiency prism coupler for optical waveguides,' Applied Physics Letters, vol. 33, No. 6, pp. 514-515, 1978. [82] D. Taillaert, F. V. Laere, M. Ayre, W. Bogaerts, D. V. Thoughout, P, Bienstman and R. Baers, 'Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides,' Japanese Journal of Applied Physics, Vol. 45, No. 8A, pp. 6071-6077, 2006. [83] Z. Zhang, X. Hu and J. Wang, 'On-chip optical mode exchange using tapered directional coupler,' Scientific reports 5, pp. 50-53, 2014. [84] P. Dumon, Ultra-compacte geintegreerde optische filters in silicium-op-isolator op basis van wafeschaaltechnologie, Vakgroep Informatietechnologie, pp. 20-21 ,2007. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77877 | - |
| dc.description.abstract | 近年來,隨著工業科技的蓬勃發展以及人類生活型態的改變,越來越多環境汙染與人體健康問題逐漸衍生。但現今對於未知物質的檢測技術,尚沒有一種相對便宜且有效率的檢測技術存在。因此,本研究致力於使用光譜學的概念,並結合現今已非常成熟之矽半導體奈微米製程技術,開發一高解析度之微型化晶片型光譜儀,使每個人都可藉由此裝置,達到隨時隨地自行進行立即性之物質檢測。
本論文主要包含三個部分。第一部分,利用有限時域差分法的模擬計算方式,進行本研究所提出之晶片型光譜儀於特定操作波段下之結構尺寸、工作規格及整體結構布局的模擬。並綜合模擬結果,完成一操作波長為1590nm ~ 1610nm且光譜解析度可達1nm之晶片型光譜儀的設計,透過此晶片將能以二氧化碳1600nm之紅外吸收特徵,進行二氧化碳氣體之檢測。第二部分,實際以矽半導體製程技術,於絕緣層覆矽基板上用ZEP-520A/LOR雙層光阻的製程方法進行結構的製作。利用下層LOR光阻形成之咬邊結構,來解決製程中硬遮罩與光阻接觸的情形,同時也進一步降低結構側壁粗糙嚴重之問題。另外,也透過改變蝕刻氣體與修改曝光圖形的方式,成功製作出與原始設計結構高度與寬度分別為220nm和500nm相符合之帶狀波導與環形共振腔。第三部分,則經由研磨拋光的後處理大幅提升試片端面之平整度,提供以端面耦合方式進行量測時,有更好的耦光效率。另一方面,也完成環形共振腔其光學特性測量系統之建構,經量測分析得半徑為4.47μm之環形共振腔其自由頻譜範圍為22nm,且最高品質因子可達7649。以上,完整地建立一套從最初之構想設計到結構的製作及終端試片的處理與光學特性量測分析一系列標準流程,以此作為未來開發其它操作波段之晶片型光譜儀參考之用。 | zh_TW |
| dc.description.abstract | Due to the industry boom and the lifestyle change in recent years, environmental and health issues have been increasingly concerned. However, there are no comparatively cheap and efficient techniques for detecting unknown substances so far. Therefore, this thesis focuses on adopting the concept of spectroscopy and combining the silicon semiconductor manufacturing process to develop a chip spectrometer with ultrahigh resolution. Through this device, it is expected that everyone can easily detect materials immediately.
This study consists of three parts. First, the finite-difference time-domain (FDTD) method is used to simulate the structure size, working specification, and overall structure layout of the chip spectrometer under specific operating waveband. From the simulation results, a chip spectrometer with the operating wavelength range between 1590 nm and 1610 nm and the spectral resolution of 1 nm has been designed. Through this chip, CO2 gas detection can be carried out in the infrared (IR) absorption feature of 1600 nm wavelength. Second, the fabrication of structure on the silicon-on-insulator (SOI) substrates applies ZEP-520A/LOR bi-layer photoresist process. With the undercut structure formed by LOR, the problem of hard mask and photoresist contact can be solved. Moreover, a large amount of sidewall roughness of the structure is reduced. Under proper conditions, the strip waveguide and micro-ring resonator with height and width of 220 nm and 500 nm, respectively, are successfully fabricated. Finally, after grinding and polishing, the smoothness of the end face of the sample is greatly improved, so the coupling efficiency is enhanced for the measurement using the end-butt coupling method. Furthermore, a micro-ring resonator characteristics measurement system is also established for measuring the free spectral range (FSR) and quality factor (Q-factor). The results show that the FSR and Q-factor of a micro-ring resonator with radius 4.47 μm are 22 nm and 7649, respectively. Hence, through the above methodology, the fabrication and measurement for a chip spectrometer is established. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:36:31Z (GMT). No. of bitstreams: 1 ntu-106-R04941036-1.pdf: 5992848 bytes, checksum: 5246a285efb0b0f54b9d94ed319e9cdc (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 致謝 I
摘要 II Abstract III 目 錄 V 圖目錄 VII 表目錄 X 第一章 緒論 1 1-1 研究動機 1 1-2 研究概述 7 第二章 波導與環形共振器之基本理論 8 2-1 波導理論基礎與分析模型 8 2-2 環形共振器基本理論 10 2-2-1 理論公式推導 11 2-2-2 臨界耦合條件 15 2-2-3 自由頻譜範圍 16 2-2-4 品質因子 17 2-3 光學波導之損耗模型 18 2-3-1 散射損耗 19 2-3-2 吸收損耗 20 2-3-3 輻射損耗 21 2-3-4 基板耦合損耗 22 2-3-5 耦合損耗 23 第三章 研究方法與製程技術介紹 25 3-1 帶狀波導與環形共振腔之製程系統介紹 25 3-1-1 電子束微影系統 25 3-1-2 電子槍蒸鍍系統 27 3-1-3 熱蒸鍍系統 28 3-1-4 反應式離子蝕刻 29 3-1-5 電漿增強型化學氣相沉積 30 3-2 有限時域差分法 31 第四章 晶片型光譜儀之設計與模擬 35 4-1 前言 35 4-2 晶片型光譜儀之規格及操作目標 36 4-3 使用模擬軟體驗證設計目標 37 4-4 模擬不同半徑大小之環形共振器 40 4-5 模擬晶片型光譜儀整體元件 47 4-6 小結 52 第五章 以矽半導體製程技術製作帶狀波導與環形共振腔 53 5-1 前言 53 5-2 以ZEP-520A/LOR雙層光阻製作帶狀波導與環形共振腔 54 5-3 測試LOR顯影時間與形成之咬邊長度 56 5-4 以不同的反應式離子蝕刻配方修正結構高度 63 5-5 以不同的電子束微影系統曝光方式修正結構寬度 67 5-6 小結 73 第六章 試片後處理與環形共振腔之光學特性分析 74 6-1 前言 74 6-2 試片端面的研磨拋光後處理 75 6-3 光學量測設備及系統架設 77 6-4 環形共振腔之光學特性量測與分析 78 6-5 光學特性之量測結果與模擬結果比較 81 6-6 量測系統之穩定性 85 6-7 小結 88 第七章 結論與未來展望 89 7-1 結論 89 7-2 未來展望 91 參考文獻 92 | |
| dc.language.iso | zh-TW | |
| dc.subject | 帶狀波導 | zh_TW |
| dc.subject | 晶片型光譜儀 | zh_TW |
| dc.subject | 有限時域差分法 | zh_TW |
| dc.subject | 二氧化碳 | zh_TW |
| dc.subject | 環形共振器 | zh_TW |
| dc.subject | Carbon dioxide | en |
| dc.subject | Chip spectrometer | en |
| dc.subject | Strip waveguide | en |
| dc.subject | Finite-difference time domain method | en |
| dc.subject | Micro-ring resonator | en |
| dc.title | 以矽製程技術製作高解析度晶片型光譜儀 | zh_TW |
| dc.title | Fabrication of Chip Spectrometer with Ultrahigh Resolution through Silicon Technology | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李三良(San-Liang Lee),黃定洧(Ding-Wei Huang),林宗賢(Tsung-Hsien Lin) | |
| dc.subject.keyword | 晶片型光譜儀,有限時域差分法,二氧化碳,環形共振器,帶狀波導, | zh_TW |
| dc.subject.keyword | Chip spectrometer,Finite-difference time domain method,Carbon dioxide,Micro-ring resonator,Strip waveguide, | en |
| dc.relation.page | 100 | |
| dc.identifier.doi | 10.6342/NTU201701177 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-17 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-R04941036-1.pdf 未授權公開取用 | 5.85 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
