請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77862完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 莊汶博 | |
| dc.contributor.author | Kun-Yu Tu | en |
| dc.contributor.author | 杜昆育 | zh_TW |
| dc.date.accessioned | 2021-07-11T14:36:13Z | - |
| dc.date.available | 2022-09-04 | |
| dc.date.copyright | 2017-09-04 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-18 | |
| dc.identifier.citation | 黃守宏、吳文哲 (2011),全球暖化對台灣水稻害蟲及其管理方法可能之影響,農業試驗所技術服務,85期:8-10
李保平、郭慶、孟玲 (2013),CO2濃度升高對稻縱卷葉螟生長發育、繁殖和食物利用效率的影響,中國農業科學46(21):4464-4470 廖君達、林金樹、陳啟吉 (2006),瘤野螟族群消長、防治適期及水稻品種抗性,臺中區農業改良場研究彙報91:31-38 鄭清煥 (2002),水稻保護植物保護圖鑑系列8—瘤野螟。行政院農業委員會動植物防疫檢疫局:130-137 朱耀沂、何坤耀 (1981),瘤野螟有關文獻之綜評,國立臺灣大學植物病蟲害學刊:36-58 許志聖、楊嘉凌 (2009),水稻台中在來1號,臺中區農業改良場特刊:56-58 嘉義通信-晚稻狀況 (1906),漢文臺灣日日新報:4 廖君達 (2010),水稻瘤野螟生態及管理技術,台中區農業專訊第71期:19 呂秀英 (2011),正確使用圖表處理均值間比較,台灣農業研究60(1):61-71 An C, Mou Z. 2011. Salicylic acid and its function in plant Immunity. Journal of Integrative Plant Biology 53(6): 412-428. Avdiushko SA, Ye XS, Kuc J. 1993. Detection of several enzymatic activities in leaf prints of cucumber plants. Physiological and Molecular Plant Pathology 42(6): 441-454. Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM, Brown VK, Butterfield J, Buse A, Coulson JC, Farrar J. 2002. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biology 8(1): 1-16. Barazani O, Benderoth M, Groten K, Kuhlemeier C, Baldwin IT. 2005. Piriformospora indica and Sebacina vermifera increase growth performance at the expense of herbivore resistance in Nicotiana attenuata. Oecologia 146(2): 234-243. Behmer ST. 2009. Insect herbivore nutrient regulation. Annual review of entomology 54: 165-187. Berger D, Walters R, Gotthard K. 2008. What limits insect fecundity? Body size- and temperature-dependent egg maturation and oviposition in a butterfly. Functional Ecology 22(3): 523-529. Bhonwong A, Stout MJ, Attajarusit J, Tantasawat P. 2009. Defensive role of tomato polyphenol oxidases against cotton bollworm (Helicoverpa armigera) and beet armyworm (Spodoptera exigua). Journal of Chemical Ecology 35(1): 28-38. Bidart-Bouzat MG, Imeh-Nathaniel A. 2008. Global change effects on plant chemical defenses against insect herbivores. Journal of Integrative Plant Biology 50(11): 1339-1354. Birkett MA, Campbell CAM, Chamberlain K, Guerrieri E, Hick AJ, Martin JL, Matthes M, Napier JA, Pettersson J, Pickett JA, et al. 2000. New roles for cis-jasmone as an insect semiochemical and in plant defense. Proceedings of the National Academy of Sciences 97(16): 9329-9334. Carmona D, Lajeunesse MJ, Johnson MTJ. 2011. Plant traits that predict resistance to herbivores. Functional Ecology 25(2): 358-367. Casteel CL, O'Neill BF, Zavala JA, Bilgin DD, Berenbaum MR, DeLucia EH. 2008. Transcriptional profiling reveals elevated CO2 and elevated O3 alter resistance of soybean (Glycine max) to Japanese beetles (Popillia japonica). Plant, Cell & Environment 31(4): 419-434. Chandramani P, Rajendran R, Muthiah C, Chinniah C. 2010. Organic source induced silica on leaf folder, stem borer and gall midge population and rice yield. Journal of Biopesticides 3(2): 423-427. Chau LM, Heong K. 2005. Effects of organic fertilizers on insect pest and diseases of rice. Omonrice 13: 26-33 Chen C, BÉLanger RR, Benhamou N, Paulitz TC. 2000. Defense enzymes induced in cucumber roots by treatment with plant growth-promoting rhizobacteria (PGPR) and Pythium aphanidermatum. Physiological and Molecular Plant Pathology 56(1): 13-23. Chen Z, Zheng Z, Huang J, Lai Z, Fan B. 2009. Biosynthesis of salicylic acid in plants. Plant Signaling & Behavior 4(6): 493-496. Chini A, Fonseca S, Fernandez G, Adie B, Chico JM, Lorenzo O, Garcia-Casado G, Lopez-Vidriero I, Lozano FM, Ponce MR, et al. 2007. The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448(7154): 666-671. Chown SL, Gaston KJ. 2010. Body size variation in insects: a macroecological perspective. Biological Reviews 85(1): 139-169. Coley PD. 1983. Herbivory and defensive characteristics of tree species in a lowland tropical forest. Ecological Monographs 53(2): 209-234. Devoto A, Nieto-Rostro M, Xie D, Ellis C, Harmston R, Patrick E, Davis J, Sherratt L, Coleman M, Turner JG. 2002. COI1 links jasmonate signalling and fertility to the SCF ubiquitin–ligase complex in Arabidopsis. The Plant Journal 32(4): 457-466. Diezel C, von Dahl CC, Gaquerel E, Baldwin IT. 2009. Different lepidopteran elicitors account for cross-talk in herbivory-induced phytohormone signaling. Plant Physiology 150(3): 1576-1586. Dixon RA, Achnine L, Kota P, Liu C-J, Reddy MSS, Wang L. 2002. The phenylpropanoid pathway and plant defence—a genomics perspective. Molecular Plant Pathology 3(5): 371-390. Du B, Zhang W, Liu B, Hu J, Wei Z, Shi Z, He R, Zhu L, Chen R, Han B. 2009. Identification and characterization of Bph14, a gene conferring resistance to brown planthopper in rice. Proceedings of the National Academy of Sciences 106(52): 22163-22168. Duan C, Yu J, Bai J, Zhu Z, Wang X. 2014. Induced defense responses in rice plants against small brown planthopper infestation. The Crop Journal 2(1): 55-62. Duffey SS, Stout MJ. 1996. Antinutritive and toxic components of plant defense against insects. Archives of Insect Biochemistry and Physiology 32(1): 3-37. Emlen DJ. 1994. Environmental control of horn length dimorphism in the beetle Onthophagus acuminatus (Coleoptera: Scarabaeidae). Proceedings of the Royal Society of London. Series B: Biological Sciences 256(1346): 131. Emlen DJ, Nijhout HF. 2000. The development and evolution of exaggerated morphologies in insects. Annual review of entomology 45(1): 661-708. Evans JR. 1989. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78(1): 9-19. Faleiro J, Rai S. 1988. Yield‐infestation relationship and economic injury level for okra leafhopper management in India. International Journal of Pest Management 34(1): 27-30. Fließbach A, Mäder P. 2000. Microbial biomass and size-density fractions differ between soils of organic and conventional agricultural systems. Soil Biology and Biochemistry 32(6): 757-768. Fraenkel G, Fallil F. 1981. The spinning (stitching) behaviour of the rice leaf folder, Cnaphalocrocis medinalis. Entomologia Experimentalis et Applicata 29(2): 138-146. Frazier MR, Woods HA, Harrison JF. 2001. Interactive effects of rearing temperature and oxygen on the development of Drosophila melanogaster. Physiological and Biochemical Zoology 74(5): 641-650. Gotthard K. 2004. Growth strategies and optimal body size in temperate pararginii butterflies. Integrative and Comparative Biology 44(6): 471-479. Gould KS. 2004. Nature's Swiss army knife: the diverse protective roles of anthocyanins in leaves. BioMed Research International 2004(5): 314-320. Hagen RH, Chabot JF. 1986. Leaf anatomy of maples (Acer) and host use by lepidoptera larvae. Oikos 47(3): 335-345. Han Y, Li P, Gong S, Yang L, Wen L, Hou M. 2016. Defense responses in rice induced by silicon amendment against infestation by the leaf folder Cnaphalocrocis medinalis. PLoS One 11(4): e0153918. Handley R, Ekbom B, Ågren J. 2005. Variation in trichome density and resistance against a specialist insect herbivore in natural populations of Arabidopsis thaliana. Ecological Entomology 30(3): 284-292. Hanley ME, Lamont BB, Fairbanks MM, Rafferty CM. 2007. Plant structural traits and their role in anti-herbivore defence. Perspectives in Plant Ecology, Evolution and Systematics 8(4): 157-178. Haruta M, Major IT, Christopher ME, Patton JJ, Constabel CP. 2001. A Kunitz trypsin inhibitor gene family from trembling aspen (Populus tremuloides Michx.): cloning, functional expression, and induction by wounding and herbivory. Plant Molecular Biology 46(3): 347-359. Hatfield JL, Prueger JH. 2015. Temperature extremes: effect on plant growth and development. Weather and Climate Extremes 10: 4-10. Herrero MP, Johnson RR. 1980. High temperature stress and pollen viability of maize. Crop Science 20(6): 796-800. Herrmann KM, Weaver LM. 1999. The shikimate pathway. Annual Review of Plant Physiology and Plant Molecular Biology 50(1): 473-503. Horváth E, Pál M, Szalai G, Páldi E, Janda T. 2007. Exogenous 4-hydroxybenzoic acid and salicylic acid modulate the effect of short-term drought and freezing stress on wheat plants. Biologia Plantarum 51(3): 480-487. Hulle M, Coeur d'Acier A, Bankhead-Dronnet S, Harrington R. 2010. Aphids in the face of global changes. Comptes Rendus Biologies 333(6-7): 497-503. Ibanez S, Lavorel S, Puijalon S, Moretti M. 2013. Herbivory mediated by coupling between biomechanical traits of plants and grasshoppers. Functional Ecology 27(2): 479-489. Kawano T, Furuichi T, Muto S. 2004. Controlled salicylic acid levels and corresponding signaling mechanisms in plants. Plant Biotechnology 21(5): 319-335. Klein A-M, Vaissière BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T. 2007. Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences 274(1608): 303-313. Krishnan P, Ramakrishnan B, Reddy KR, Reddy VR. 2011. High-temperature effects on rice growth, yield, and grain quality. Advances in Agronomy 111: 87-206. Leon-Reyes A, Spoel SH, De Lange ES, Abe H, Kobayashi M, Tsuda S, Millenaar FF, Welschen RAM, Ritsema T, Pieterse CMJ. 2009. Ethylene modulates the role of nonexpressor of pathogenesis-related genes1 in cross talk between salicylate and jasmonate signaling. Plant Physiology 149(4): 1797-1809. Levin DA. 1973. The role of trichomes in plant defense. The Quarterly Review of Biology 48(1, Part 1): 3-15. Li R, Zhang J, Li J, Zhou G, Wang Q, Bian W, Erb M, Lou Y. 2015. Prioritizing plant defence over growth through WRKY regulation facilitates infestation by non-target herbivores. Elife 4: e04805. Liao C-T, Chen C-L. 2017. Oviposition preference and larval performance of Cnaphalocrocis medinalis (Lepidoptera: Pyralidae) on rice genotypes. Journal of Economic Entomology 110(3): 1291-1297. Liao HJ, Qian Q, Liu XD. 2014. Heat shock suppresses mating and sperm transfer in the rice leaf folder Cnaphalocrocis medinalis. Bulletin of Entomological Research 104(3): 383-392. Lincoln DE, Fajer ED, Johnson RH. 1993. Plant-insect herbivore interactions in elevated CO2 environments. Trends in Ecology & Evolution 8(2): 64-68. Macauley BJ, Fox LR. 1980. Variation in total phenols and condensed tannins in Eucalyptus: leaf phenology and insect grazing. Australian Journal of Ecology 5(1): 31-35. Mancinelli AL, Yang C-PH, Lindquist P, Anderson OR, Rabino I. 1975. Photocontrol of anthocyanin synthesis: III. The action of streptomycin on the synthesis of chlorophyll and anthocyanin. Plant Physiology 55(2): 251-257. Massad TJ, Dyer LA. 2010. A meta-analysis of the effects of global environmental change on plant-herbivore interactions. Arthropod-Plant Interactions 4(3): 181-188. Matros A, Amme S, Kettig B, Buck-Sorlin GH, Sonnewald UWE, Mock H-P. 2006. Growth at elevated CO2 concentrations leads to modified profiles of secondary metabolites in tobacco cv. SamsunNN and to increased resistance against infection with potato virus Y. Plant, Cell & Environment 29(1): 126-137. Mauricio. 1998. Costs of resistance to natural enemies in field populations of the annual plant Arabidopsis thaliana. The American Naturalist 151(1): 20-28. Mauricio R, Rausher MD. 1997. Experimental manipulation of putative selective agents provides evidence for the role of natural enemies in the evolution of plant defense. Evolution 51(5): 1435-1444. Mello MO, Silva-Filho MC. 2002. Plant-insect interactions: an evolutionary arms race between two distinct defense mechanisms. Brazilian Journal of Plant Physiology 14: 71-81. Mierziak J, Kostyn K, Kulma A. 2014. Flavonoids as important molecules of plant interactions with the environment. Molecules 19(10): 16240-16265. Mithofer A, Boland W. 2012. Plant defense against herbivores: chemical aspects. Annual review of plant biology 63: 431-450. Moore BD, Wallis IR, Palá-Paúl J, Brophy JJ, Willis RH, Foley WJ. 2004. Antiherbivore chemistry of eucalyptus--cues and deterrents for marsupial folivores. Journal of Chemical Ecology 30(9): 1743-1769. O’Neill BF, Zangerl AR, DeLucia EH, Casteel C, Zavala JA, Berenbaum MR. 2011. Leaf temperature of soybean grown under elevated CO2 increases Aphis glycines (Hemiptera: Aphididae) population growth. Insect Science 18(4): 419-425. Panda N, Khush GA 1995. Host plant resistance to insects. Wallingford: CAB INTERNATIONAL, 64. Park H-H, Ahn JJ, Park C-G. 2014. Temperature-dependent development of Cnaphalocrocis medinalis Guenée (Lepidoptera: Pyralidae) and their validation in semi-field condition. Journal of Asia-Pacific Entomology 17(1): 83-91. Pass DM, Foley WJ, Bowden B. 1998. Vertebrate herbivory on eucalyptus—identification of specific feeding deterrents for common ringtail possums (Pseudocheirus peregrinus) by bioassay-guided fractionation of eucalyptus ovata foliage. Journal of Chemical Ecology 24(9): 1513-1527. Pellegrini L, Rohfritsch O, Fritig B, Legrand M. 1994. Phenylalanine ammonia-lyase in tobacco (molecular cloning and gene expression during the hypersensitive reaction to tobacco mosaic virus and the response to a fungal elicitor). Plant Physiology 106(3): 877. Pichersky E, Lewinsohn E. 2011. Convergent evolution in plant specialized metabolism. Annual review of plant biology 62: 549-566. Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE. 2010. Global pollinator declines: trends, impacts and drivers. Trends in Ecology & Evolution 25(6): 345-353. Punithavalli M, Muthukrishnan NM, Rajkuma MB. 2013. Defensive responses of rice genotypes for resistance against rice leaffolder Cnaphalocrocis medinalis. Rice Science 20(5): 363-370. Qin GZ, Tian SP. 2005. Enhancement of biocontrol activity of Cryptococcus laurentii by silicon and the possible mechanisms involved. Phytopathology 95(1): 69-75. Reddy VS, Dash S, Reddy AR. 1995. Anthocyanin pathway in rice (Oryza sativa L): identification of a mutant showing dominant inhibition of anthocyanins in leaf and accumulation of proanthocyanidins in pericarp. Theoretical and Applied Genetics 91(2): 301-312. Robinson EA, Ryan GD, Newman JA. 2012. A meta-analytical review of the effects of elevated CO2 on plant-arthropod interactions highlights the importance of interacting environmental and biological variables. New Phytologist 194(2): 321-336. Ryan GD, Rasmussen S, Newman JA 2010. Global atmospheric change and trophic interactions: are there any general responses? Plant communication from an ecological perspective: Springer, 179-214. Sanson G. 2006. The biomechanics of browsing and grazing. American Journal of Botany 93(10): 1531-1545. Sasaki K, Iwai T, Hiraga S, Kuroda K, Seo S, Mitsuhara I, Miyasaka A, Iwano M, Ito H, Matsui H. 2004. Ten rice peroxidases redundantly respond to multiple stresses including infection with rice blast fungus. Plant and Cell Physiology 45(10): 1442-1452. Satake T, Yoshida S. 1978. High temperature-induced sterility in indica rices at flowering. Japanese journal of crop science 47(1): 6-17. Schoper JB, Lambert RJ, Vasilas BL, Westgate ME. 1987. Plant factors controlling seed set in maize: The influence of silk, pollen, and ear-leaf water status and tassel heat treatment at pollination. Plant Physiology 83(1): 121-125. Scott JG, Wen Z. 2001. Cytochromes P450 of insects: the tip of the iceberg. Pest Management Science 57(10): 958-967. Seneweera S, Makino A, Hirotsu N, Norton R, Suzuki Y. 2011. New insight into photosynthetic acclimation to elevated CO2: The role of leaf nitrogen and ribulose-1,5-bisphosphate carboxylase/oxygenase content in rice leaves. Environmental and experimental botany 71(2): 128-136. Shine R. 1988. The evolution of large body size in females: a critique of Darwin's' fecundity advantage' model. The American Naturalist 131(1): 124-131. Shono Y, Hirano M. 1989. Improved mass-rearing of the rice leaffolder, Cnaphalocrocis medinalis (Guenee) (Lepidoptera : Pyralidae) using corn seedlings. Applied Entomology and Zoology 24(3): 258-263. Singleton VL, Rossi JA. 1965. Colorimetry of total phenolics with phosphomolybdic-hosphotungstic acid reagents. American Journal of Enology and Viticulture 16(3): 144. Sivasundaram V, Rajendran L, Muthumeena K, Suresh S, Raguchander T, Samiyappan R. 2007. Effect of talc-formulated entomopathogenic fungus Beauveria against leaffolder (Cnaphalocrosis medinalis) in rice. World Journal of Microbiology and Biotechnology 24(7): 1123-1132. Spoel SH, Koornneef A, Claessens SMC, Korzelius JP, Van Pelt JA, Mueller MJ, Buchala AJ, Métraux J-P, Brown R, Kazan K, et al. 2003. NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. The Plant Cell 15(3): 760-770. Staswick PE, Tiryaki I. 2004. The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. The Plant Cell 16(8): 2117-2127. Trisnawati DW, Tsukamoto T, Yasuda H. 2014. Indirect effects of nutrients in organic and conventional paddy field soils on the rice grasshopper, Oxya japonica (Orthoptera: Acrididae), mediated by rice plant nutrients. Applied Entomology and Zoology 50(1): 99-107. Usha Rani P, Jyothsna Y. 2010. Biochemical and enzymatic changes in rice plants as a mechanism of defense. Acta Physiologiae Plantarum 32(4): 695-701. Usui Y, Sakai H, Tokida T, Nakamura H, Nakagawa H, Hasegawa T. 2016. Rice grain yield and quality responses to free-air CO2 enrichment combined with soil and water warming. Global Change Biology 22(3): 1256-1270. Wang X, Hu L, Zhou G, Cheng J, Lou Y. 2011. Salicylic acid and ethylene signaling pathways are involved in production of rice trypsin proteinase inhibitors induced by the leaf folder Cnaphalocrocis medinalis (Guenée). Chinese Science Bulletin 56(22): 2351-2358. War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S, Sharma HC. 2012. Mechanisms of plant defense against insect herbivores. Plant Signaling & Behavior 7(10): 1306-1320. Wasternack C. 2007. Jasmonates: An update on biosynthesis, signal transduction and action in plant stress response, growth and development. Annals of Botany 100(4): 681-697. Wu J, Baldwin IT. 2010. New insights into plant responses to the attack from insect herbivores. Annual review of genetics 44: 1-24. Xu J, Wang Q-X, Wu J-C. 2010. Resistance of cultivated rice varieties to Cnaphalocrocis medinalis (Lepidoptera: Pyralidae). Journal of Economic Entomology 103(4): 1166-1171. Xu L, Liu F, Lechner E, Genschik P, Crosby WL, Ma H, Peng W, Huang D, Xie D. 2002. The SCFCOI1 ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis. The Plant Cell 14(8): 1919. Ye M, Song Y, Long J, Wang R, Baerson SR, Pan Z, Zhu-Salzman K, Xie J, Cai K, Luo S, et al. 2013. Priming of jasmonate-mediated antiherbivore defense responses in rice by silicon. Proceedings of the National Academy of Sciences 110(38): E3631-E3639. Yoshida S 1981. Fundamentals of rice crop science. Int. Rice Res. Inst., 81. Zavala JA, Casteel CL, DeLucia EH, Berenbaum MR. 2008. Anthropogenic increase in carbon dioxide compromises plant defense against invasive insects. Proceedings of the National Academy of Sciences 105(13): 5129-5133. Zavala JA, Casteel CL, Nabity PD, Berenbaum MR, DeLucia EH. 2009. Role of cysteine proteinase inhibitors in preference of Japanese beetles (Popillia japonica) for soybean (Glycine max) leaves of different ages and grown under elevated CO2. Oecologia 161(1): 35-41. Zavala JA, Nabity PD, DeLucia EH. 2013. An emerging understanding of mechanisms governing insect herbivory under elevated CO2. Annual review of entomology 58: 79-97. Zhang S, Li X, Sun Z, Shao S, Hu L, Ye M, Zhou Y, Xia X, Yu J, Shi K. 2015. Antagonism between phytohormone signalling underlies the variation in disease susceptibility of tomato plants under elevated CO2. Journal of Experimental Botany 66(7): 1951-1963. Zhishen J, Mengcheng T, Jianming W. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry 64(4): 555-559. Zvereva EL, Kozlov MV. 2006. Consequences of simultaneous elevation of carbon dioxide and temperature for plant-herbivore interactions: a metaanalysis. Global Change Biology 12(1): 27-41. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77862 | - |
| dc.description.abstract | 隨著氣溫以及大氣二氧化碳濃度不斷上升,地球農業生態系統將遭受影響。水稻為亞洲主要的糧食作物。瘤野螟則為鱗翅目水稻害蟲,可藉由咬食及捲曲葉片造成水稻在分蘗盛期出現白葉,抽穗期時危害提供稻穗主要養分來源的劍葉導致產量嚴重損失。植物在生長時會同時遭受到生物及非生物逆境之限制,甚至有交感效應產生。因此,我們以生長箱模擬溫室效應的環境、以慣行與有機土分別種植,探討感蟲(台中在來一號,TN1)與抗蟲水稻(清流,Qingliu)的生長狀況,並測量其葉片SPAD 值、葉片硬度、葉片茸毛密度等外觀性狀以及抗生物性逆境相關賀爾蒙(JA、SA)之生合成基因表現量、抗蟲相關蛋白(PAL、POD、PPO)及酚類二次代謝物含量。藉由複因子統計分析方法,探討環境、土壤、品種及蟲害因子及其交感效應對於水稻葉部抗蟲相關性狀之影響,藉此預測未來水稻與害蟲之互動關係。實驗結果發現清流具有較高的茸毛密度、較低的葉綠素含量。在高溫與高二氧化碳(HCHT)環境下瘤野螟咬食1 天後,水稻葉POD 活性、OsAOS、OsCOI1 等基因活性於表現高與一般環境,而總酚含量低於一般環境。在品種方面,經瘤野螟咬食3 天後的PAL(有機土種植)、咬食1天後的PPO、POD、OsCOI1(HCHT)為清流高於台中在來1 號;在土壤方面則多受交感效應影響;經瘤野螟咬食1 天後水稻葉OsCOI1(HCHT)基因表現量與花青素(有機土種植)含量比起未受蟲咬的水稻處理高。昆蟲成蛾是影響下一代數量的關鍵,本實驗結果顯示於HCHT 下公成蛾於第二世代時體型較大;母成蛾則於第二、三世代體型較一般環境大。透過本研究可作為預測未來水稻與瘤野螟之間互動情形的參考依據。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:36:13Z (GMT). No. of bitstreams: 1 ntu-106-R04621124-1.pdf: 3018624 bytes, checksum: 22e64072a76e08b61599f5253bafcfdf (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 致謝 i
中 文 摘 要 ii Abstract iii 目 錄 iv 表目錄 vii 圖目錄 viii 附圖及附表目錄 ix 縮寫字對照 x 前 言 1 1. 植物與昆蟲交互作用 1 2. 氣候變遷因子(溫度、二氧化碳)對植物生長之影響相關研究 2 3. 氣候變遷因子(溫度、二氧化碳)對昆蟲生長之影響相關研究 4 4. 有機土及慣行土對水稻及蟲害之影響 4 5. 瘤野螟型態、生活史及對水稻之影響 5 6. 植物對咬食型害蟲之物理性及化學性防禦策略 6 7. 植物面對咬食型害蟲之茉莉酸及水楊酸相關防禦機制 8 8. 植物面對咬食型害蟲產生抗蟲相關之蛋白及酚類二次代謝物 9 9. 本論文研究目標 10 材料與方法 12 1. 試驗植物材料、種植與試驗處理 12 1.1 植物材料與品種 12 1.2 種子消毒、發芽、育苗及移植 12 1.3 生長箱環境處理 13 2. 瘤野螟蟲源飼養及試驗處理 14 2.1 瘤野螟蟲源飼養 14 2.2 瘤野螟試驗處理 14 3. 水稻外表性狀調查 16 3.1 水稻葉片SPAD值 16 3.2 葉片硬度測量 17 3.3 葉片茸毛密度測量 17 3.4 水稻產量分析 17 4. 水稻抗蟲相關蛋白質活性分析 17 4.1 蛋白質定量 18 4.2 苯丙胺酸裂解酶(PAL)活性分析 18 4.3 多酚氧化酶(PPO)活性分析 19 4.4 過氧化物酶(POD)活性分析 19 5. 水稻基因表現分析 20 5.1 RNA萃取與定量 20 5.2 即時轉錄聚合酶鏈鎖反應(real-time RT-PCR) 21 6. 水稻酚類化合物分析 21 6.1 萃取方法 22 6.2 總酚含量(Total phenolic)測定 22 6.3 類黃酮含量(Flavonoid)測定 22 6.4 花青素含量(Anthocyanin)測定 23 7. 統計分析 23 結 果 25 1. 氣候變遷環境、土壤種類對不同水稻品種外表性狀之影響 25 1.1 葉片SPAD 值 25 1.2 葉片茸毛密度(Leafy trichome density) 25 1.3 葉片硬度(Toughness) 25 2. 氣候變遷環境、土壤種類對不同水稻品種相關抗蟲蛋白之影響 26 2.1 水稻葉片苯丙氨酸氨裂合酶(Phenylalanine lyase, PAL)活性 26 2.2 水稻葉片多酚氧化酶(Polyphenol oxidase, PPO)活性 26 2.3 水稻葉片過氧化酶(Peroxidase, POD)活性 27 3. 氣候變遷環境、土壤種類對不同水稻品種葉片賀爾蒙(SA、JA)生合成基因之影響 28 3.1 Allene oxide synthase 1 (OsAOS1) 28 3.2 CORONATINE INSENSITIVE1 (OsCOI1) 28 3.3 Lipoxygenase (OsLOX) 30 3.4 Isochorismate synthase 1 (OsICS1) 30 4. 氣候變遷環境、土壤種類對不同水稻品種葉片酚類二次代謝物含量之影響 31 4.1 水稻葉片總酚(Total phenolic)含量 31 4.2 水稻葉片花青素(Anthocyanin)含量 31 4.3 水稻葉片類黃酮(Flavonoid)含量 32 5. 環境因子對於瘤野螟蟲源體型之影響 32 5.1 翅長 32 5.2 體長 32 5.3 蟲重 32 討 論 33 1. 氣候變遷、土壤因子與水稻抗蟲相關外表性狀關係之探討 33 2. 氣候變遷、土壤因子與水稻抗蟲相關化學性防禦之探討 34 2.1抗蟲蛋白(PAL、PPO、POD)活性之變化 34 2.2 JA、SA生合成相關基因(OsAOS1/OsCOI1/OsLOX/OsICS1)表現量之變化 36 2.3酚類二次代謝物(Total phenolic/Flavonoid/Anthocyanin)含量變化 38 3. 模擬氣候變遷環境下瘤野螟蟲源生長表現之探討 39 4. 結語與未來展望 41 參考文獻 63 表目錄 表一、環境、土壤與品種因子對水稻植株外表型之影響 43 表二、環境、土壤、蟲害與品種因子對水稻植株抗蟲相關蛋白質活性之影響 44 表三、環境、土壤、蟲害與品種因子對水稻植株與JA、SA相關生合成基因表現量之影響 45 表四、環境、土壤、蟲害與品種因子對水稻植株酚類二次代謝物含量之影響 46 圖目錄 圖一、水稻葉SPAD值受到環境與土壤因子之交感作用 47 圖二、水稻葉PAL (1Day)蛋白受到土壤與品種因子之交感作用 48 圖三、水稻葉POD (1Day LF)蛋白受到土壤與品種因子之交感作用 49 圖四、水稻葉POD (3Days LF)蛋白受到土壤與蟲咬因子之交感作用 50 圖五、水稻葉OsAOS1(1Day LF)基因受到環境與土壤因子之交感作用 51 圖六、水稻葉OsCOI1(1Day)基因受到環境與品種因子之交感作用 52 圖七、水稻葉OsCOI1(1Day)基因受到環境與蟲咬因子之交感作用 53 圖八、水稻葉OsLOX(1Day)基因受到環境與蟲咬因子之交感作用 54 圖九、水稻葉OsICS1(1Day)基因受到環境與蟲咬因子之交感作用 55 圖十、水稻葉OsICS1(1Day)基因受到環境與土壤因子之交感作用 56 圖十一、水稻葉花青素含量受到環境與土壤因子之交感作用 57 圖十二、水稻葉花青素含量受到環境與品種因子之交感作用 58 圖十三、水稻葉花青素含量受到土壤與蟲咬因子之交感作用 59 圖十四、不同環境下瘤野螟蟲源翅長變化 60 圖十五、不同環境下瘤野螟蟲源體長變化 61 圖十六、不同環境下瘤野螟蟲源蟲重變化 62 附圖及附表目錄 附圖一、清流(Qingliu,QL)與台中在來1號(TN1)水稻在不同環境、土壤、與蟲咬因子下之產量 76 附圖二、清流(Qingliu,QL)與台中在來1號(TN1)水稻在不同環境、土壤、與蟲咬因子下之稔實率 77 附圖三、清流(Qingliu)與台中在來1號(TN1)在不同環境與土壤因子處理下葉片產卵數量 78 附圖四、水稻葉片表面茸毛 79 附圖五、成蛾體型測量示意圖 80 附圖六、R code for Four way ANOVA 81 附圖七、R code for Three way ANOVA 82 附圖八、R code for One way ANOVA 83 附表一、Real-time qRT PCR Primers 84 附表二、Protein extraction buffer 85 附表三、行政院農業委員會桃園區農業改良場慣行土與有機田土營養元素概況 86 | |
| dc.language.iso | zh-TW | |
| dc.subject | 高溫高二氧化碳 | zh_TW |
| dc.subject | 瘤野螟 | zh_TW |
| dc.subject | 台中在來 1 號 | zh_TW |
| dc.subject | 清流 | zh_TW |
| dc.subject | 茸毛密度 | zh_TW |
| dc.subject | high temperature and high CO2 | en |
| dc.subject | Cnaphalocrocis medinalis | en |
| dc.subject | Taichung Native 1 | en |
| dc.subject | Qingliu | en |
| dc.title | 探討溫度-二氧化碳上升與土壤因子影響水稻與瘤野螟間之交互作用 | zh_TW |
| dc.title | Effect of Elevated Temperature-CO2 and Soil Type on
Rice - Cnaphalocrocis medinalis (Guenée) Interaction | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張孟基,何傳愷,廖君達 | |
| dc.subject.keyword | 瘤野螟,台中在來 1 號,清流,茸毛密度,高溫高二氧化碳, | zh_TW |
| dc.subject.keyword | Cnaphalocrocis medinalis,Taichung Native 1,Qingliu,high temperature and high CO2, | en |
| dc.relation.page | 86 | |
| dc.identifier.doi | 10.6342/NTU201703671 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-18 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所 | zh_TW |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-R04621124-1.pdf 未授權公開取用 | 2.95 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
