請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77861完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 何孟樵(Meng-Chiao Ho) | |
| dc.contributor.author | Hao-Chung Jen | en |
| dc.contributor.author | 任浩中 | zh_TW |
| dc.date.accessioned | 2021-07-11T14:36:12Z | - |
| dc.date.available | 2022-08-31 | |
| dc.date.copyright | 2017-08-31 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-18 | |
| dc.identifier.citation | [1] FAO (2015) The impact of disasters on agriculture and food security, FAO.
[2] Khanal, A. R., and Mishra, A. K. (2017) Enhancing food security: Food crop portfolio choice in response to climatic risk in India, Global Food Security 12, 22-30. [3] Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., Kim, H., and Kanae, S. (2013) Global flood risk under climate change, Nat Clim Change 3, 816-821. [4] Mickelbart, M. V., Hasegawa, P. M., and Bailey-Serres, J. (2015) Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability, Nat Rev Genet 16, 237-251. [5] Bailey-Serres, J., Lee, S. C., and Brinton, E. (2012) Waterproofing Crops: Effective Flooding Survival Strategies, Plant Physiol 160, 1698-1709. [6] Verma, V., Ravindran, P., and Kumar, P. P. (2016) Plant hormone-mediated regulation of stress responses, Bmc Plant Biol 16. [7] Bin Rahman, A. N. M. R., and Zhang, J. H. (2016) Flood and drought tolerance in rice: opposite but may coexist, Food Energy Secur 5, 76-88. [8] Muller, M., and Munne-Bosch, S. (2015) Ethylene Response Factors: A Key Regulatory Hub in Hormone and Stress Signaling, Plant Physiol 169, 32-41. [9] Mizoi, J., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2012) AP2/ERF family transcription factors in plant abiotic stress responses, Bba-Gene Regul Mech 1819, 86-96. [10] Xu, K., Xu, X., Fukao, T., Canlas, P., Maghirang-Rodriguez, R., Heuer, S., Ismail, A. M., Bailey-Serres, J., Ronald, P. C., and Mackill, D. J. (2006) Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice, Nature 442, 705-708. [11] Hattori, Y., Nagai, K., Furukawa, S., Song, X. J., Kawano, R., Sakakibara, H., Wu, J. Z., Matsumoto, T., Yoshimura, A., Kitano, H., Matsuoka, M., Mori, H., and Ashikari, M. (2009) The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water, Nature 460, 1026-U1116. [12] Nakano, T., Suzuki, K., Fujimura, T., and Shinshi, H. (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice, Plant Physiol 140, 411-432. [13] Jung, K. H., Seo, Y. S., Walia, H., Cao, P. J., Fukao, T., Canlas, P. E., Amonpant, F., Bailey-Serres, J., and Ronald, P. C. (2010) The Submergence Tolerance Regulator Sub1A Mediates Stress-Responsive Expression of AP2/ERF Transcription Factors, Plant Physiol 152, 1674-1692. [14] Bailey-Serres, J., and Voesenek, L. A. C. J. (2008) Flooding stress: Acclimations and genetic diversity, Annu Rev Plant Biol 59, 313-339. [15] Voesenek, L. A. C. J., and Bailey-Serres, J. (2013) Flooding tolerance: O-2 sensing and survival strategies, Curr Opin Plant Biol 16, 647-653. [16] van Veen, H., Akman, M., Jamar, D. C. L., Vreugdenhil, D., Kooiker, M., van Tienderen, P., Voesenek, L. A. C. J., Schranz, M. E., and Sasidharan, R. (2014) Group VII Ethylene Response Factor diversification and regulation in four species from flood-prone environments, Plant Cell Environ 37, 2421-2432. [17] Voesenek, L. A. C. J., and Bailey-Serres, J. (2015) Flood adaptive traits and processes: an overview, New Phytol 206, 57-73. [18] Ella, E. S., Kawano, N., and Ito, O. (2003) Importance of active oxygen-scavenging system in the recovery of rice seedlings after submergence, Plant Sci 165, 85-93. [19] Parlanti, S., Kudahettige, N. P., Lombardi, L., Mensuali-Sodi, A., Alpi, A., Perata, P., and Pucciariello, C. (2011) Distinct mechanisms for aerenchyma formation in leaf sheaths of rice genotypes displaying a quiescence or escape strategy for flooding tolerance, Ann Bot-London 107, 1335-1343. [20] Voesenek, L. A. C. J., and Sasidharan, R. (2013) Ethylene - and oxygen signalling - drive plant survival during flooding, Plant Biology 15, 426-435. [21] Bailey-Serres, J., Fukao, T., Gibbs, D. J., Holdsworth, M. J., Lee, S. C., Licausi, F., Perata, P., Voesenek, L. A. C. J., and van Dongen, J. T. (2012) Making sense of low oxygen sensing, Trends Plant Sci 17, 129-138. [22] Bailey-Serres, J., and Chang, R. (2005) Sensing and signalling in response to oxygen deprivation in plants and other organisms, Ann Bot-London 96, 507-518. [23] Leung, S. K., and Ohh, M. (2002) Playing Tag with HIF: The VHL Story, J Biomed Biotechnol 2, 131-135. [24] Kaelin, W. G., and Ratcliffe, P. J. (2008) Oxygen sensing by metazoans: The central role of the HIF hydroxylase pathway, Mol Cell 30, 393-402. [25] Graciet, E., and Wellmer, F. (2010) The plant N-end rule pathway: structure and functions, Trends Plant Sci 15, 447-453. [26] Gibbs, D. J., Bacardit, J., Bachmair, A., and Holdsworth, M. J. (2014) The eukaryotic N-end rule pathway: conserved mechanisms and diverse functions, Trends Cell Biol 24, 603-611. [27] Hu, R. G., Sheng, J., Qi, X., Xu, Z. M., Takahashi, T. T., and Varshavsky, A. (2005) The N-end rule pathway as a nitric oxide sensor controlling the levels of multiple regulators, Nature 437, 981-986. [28] Gibbs, D. J., Lee, S. C., Isa, N. M., Gramuglia, S., Fukao, T., Bassel, G. W., Correia, C. S., Corbineau, F., Theodoulou, F. L., Bailey-Serres, J., and Holdsworth, M. J. (2011) Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants, Nature 479, 415-U172. [29] Licausi, F., Kosmacz, M., Weits, D. A., Giuntoli, B., Giorgi, F. M., Voesenek, L. A. C. J., Perata, P., and van Dongen, J. T. (2011) Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization, Nature 479, 419-U177. [30] Weits, D. A., Giuntoli, B., Kosmacz, M., Parlanti, S., Hubberten, H. M., Riegler, H., Hoefgen, R., Perata, P., van Dongen, J. T., and Licausi, F. (2014) Plant cysteine oxidases control the oxygen-dependent branch of the N-end-rule pathway, Nat Commun 5. [31] White, M. D., Klecker, M., Hopkinson, R. J., Weits, D. A., Mueller, C., Naumann, C., O'Neill, R., Wickens, J., Yang, J. Y., Brooks-Bartlett, J. C., Garman, E. F., Grossmann, T. N., Dissmeyer, N., and Flashman, E. (2017) Plant cysteine oxidases are dioxygenases that directly enable arginyl transferase-catalysed arginylation of N-end rule targets, Nat Commun 8. [32] Licausi, F., Pucciariello, C., and Perata, P. (2013) New Role for an Old Rule: N-end Rule-Mediated Degradation of Ethylene Responsive Factor Proteins Governs Low Oxygen Response in Plants, J Integr Plant Biol 55, 31-39. [33] Fukao, T., Xu, K. N., Ronald, P. C., and Bailey-Serres, J. (2006) A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice(W), Plant Cell 18, 2021-2034. [34] Fukao, T., Harris, T., and Bailey-Serres, J. (2009) Evolutionary analysis of the Sub1 gene cluster that confers submergence tolerance to domesticated rice, Ann Bot-London 103, 143-150. [35] Tamang, B. G., and Fukao, T. (2015) Plant Adaptation to Multiple Stresses during Submergence and Following Desubmergence, Int J Mol Sci 16, 30164-30180. [36] Bailey-Serres, J., Fukao, T., Ronald, P., Ismail, A., Heuer, S., and Mackill, D. (2010) Submergence Tolerant Rice: SUB1's Journey from Landrace to Modern Cultivar, Rice 3, 138-147. [37] Fukao, T., Yeung, E., and Bailey-Serres, J. (2011) The Submergence Tolerance Regulator SUB1A Mediates Crosstalk between Submergence and Drought Tolerance in Rice, Plant Cell 23, 412-427. [38] Setter, T. L., Bhekasut, P., and Greenway, H. (2010) Desiccation of leaves after de-submergence is one cause for intolerance to complete submergence of the rice cultivar IR 42, Funct Plant Biol 37, 1096-1104. [39] Alpuerto, J. B., Hussain, R. M. F., and Fukao, T. (2016) The key regulator of submergence tolerance, SUB1A, promotes photosynthetic and metabolic recovery from submergence damage in rice leaves, Plant Cell Environ 39, 672-684. [40] Coleman, R. A., Taggart, A. K. P., Benjamin, L. R., and Pugh, B. F. (1995) Dimerization of the Tata-Binding Protein, J Biol Chem 270, 13842-13849. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77861 | - |
| dc.description.abstract | 極端氣候會造成稻米產量下降,進而危及全球糧食安全,其中乾旱與洪水是兩大主因。依據氣候變遷模型預測,這兩種危害的發生頻率將會上升。帶有屬於第七群乙烯反應因子Sub1A-1基因的稻米品種,能夠於完全淹水的環境下,撐過超過兩週的時間。Sub1A-1除了能抵抗淹水逆境外,還能在稻米不缺氧的情況下,調控其抗旱、抗長期黑暗與抗水退的反應,這要歸功於Sub1A-1並不適用於N-end rule pathway的特性。N-end rule pathway屬於泛素-蛋白酶體系統(UPS)中的一部份,具有偵測植物體內平衡的功能,以及調控包含第七群乙烯反應因子在內,會受缺氧誘發的轉錄因子。有趣的是,Sub1A-1是唯一不會被N-end rule pathway降解得第七群乙烯反應因子。本論文的目的是藉由生物化學與生物物理實驗,來探討Sub1A-1是如何逃離N-end rule pathway。
對此目前有一種假設與兩種可能的原因;N-end rule pathway是受到空間障礙的干擾,導致相關酵素無法接近Sub1A-1位於N端的MCGG序列進行反應。第一種可能是,Sub1A-1具有穩固且特殊的結構能保護其N端,防止酵素接近。能藉由圓二色光譜儀與核磁共振光譜儀來判斷,其N端區域(domain)是否有此種特殊結構;又或者是Sub1A-1的二聚體型態具保護功能,所以我們以微量熱泳動儀(MST)與等溫滴定微量熱儀(iTC)測定不同蛋白區域間的結合親和力,以判定二聚體中間介面的位置。第二個可能是有其他植物細胞內的蛋白質參與,Sub1A-1與蛋白質形成能保護Sub1A-1的N端受質的複合體。為了瞭解是否有其他蛋白質參與,目前正在建立體外N-end rule實驗來驗證。 | zh_TW |
| dc.description.abstract | Rice losses as a result of extreme climate put a severe threat to global food security. Drought and flood are the most prevailing climate-related disasters hindering the growth of rice and climate models predict an increased frequency of these two abiotic stresses. Rice cultivars with the ERF-VII (group VII ethylene responsive factor transcription factors), Sub1A-1 can survive more than two weeks of submergence. Apart from inundation, Sub1A-1 also regulates the adaptive response to desubmergence, drought and prolonged darkness in normoxia owing to the ability to escape N-end rule pathway. N-end rule pathway, a part of the ubiquitin-proteasome system (UPS), that acts as a homeostatic sensor and regulates the key hypoxia-response transcription factors including ERF-VIIs in plants. Interestingly, Sub1A-1 is the only known rice ERF-VIIs that can escape N-end rule pathway. My aim is to study how Sub1A-1 escapes the N-end rule pathway by biophysical and biochemical approaches.
We have one hypothesis with two possible routes. We proposed that the N-end rule pathway may be disrupted by steric obstacles, so the enzymes cannot approach to the N-terminal MCGG sequence of Sub1A-1. One route is Sub1A-1 with a rigid and special structure to shield N-degron from enzymatic reaction. I studied the secondary structure of N domain by circular dichroism spectroscopy and nuclear magnetic resonance spectroscopy to examine if N-terminus possesses a special structure. The dimerization of Sub1A-1 may protect N-degron from the N-end rule, so we measured the binding affinity between different domains of Sub1A-1 by MST and iTC to determine the dimer interface. The second route is that another protein participates in the Sub1A-1 interaction. The Sub1A-1/protein complex may shield N-degron from N-end rule enzymes. In order to test if there is additionally protein involved, I am developing the in vitro reconstitution of N-end rule pathway assay. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:36:12Z (GMT). No. of bitstreams: 1 ntu-106-R04b46030-1.pdf: 3909373 bytes, checksum: ac6cd95699adf9cf9225d1ca7a53e3eb (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | Table of Contents
摘要 2 Abstract 3 Table of Contents 5 Chapter 1 12 Introduction 12 1.1 Climate-related Hazards 12 1.2 Biotic and Abiotic Stress Tolerance 13 1.3 Ethylene Transduction and ERF Transcription Factor 14 1.4 Adaptive Responses to Flooding 15 1.5 Oxygen Sensing 16 1.6 The N-end Rule Pathway 18 1.7 Sub1A-1 for Abiotic Stresses 21 1.8 Aim 23 Chapter 2 25 Materials and methods 25 2.1 Materials 25 2.1.1 Chemicals 25 2.1.2 Reagents 25 2.1.3 Resins and columns 26 2.1.4 Apparatus 26 2.2 Methods 27 2.2.1 Expression of recombinant Sub1A-1 N-alone, Sub1A-1 ΔC, Sub1A-1 AP2, Sub1A-1 ΔN, Sub1A-1 C-alone, ΔS Sub1A-1, AtMAP1A, OsPCO, OsATE protein 27 2.2.2 Expression of recombinant Sub1A-1 N-alone for NMR study 27 2.2.3 Purification of recombinant Sub1A-1 N-alone, Sub1A-1 ΔC, Sub1A-1 AP2, Sub1A-1 ΔN, Sub1A-1 C-alone and ΔS Sub1A-1, AtMAP1A, OsPCO1, OsATE, AtATE1 protein 28 2.2.3.1 Cell lysis by sonication 28 2.2.3.2 Immobilized metal ion affinity chromatography (IMAC) 28 2.2.3.3 SDS-PAGE Analysis 30 2.2.3.4 Heparin affinity chromatography (Sub1A-1 N-alone, Sub1A-1 ΔC and ΔS Sub1A-1) 30 2.2.3.5 Anion exchange chromatography (Sub1A-1 C-alone) 31 2.2.3.6 Size exclusion chromatography (SEC) (Sub1A-1 N-alone, Sub1A-1 C-alone and ΔS Sub1A-1) 32 2.2.4 Electrophoretic mobility shift assay (EMSA) 33 2.2.5 Size exclusion chromatography with multi-angle light scattering (SEC-MALS) 33 2.2.6 Circular dichroism (CD) spectroscopy 34 2.2.7 Nuclear magnetic resonance (NMR) spectroscopy 35 2.2.8 Microscale Thermophoresis 35 2.2.9 Isothermal titration calorimetry (iTC) 36 2.2.10 Crosslinking ofΔS Sub1A-1 37 Chapter 3 39 Result and Discussion 39 3.1 Expression and Purification of Various Sub1A-1 Constructs 39 3.2 Structural Studies of Sub1A-1 N-terminus alone 39 3.3 The Importance of C-terminal Domain of Sub1A-1 in N-end Rule Escaping 41 3.4 The Homo-dimerization Studies of Sub1A-1 C-alone and Sub1A-1 N-alone 41 3.5 Interaction Studies between Sub1A-1 Domains 42 3.6 In vitro Reconstitute of N-end Rule Pathway of Targeted Proteolysis 44 Chapter 4 45 Conclusion and Perspective 45 List of Figures 47 Figure 1. Strategies for submergence of rice. 47 Figure 2. Scheme of O2 deprivation sensing. 48 Figure 3. Scheme of N-end rule pathway in mammals and plants. 49 Figure 4. Functions of the N-end rule pathway in Arabidopsis. 50 Figure 5. Scheme of N-end rule pathway of ERF-VII. 51 Figure 6. The Sub1 locus encodes multiple ethylene-responsive factors, Sub1A, Sub1B and Sub1C. 52 Figure 7. Sub1 locus composition and submergence-induced mRNA accumulation in rice. 53 Figure 8. Various stresses induced throughout submergence and following desubmergence in plants 54 Figure 9. Scheme of Sub1A-mediated response to the progression of abiotic stresses during submergence in Rice. 55 Figure 10. Model of binding of target protein with 6-His tag and Ni-NTA 56 Figure 11. Far UV CD spectra associated with various types of secondary structure. 57 Figure 12. DSS (disuccinimidyl suberate) 58 Figure 13. Sulfo-SMPB (sulfosuccinimidyl 4-[p-maleimidophenyl]butyrate) 59 Figure 14. EMSA binding studies of Sub1A-1 and GCC probe. 60 Figure 15. Size exclusion chromatography result of Sub1A-1 (green) and Sub1A-1 with DNA (blue) 61 Figure 16. Purification result of recombination Sub1A-1 N-alone. 64 Figure 17. Purification result of recombinant Sub1A-1 C-alone. 67 Figure 18. The interaction between Sub1A-1 N-alone and Sub1A-1 C-alone experimented by size exclusion chromatography. 69 Figure 19. Purification result of recombinant ΔS Sub1A-1. 71 Figure 20. Purification result of recombinant Sub1A-1 ΔN by nickel-NTA column. 72 Figure 21. Purification result of recombinant Sub1A-1 AP2-alone by nickel-NTA column. 73 Figure 22. Purification results of the rAtMAP1A, OsPCO1, OsATE and AtATE1. 75 Figure 23. Purification result of recombinant Sub1A-1 ΔC. 76 Figure 24. The CD result. 77 Figure 25. The 15N-HSQC spectrum of Sub1A-1 N-alone. 78 Figure 26. Microscale thermophoresis study of protein–protein binding affinity. 79 Figure 27. The result of ex vivo experiment. 81 Figure 28. The SEC-MALS results of Sub1A-1. 82 Figure 29. The ITC result of Sub1A-1 N Domain and C Domain. 85 Figure 30. The SDS-PAGE analysis of crosslinking of ΔS Sub1A-1 by BM(PEG)3 and sulfo-SMPB. 86 Figure 31. The constructs of various recombinant Sub1A-1. 87 Figure 32. The constructs of various N-end rule enzymes.. 88 Figure 33. Purification of Sub1A-1 ΔC by size exclusion column. 89 List of tables 90 Table 1. Sub1 locus in rice varieties 90 Table 2. The amino acids sequence of recombinant ΔS Sub1A-1 91 Table 3. The amino acids sequence of recombinant Sub1A-1 NAP2 92 Table 4. The amino acids sequence of recombinant Sub1A-1 N-alone 93 Table 5. The amino acids sequence of recombinant Sub1A-1 AP2 94 Table 6. The amino acids sequence of recombinant Sub1A-1 AP2C 95 Table 7. The amino acids sequence of recombinant Sub1A-1 C-alone 96 Table 8. The amino acids sequence of recombinant ERF67 N+Sub1A-1 ΔN 97 Table 9. The amino acids sequence of recombinant ERF67 98 Table 10. Buffer ingredients 99 Reference 100 | |
| dc.language.iso | en | |
| dc.subject | Sub1A-1 | zh_TW |
| dc.subject | 對非生物壓力抗性 | zh_TW |
| dc.subject | N-end rule pathway | zh_TW |
| dc.subject | Sub1A-1 | en |
| dc.subject | Anti-abiotic stress | en |
| dc.subject | N-end rule pathway | en |
| dc.title | 稻米Sub1A-1如何脫逃N-end Rule Pathway之研究 | zh_TW |
| dc.title | Study on the Escape of Rice Sub1A-1 from N-end Rule Pathway | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蕭超隆(Chiao-Long Hsiao),葉國楨(Kuo-Chen Yeh) | |
| dc.subject.keyword | Sub1A-1,N-end rule pathway,對非生物壓力抗性, | zh_TW |
| dc.subject.keyword | Sub1A-1,N-end rule pathway,Anti-abiotic stress, | en |
| dc.relation.page | 106 | |
| dc.identifier.doi | 10.6342/NTU201703709 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-18 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-R04b46030-1.pdf 未授權公開取用 | 3.82 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
