請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77855
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳世銘 | zh_TW |
dc.contributor.advisor | Suming Chen | en |
dc.contributor.author | 許涵竣 | zh_TW |
dc.contributor.author | Han-Chun Hsu | en |
dc.date.accessioned | 2021-07-11T14:36:05Z | - |
dc.date.available | 2022-08-21 | - |
dc.date.copyright | 2017-09-04 | - |
dc.date.issued | 2017 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | 王慶茵。2010。茶葉品質近紅外光譜非破壞性檢測之研究。碩士論文。台北: 國立台灣大學生物產業機電工程學研究所。
台灣蝴蝶蘭台灣阿嬤,台灣阿婆。2013。Phalaenopsis aphrodite subsp. Formosana- wild plant(Dawu Mountain)大武2號台灣蝴蝶蘭。 網址: http://david2m9799.blogspot.tw/2011/11/mountain-mining-2dawu-mountain.html。上網日期:2017-08-12。 沈再木、許世弦、陳葦玲、王毓祥。2007。貯運前後光合馴化對帶介質蝴蝶蘭植株長期貯運後開花之影響。臺灣園藝 53(3):313-321。 李哖、王明吉。1997。白花蝴蝶蘭由幼年到成熟相之礦物成分和碳水化合物之變化。中國園藝 43: 275-305。 林育菁。2002。蓮霧及木瓜內部品質之近紅外光檢測。碩士論文。台北:國立臺灣大學生物產業機電工程學研究所。 侯雋言。2008。貯運條件對蝴蝶蘭植株生理及貯後品質之影響。碩士論文。台北:國立臺灣大學園藝系研究所。 柯姿瑜、陳世銘、張耀乾、蔡兆胤、張詠惠。2013。以近紅外光光譜進行蝴蝶蘭葉片蔗糖含量之非破壞性檢測。出自“2013 生機與農機學術研討會論文集”,H14。台北:台灣生物機電學會。 柯姿瑜。2014。以高光譜影像技術建立蝴蝶蘭開花品質模型之研究。碩士論文。台北:台灣大學生物產業機電工程學研究所。 胡易平。2011。利用近紅外光技術檢測稻米鮮度之研究。碩士論文。台北:臺灣大學生物產業機電工程學系研究所。 原生蘭Native Orchids。2014。蝴蝶蘭照片。 網址:http://www.orchid.url.tw/myflowers/phalaenopsis/equestris.htm。上網日期:2017-08-12。 財政部關務署。2017。統計資料庫查詢系統。台北:財政部關務署。網址: https://portal.sw.nat.gov.tw/APGA/GA01。上網日期:2017-08-12。 徐永衡、林汶鑫、何兆銓、郭寶錚。2007。利用淨最小平方迴歸、主成分迴歸及 類神經網路模式於近紅外光譜資料以預測糙米中粗蛋白質含量之比較。作物、環境與生物資訊 4:41-48。 徐嘉君。2016。應用於植物病害偵測之手持式多光譜影像裝置。碩士論文。台北:臺灣大學生物產業機電工程學系研究所。 張文宏、陳世銘、郭立穎。1998。洋香瓜糖度檢測之研究(二)-近紅外線分析 法。農業機械學刊 7(1):87-98。 張詠惠、陳世銘、張耀乾、蔡兆胤、柯姿瑜。2013。應蝴蝶蘭葉片粉末蔗糖含亮光譜分析之研究。出自“2013 年生機與農機學術研討會論文集”,H06。台北:台灣生物機電學會。 陳加增、陳世銘、楊蕙綺、楊宜璋、蕭世傑。2006。蔬菜葉片氮含量之近紅外光反射光譜分析。農業機械學刊 15(4):37-49。 陳加增。2000。近紅光應用於水果糖酸度線上檢測之研究。碩士論文。台北:國立台灣大學農業機械工程學研究所。 陳加增。2007。應用智慧型光譜資訊分析於蔬菜植株氮含量檢測之研究。博士論文。台北:國立台灣大學生物產業機電工程學研究所。 黃竣吉、陳世銘、楊翕文、陳加增。2004。進紅外光技術應用於穿山甲中藥成分之研究。農業機械學刊 13(3):37-52 劉執中。2016。以高光譜影像技術檢測稻米新鮮度之研究碩士論文。台北: 國立台灣大學生物產業機電工程學研究所。 蔡媦婷、賴思倫、陳珊妮、戴廷恩、謝廷芳、呂樁棠。2013。白花蝴蝶蘭葉片性狀與開花性狀之相關性探討。台灣農業研究。 戴竹君、陳世銘、潘姵如、蔡兆胤、莊永坤、張耀乾、侯雋言。2011。應用近紅外光譜技術於蝴蝶蘭蔗糖含量之研究。出自“2011 年生機與農機論文發表會論文集”,C-10。嘉義:台灣生物機電學會。 羅聖傑。2009。茶葉醱酵度之高光譜影像檢測。碩士論文。台北: 國立台灣大學生物產業機電工程學研究所。 Babu, Y. M. M., M. Subramanyam, and M. G. Prasad. 2012. PCA based image denoising. Signal & Image Processing 3(2):236. Blanco, M. and I. Villarroya. 2002. NIR spectroscopy: a rapid-response analytical tool. TrAC Trends in Analytical Chemistry 21(4):240-250. Chen, S., Y. K. Chuang, C. Y. Tsai, Y. C. A. Chang, I. C. Yang, Y. H. Chang, C. C. Tai, J. Y Hou. 2013. Evaluation of Phalaenopsis flowering quality using near infrared spectroscopy. In “Proceedings of SPIE -- Sensing Technologies for Biomaterial, Food, and Agriculture 2013”, Vol. 8881, p.88810F-1~4. Yokohama, Japan: The International Society for Optical Engineering. Chen, W. S., H. Y. Liu, Z. H. Liu, L. Yang, and W. H. Chen. 1994. Geibberllin and temperature influence carbohydrate content and flowering in Phalaenopsis. Physiologia Plantarum 90(2):391-395. ElMasry, G., M. Kamruzzaman, D.-W. Sun, and P. Allen. 2012. Principles and applications of hyperspectral imaging in quality evaluation of agro-food products: a review. Critical Reviews in Food Science and Nutrition 52(11):999-1023. George, B., N. Williams, J. Patel, M. Swash, and E. Watkinst. 1993. Physiological and histochemical adaptation of the electrically stimulated gracilis muscle to neoanal sphincter function. British journal of surgery 80(10):1342-1346. Hou, J. Y., W.B. Miller, and Y.C.A. Chang. 2011. Effects of simulated dark shipping on the carbohydrate status and post-shipping performance of Phalaenopsis. J. Amer. Soc. Hort. Sci. 136: 364-371. Kataoka, K., K. Sumitomo, T. Fudano, and K. Kawase. 2004. Changes in sugar content of Phalaenopsis leaves before floral transition. Scientia horticulturae 102(1):121-132. Kim, M. S., Y. R. Chen, and P. M. Mehl. 2001. Hyperspectral reflectance and fluorescence imaging system for food quality and safety. American Society of Agricultural Engineers 44(3):721-729. Kishore, M. and S. Kulkarni. 2015. Hyperspectral imaging technique for plant leaf identification. In Emerging Research in Electronics, Computer Science and Technology (ICERECT), 2015 International Conference on. IEEE. Ko, T. Y., S. Chen, W. T. Tsai, Y. C. Alex Chang, C. Y. Tsai, Y. H. Chang, and T. E. Dai. 2014. Development of phalaneopsis quality model using hyperspectral imaging techniques. In “Proceedings of the 7th International Symposium on Machinery and Mechatronics for Agricultural and Bio-systems Engineering (ISMAB 2014)”, 340-346. Yilan, Taiwan: National Ilan University. Kubota, S. and K. Yoneda. 1993. Effect of light intensity preceding day/light temperature on the sensitivity of Phalaenopsis flower. J. Japan Soc. Hort. Sci. 62: 595-600. Lu, X.-z., S. Jun, Y. Ning, and J.-l. ZHANG. 2016. Discrimination of Absence or Presence of Pesticide Residue in Mulberry Leaf Using VIS-NIR Hyperspectral Imaging and Plsda. DEStech Transactions on Engineering and Technology Research(icca). Mahlein, A.-K., E.-C. Oerke, U. Steiner, and H.-W. Dehne. 2012. Recent advances in sensing plant diseases for precision crop protection. European Journal of Plant Pathology 133(1):197-209. Min, M., W. S. Lee, Y. H. Kim, and R. A. Bucklin. 2006. Nondestructive detection of nitrogen in Chinese cabbage leaves using VIS–NIR spectroscopy. HortScience 41(1):162-166. Qiang Lü, Ming-jie Tang, Jian-rong Cai, Jie-wen Zhao, and Saritporn Vittayapadung. 2011. Vis/NIR Hyperspectral Imaging for Detection of Hidden Bruises on Kiwifruits. Czech J. Food SCI: Vol. 29, 2011, No. 6: 595-602. Sakanishi, Y., Imanishi, H., and Ishida, G. 1980. Effect of temperature on growth and flowering of Phalaenopsis amabilis. Bull. Univ. Osaka Pref. Ser. B 32, 1–9. Wang, L., D. Liu, H. Pu, D.-W. Sun, W. Gao, and Z. Xiong. 2014. Use of Hyperspectral Imaging to Discriminate the Variety and Quality of Rice. Food Analytical Methods:1-9. Wang, Y.-T. 1995. Phalaenopsis orchid light requirement during the induction of spiking. HortScience 30(1):59-61. Vaz, A. P. A., G. B. Kerbauy, and R. C. L. Figueiredo-Ribeiro. 1998. Changes in soluable carbohydrates and starch partioning during vegetative bud formation from root tips of Catasetum fimbriatum(Orchidaceae). Plant Cell, Tissue and Organ Culture 54: 105-111. Zhang, Q., Q. Li, and G. Zhang. 2012. Rapid determination of leaf water content using VIS/NIR spectroscopy analysis with wavelength selection. Journal of Spectroscopy 27(2):93-105. Zhao, Y.-R., X. Li, K.-Q. Yu, F. Cheng, and Y. He. 2016. Hyperspectral imaging for determining pigment contents in cucumber leaves in response to angular leaf spot disease. Scientific reports 6. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77855 | - |
dc.description.abstract | 蝴蝶蘭是台灣重要的外銷花卉,每年為台灣的花卉出口提供不少產值,然而面對荷蘭與中國大陸等國家之競爭,如何提升產業競爭力成為一重要課題。由於蝴蝶蘭之開花品質與其大苗葉片之碳水化合物及外觀特徵有相關性,若能於蝴蝶蘭催花前便藉由葉片內部碳水化合物含量與外觀特徵得知其未來開花品質,勢必能增進台灣蝴蝶蘭產業之實力。本研究以大白花蝴蝶蘭'V3'品種為實驗對象,使用手持式光譜儀(DLP NIRscan Nano)以近紅外光譜技術建立蝴蝶蘭葉片內部成分檢量模型,再以此模型之結果建立蝴蝶蘭開花品質預測模型;本研究也使用高光譜系統(自行研發),以光譜影像技術建立蝴蝶蘭葉片內部成分檢量模型,並以此模型之結果搭配光譜影像擷取之葉片外部特徵進行蝴蝶蘭開花品質模型之建立,最後比較兩種設備所建立之模型其優缺點與應用性。
本研究是以MPLSR對蝴蝶蘭葉片中六種內部成分含量進行模型建立,分別為葡萄糖、果糖、蔗糖、總可溶性糖、澱粉、總碳水化合物。使用手持式光譜儀所建立之模型,以預測蔗糖含量之結果最佳,其RSQ值可達0.73,預測總可溶性醣與總碳水化合物含量之結果次之,但其RSQ值皆高於0.55,預測葡萄糖、果糖及澱粉之結果則稍差,其RSQ值皆低於0.43。至於使用高光譜系統對葉片內部成分所建立之預測模型,蔗糖含量之預測結果其RSQ值可達0.81,總可溶性醣、總碳水化合物含量之預測結果其RSQ值也都高於0.69,雖然澱粉含量之預測結果RSQ值為0.75,但誤差稍大,而葡萄糖與果糖含量之預測結果RSQ雖然只有0.47和0.54,但SEC皆小於10.3 mg/g。比較兩種設備對蝴蝶蘭葉片各內部成分所建立之預測模型,高光譜系統之預測結果皆優於手持式光譜儀。 本研究以PLSDA、SVM以及ANN三種方法對蝴蝶蘭的開花品質進行建模分析,其中PLSDA與SVM用於蝴蝶蘭高品質與中低品質兩種級別之分類模式建立,ANN則是用於蝴蝶蘭開花朵數之預測。比較兩種設備所建立之開花品質模型,高光譜系統以PLSDA與SVM兩種方法建立之模型皆較手持式光譜儀為佳,其驗證組預測正確率皆超過六成;而使用ANN建模之結果,手持式光譜儀預測總開花朵數之誤差為0.87朵,高光譜系統預測總開花朵數之誤差為0.85朵,雖然高光譜系統之預測能力稍佳,但兩種設備在預測開花朵數之誤差皆小於1朵,具備不錯的預測能力。 本研究結果顯示,以光譜技術預測蝴蝶蘭內部成分含量與開花品質是可行的。而高光譜系統雖然性能優於手持式光譜儀,但其價格高且不若手持式光譜儀便利,未來若要將光譜技術應用於產業界,可朝多光譜系統或是優化手持式光譜儀預測模型之方向進行。 | zh_TW |
dc.description.abstract | Phalaenopsis is an important exported flowers in Taiwan and it provides a big output value every year. Facing the competetion from Netherlands and China, however, how to enhance the competitiveness of the flower industry becomes an important issue. Because the flowering quality of Phalaenopsis was reported to be correlated to its leaves’ carbohydrates content and external traits, our Phalaenopsis industry can be strengthened if we can predict the flowewing quality by using these internal and external traits. Phalaenopsis Sogo Yukidian 'V3' was used as the experimental samples in this research, and this study used near infrared technique with hand-held spectrometer (DLP NIRscan Nano) to build calibration models of interior contents in Phalaenopsis leaves. Then, we used the results from the models to predict the flowering quality. We also used hyperspectral imaging system (Self-developed system in this study) technique to build another interior content calibration model and combined the external traits of leaves from hyperspectral imaging to predict flowering quality. Finally, we compared the models’ advantages and applications between these two devices.
This study used MPLSR model to predict six interior contents in Phalaenopsis leaves, incuding glucrose, fructose, sucrose, total soluble sugar, starch, and total carbohydrates. The results from hand-held spectrometer showed that sucrose content model with RSQ = 0.73 was the best; total soluble sugar content model and total carbohydrates content model were secondly, and both of them gave the results of RSQ above 0.55; the results of glucrose model, fructose model and starch model were slightly worse, all of them gave the result of RSQ below 0.43. As for the results from hyperspectral imaging system, sucrose content model gave RSQ = 0.81; and total soluble sugar content model and total carbohydrates content model gave the results of RSQ above 0.69; although starch content model gave RSQ = 0.75, the predict error was a little high; glucrose model and fructose model gave the result of RSQ = 0.47 and RSQ = 0.54, but SEC were both below 10.3 mg/g. Comparing with the interior contents models between these two devices, the results from hyperspectral imaging system were all better than those from hand-held spectrometer. This study used three kinds of methods to predict the flowering quality including PLSDA, SVM and ANN. Among them, PLSDA and SVM were used to discriminate high and medium-low quality levels of Phalaenopsis; and ANN was used to predict the number of Phalaenopsis flowers. Comparing the results of PLSDA model and SVM model between two devices, those from hyperspectral imaging system were better than those of hand-held spectrometer, which prediction accuracy rate of validation group were higher than 60%. Comparing the results of ANN models, the error that using hand-held spectrometer to predict the number of flowers was 0.87, while the error that using hyperspectral imaging system was 0.85. Although the prediction ability from hyperspectral imaging system was a little bit better, the errors from these two devices were less than 1 flower, and it indicated that both devices had good results. The research proved that using spectral technique to predict the interior contents in Phalaenopsis leaves or flowering quality were both feasible. Although the performance of hyperspectral imaging system is better than that of hand-held spectrometer, it was expensive and not as convenient as hand-held spectrometer. We can adopt some other ways like using multispectral imaging system or optimize the performance of hand-held spectrometer if we want to apply spectral technique to the Phalaenopsis industry. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T14:36:05Z (GMT). No. of bitstreams: 1 ntu-106-R04631005-1.pdf: 4237726 bytes, checksum: 713c65a571016710718c81fb96f8f681 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 誌謝 ii
摘要 iv Abstract vi 目 錄 ix 圖目錄 xii 表目錄 xv 第一章 前 言 1 1.1 前言 1 1.2 研究目的 2 第二章 文獻探討 3 2.1 蝴蝶蘭簡介 3 2.2 蝴蝶蘭開花品質之探討 4 2.2.1 開花品質與環境之關係 4 2.2.2 開花品質與內部成分之關係 4 2.2.3 開花品質與葉片性狀之關係 4 2.3 近紅外光技術 5 2.3.1 近紅外光檢測原理 5 2.3.2 近紅外光譜分析方法 7 2.3.3 近紅外光技術於植株葉片檢測之應用 7 2.4 高光譜影像技術 8 2.4.1 高光譜影像檢測原理 8 2.4.2 高光譜影像技術於植株葉片檢測之應用 10 第三章 材料與方法 13 3.1 實驗步驟 13 3.2 實驗樣本 15 3.2.1 「內部成分模式建立」試驗之樣本處理 15 3.2.2 「開花品質模式建立」試驗樣本處理 17 3.3 設備I:手持式光譜儀 18 3.3.1 實驗儀器 18 3.3.2 光譜量測 19 3.3.3 光譜分析 20 3.4 設備II:高光譜影像系統 22 3.4.1 實驗儀器 22 3.4.2 光譜影像量測 27 3.4.3 光譜影像處理 29 3.4.4 光譜影像分析 31 3.5 蝴蝶蘭葉片碳水化合物分析方法 33 3.5.1 可溶性醣化學分析步驟 35 3.5.2 澱粉化學分析步驟 37 3.5.3 化學實驗驗證方法 38 3.6 蝴蝶蘭開花品質指標調查 39 第四章 結果與討論 41 4.1 內部成分化學分析結果 41 4.1.1 可溶性醣類含量 41 4.1.2 澱粉含量 46 4.1.3 總碳水化合物含量 47 4.1.4 化學分析結果驗證 49 4.2 開花品質指標調查結果 51 4.2.1 抽梗數 51 4.2.2 花梗長 51 4.2.3 花朵總數 52 4.3 設備I:手持式光譜儀 53 4.3.1 內部成分MPLSR定量分析結果 53 4.3.2 PLSDA預測開花品質結果 54 4.3.3 SVM預測開花品質結果 57 4.3.4 ANN預測開花品質結果 57 4.4 設備II:高光譜影像系統 59 4.4.1 影像去雜訊與校正結果 59 4.4.2 內部成分MPLSR定量分析結果 61 4.4.3 外部特徵擷取結果 65 4.4.4 PLSDA預測開花品質結果 67 4.4.5 SVM預測開花品質結果 69 4.4.6 ANN預測開花品質結果 70 4.5 設備I與設備II之比較 71 4.5.1 內部成分定量模型比較 71 4.5.2 開花品質之定性模型比較 73 4.5.3 開花品質之定量模型比較 75 第五章 結論 76 參考文獻 78 | - |
dc.language.iso | zh_TW | - |
dc.title | 蝴蝶蘭開花品質之光譜預測模式 | zh_TW |
dc.title | Spectral Prediction Model for Phalaenopsis Flowering Quality | en |
dc.type | Thesis | - |
dc.date.schoolyear | 105-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 艾群;蔡媦婷;林連雄;莊永坤 | zh_TW |
dc.contributor.oralexamcommittee | Chun Ai;Wei-Ting Tsai;Lien-Hsiung Lin;Yung-Kun Chuang | en |
dc.subject.keyword | 近紅外光技術,高光譜影像技術,蝴蝶蘭,開花品質, | zh_TW |
dc.subject.keyword | Near Infrared Spectroscopy,Hyperspectral Imaging,Phalaenopsis,Flowering Quality, | en |
dc.relation.page | 82 | - |
dc.identifier.doi | 10.6342/NTU201703818 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2017-08-19 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 生物機電工程學系 | - |
顯示於系所單位: | 生物機電工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-2.pdf 目前未授權公開取用 | 4.14 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。