Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77851
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳奕君(I-Chun Cheng)
dc.contributor.authorZhen-Chun Chenen
dc.contributor.author陳振淳zh_TW
dc.date.accessioned2021-07-11T14:36:01Z-
dc.date.available2021-09-04
dc.date.copyright2017-09-04
dc.date.issued2017
dc.date.submitted2017-08-18
dc.identifier.citation[1] D. S. Ginley and C. Bright, 'Transparent conducting oxides,' Mrs Bulletin, vol. 25, no. 08, pp. 15-18, 2000.
[2] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, 'Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,' Journal of the American Chemical Society, vol. 131, no. 17, pp. 6050-6051, 2009.
[3] D. Bi et al., 'Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%,' Nature Energy, vol. 1, p. 16142, 2016.
[4] 陳俊榮. (2007) 光電子能階分析在奈米有機半導體上之應用. 工業材料雜誌. 106.
[5] H. Kim, K.-G. Lim, and T.-W. Lee, 'Planar heterojunction organometal halide perovskite solar cells: roles of interfacial layers,' Energy & Environmental Science, vol. 9, no. 1, pp. 12-30, 2016.
[6] P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon, and H. J. Snaith, 'Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates,' Nature communications, vol. 4, 2013.
[7] Y. Shao, Z. Xiao, C. Bi, Y. Yuan, and J. Huang, 'Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells,' Nature communications, vol. 5, 2014.
[8] N. K. Noel et al., 'Enhanced photoluminescence and solar cell performance via lewis base passivation of organic–inorganic lead halide perovskites,' ACS nano, vol. 8, no. 10, pp. 9815-9821, 2014.
[9] T. Leijtens et al., 'Electronic properties of meso-superstructured and planar organometal halide perovskite films: charge trapping, photodoping, and carrier mobility,' ACS nano, vol. 8, no. 7, pp. 7147-7155, 2014.
[10] A. Baumann, S. Väth, P. Rieder, M. C. Heiber, K. Tvingstedt, and V. Dyakonov, 'Identification of trap states in perovskite solar cells,' The journal of physical chemistry letters, vol. 6, no. 12, pp. 2350-2354, 2015.
[11] G. J. A. Wetzelaer, M. Scheepers, A. M. Sempere, C. Momblona, J. Ávila, and H. J. Bolink, 'Trap‐Assisted Non‐Radiative Recombination in Organic–Inorganic Perovskite Solar Cells,' Advanced Materials, vol. 27, no. 11, pp. 1837-1841, 2015.
[12] B. Conings et al., 'Intrinsic thermal instability of methylammonium lead trihalide perovskite,' Advanced Energy Materials, vol. 5, no. 15, 2015.
[13] G. Fridman et al., 'Blood coagulation and living tissue sterilization by floating-electrode dielectric barrier discharge in air,' Plasma Chemistry and Plasma Processing, vol. 26, no. 4, pp. 425-442, 2006.
[14] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, 'Solar cell efficiency tables (version 46),' Progress in Photovoltaics: Research and Applications, vol. 23, no. 7, pp. 805-812, 2015.
[15] W. Hicks, 'Claims for solar cell efficiency put to test at NREL,' February 8, 2016.
[16] R. C. Hsu, C.-T. Liu, W.-Y. Chen, H.-I. Hsieh, and H.-L. Wang, 'A reinforcement learning-based maximum power point tracking method for photovoltaic array,' International Journal of Photoenergy, vol. 2015, 2015.
[17] F. Ullah, H.-Z. Chen, and C.-Z. Li, 'Organic functional materials based buffer layers for efficient perovskite solar cells,' Chinese Chemical Letters, 2016.
[18] B. O’regan and M. Grfitzeli, 'A low-cost, high-efficiency solar cell based on dye-sensitized,' nature, vol. 353, no. 6346, pp. 737-740, 1991.
[19] E. J. Crossland, N. Noel, V. Sivaram, T. Leijtens, J. A. Alexander-Webber, and H. J. Snaith, 'Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance,' Nature, vol. 495, no. 7440, pp. 215-219, 2013.
[20] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, 'Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,' Science, vol. 338, no. 6107, pp. 643-647, 2012.
[21] H. Zhou et al., 'Interface engineering of highly efficient perovskite solar cells,' Science, vol. 345, no. 6196, pp. 542-546, 2014.
[22] S. Yang, W. Fu, Z. Zhang, H. Chen, and C.-Z. Li, 'Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite,' Journal of Materials Chemistry A, 2017.
[23] A. Yella, L.-P. Heiniger, P. Gao, M. K. Nazeeruddin, and M. Grätzel, 'Nanocrystalline rutile electron extraction layer enables low-temperature solution processed perovskite photovoltaics with 13.7% efficiency,' Nano letters, vol. 14, no. 5, pp. 2591-2596, 2014.
[24] B. Conings et al., 'An easy-to-fabricate low-temperature TiO2 electron collection layer for high efficiency planar heterojunction perovskite solar cells,' APL Materials, vol. 2, no. 8, p. 081505, 2014.
[25] J. Y. Jeng et al., 'CH3NH3PbI3 Perovskite/Fullerene Planar‐Heterojunction Hybrid Solar Cells,' Advanced Materials, vol. 25, no. 27, pp. 3727-3732, 2013.
[26] F. Hou et al., 'Efficient and stable planar heterojunction perovskite solar cells with an MoO 3/PEDOT: PSS hole transporting layer,' Nanoscale, vol. 7, no. 21, pp. 9427-9432, 2015.
[27] Y.-Z. Zheng et al., 'Iodine-doped ZnO Nanopillar Arrays for Perovskite Solar Cells with High-Efficiency up to 18.24%,' Journal of Materials Chemistry A, 2017.
[28] Y. Yu et al., 'Improving the Performance of Formamidinium and Cesium Lead Triiodide Perovskite Solar Cells using Lead Thiocyanate Additives,' ChemSusChem, vol. 9, no. 23, pp. 3288-3297, 2016.
[29] K. Wang et al., 'Low-temperature and solution-processed amorphous WO X as electron-selective layer for perovskite solar cells,' The journal of physical chemistry letters, vol. 6, no. 5, pp. 755-759, 2015.
[30] J. H. Heo, H. J. Han, D. Kim, T. K. Ahn, and S. H. Im, 'Hysteresis-less inverted CH 3 NH 3 PbI 3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency,' Energy & Environmental Science, vol. 8, no. 5, pp. 1602-1608, 2015.
[31] S. Peng et al., 'An Efficient and Thickness Insensitive Cathode Interface Material for High Performance Inverted Perovskite Solar Cells with 17.27% Efficiency,' Journal of Materials Chemistry C, 2017.
[32] S. Ye et al., 'A Breakthrough Efficiency of 19.9% Obtained in Inverted Perovskite Solar Cells by Using an Efficient Trap State Passivator Cu (Thiourea) I,' Journal of the American Chemical Society, 2017.
[33] P. Qin et al., 'Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency,' Nature communications, vol. 5, 2014.
[34] M. Saliba et al., 'Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance,' Science, vol. 354, no. 6309, pp. 206-209, 2016.
[35] M. Yin et al., 'Annealing-free perovskite films by instant crystallization for efficient solar cells,' Journal of Materials Chemistry A, vol. 4, no. 22, pp. 8548-8553, 2016.
[36] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, 'Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells,' Nature materials, vol. 13, no. 9, pp. 897-903, 2014.
[37] F. Huang et al., 'Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells,' Nano Energy, vol. 10, pp. 10-18, 2014.
[38] N. Ahn, D.-Y. Son, I.-H. Jang, S. M. Kang, M. Choi, and N.-G. Park, 'Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead (II) iodide,' Journal of the American Chemical Society, vol. 137, no. 27, pp. 8696-8699, 2015.
[39] J. Burschka et al., 'Sequential deposition as a route to high-performance perovskite-sensitized solar cells,' Nature, vol. 499, no. 7458, pp. 316-319, 2013.
[40] Z. Xiao et al., 'Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,' Energy & Environmental Science, vol. 7, no. 8, pp. 2619-2623, 2014.
[41] J.-H. Im, I.-H. Jang, N. Pellet, M. Grätzel, and N.-G. Park, 'Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells,' Nature nanotechnology, vol. 9, no. 11, pp. 927-932, 2014.
[42] M. Liu, M. B. Johnston, and H. J. Snaith, 'Efficient planar heterojunction perovskite solar cells by vapour deposition,' Nature, vol. 501, no. 7467, pp. 395-398, 2013.
[43] Q. Chen et al., 'Planar heterojunction perovskite solar cells via vapor-assisted solution process,' Journal of the American Chemical Society, vol. 136, no. 2, pp. 622-625, 2013.
[44] D. Liu and T. L. Kelly, 'Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques,' Nature photonics, vol. 8, no. 2, pp. 133-138, 2014.
[45] B. J. Kim et al., 'Highly efficient and bending durable perovskite solar cells: toward a wearable power source,' Energy & Environmental Science, vol. 8, no. 3, pp. 916-921, 2015.
[46] Y. Lin et al., 'π‐Conjugated Lewis Base: Efficient Trap‐Passivation and Charge‐Extraction for Hybrid Perovskite Solar Cells,' Advanced Materials, vol. 29, no. 7, 2017.
[47] Q. Dong, J. Song, Y. Fang, Y. Shao, S. Ducharme, and J. Huang, 'Lateral‐Structure Single‐Crystal Hybrid Perovskite Solar Cells via Piezoelectric Poling,' Advanced Materials, 2016.
[48] C. Bi, Q. Wang, Y. Shao, Y. Yuan, Z. Xiao, and J. Huang, 'Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells,' Nature communications, vol. 6, 2015.
[49] D. H. Kim, K. G. Lim, J. H. Park, and T. W. Lee, 'Controlling Surface Enrichment in Polymeric Hole Extraction Layers to Achieve High‐Efficiency Organic Photovoltaic Cells,' ChemSusChem, vol. 5, no. 10, pp. 2053-2057, 2012.
[50] S. D. Stranks, V. M. Burlakov, T. Leijtens, J. M. Ball, A. Goriely, and H. J. Snaith, 'Recombination kinetics in organic-inorganic perovskites: excitons, free charge, and subgap states,' Physical Review Applied, vol. 2, no. 3, p. 034007, 2014.
[51] S. Ryu et al., 'Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor,' Energy & Environmental Science, vol. 7, no. 8, pp. 2614-2618, 2014.
[52] L. Yang et al., 'Comparing spiro-OMeTAD and P3HT hole conductors in efficient solid state dye-sensitized solar cells,' Physical Chemistry Chemical Physics, vol. 14, no. 2, pp. 779-789, 2012.
[53] K. G. Lim, H. B. Kim, J. Jeong, H. Kim, J. Y. Kim, and T. W. Lee, 'Boosting the Power Conversion Efficiency of Perovskite Solar Cells Using Self‐Organized Polymeric Hole Extraction Layers with High Work Function,' Advanced Materials, vol. 26, no. 37, pp. 6461-6466, 2014.
[54] L. Zuo et al., 'Enhanced photovoltaic performance of ch3nh3pbi3 perovskite solar cells through interfacial engineering using self-assembling monolayer,' Journal of the American Chemical Society, vol. 137, no. 7, pp. 2674-2679, 2015.
[55] J. Kim et al., 'Efficient planar-heterojunction perovskite solar cells achieved via interfacial modification of a sol–gel ZnO electron collection layer,' Journal of Materials Chemistry A, vol. 2, no. 41, pp. 17291-17296, 2014.
[56] T. Leijtens, J. Lim, J. Teuscher, T. Park, and H. J. Snaith, 'Charge Density Dependent Mobility of Organic Hole‐Transporters and Mesoporous TiO2 Determined by Transient Mobility Spectroscopy: Implications to Dye‐Sensitized and Organic Solar Cells,' Advanced Materials, vol. 25, no. 23, pp. 3227-3233, 2013.
[57] J. H. Noh, N. J. Jeon, Y. C. Choi, M. K. Nazeeruddin, M. Grätzel, and S. I. Seok, 'Nanostructured TiO 2/CH 3 NH 3 PbI 3 heterojunction solar cells employing spiro-OMeTAD/Co-complex as hole-transporting material,' Journal of Materials Chemistry A, vol. 1, no. 38, pp. 11842-11847, 2013.
[58] M. Franckevičius, A. Mishra, F. Kreuzer, J. Luo, S. M. Zakeeruddin, and M. Grätzel, 'A dopant-free spirobi [cyclopenta [2, 1-b: 3, 4-b′] dithiophene] based hole-transport material for efficient perovskite solar cells,' Materials Horizons, vol. 2, no. 6, pp. 613-618, 2015.
[59] P. W. Liang, C. C. Chueh, S. T. Williams, and A. K. Y. Jen, 'Roles of Fullerene‐Based Interlayers in Enhancing the Performance of Organometal Perovskite Thin‐Film Solar Cells,' Advanced Energy Materials, vol. 5, no. 10, 2015.
[60] Q. Wang, Y. Shao, Q. Dong, Z. Xiao, Y. Yuan, and J. Huang, 'Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process,' Energy & Environmental Science, vol. 7, no. 7, pp. 2359-2365, 2014.
[61] W. Wei and Y. H. Hu, 'Catalytic role of H2O in degradation of inorganic–organic perovskite (CH3NH3PbI3) in air,' International Journal of Energy Research, 2016.
[62] S. N. Habisreutinger, T. Leijtens, G. E. Eperon, S. D. Stranks, R. J. Nicholas, and H. J. Snaith, 'Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells,' Nano letters, vol. 14, no. 10, pp. 5561-5568, 2014.
[63] Y. Han et al., 'Degradation observations of encapsulated planar CH 3 NH 3 PbI 3 perovskite solar cells at high temperatures and humidity,' Journal of Materials Chemistry A, vol. 3, no. 15, pp. 8139-8147, 2015.
[64] J.-S. Yeo et al., 'Highly efficient and stable planar perovskite solar cells with reduced graphene oxide nanosheets as electrode interlayer,' Nano Energy, vol. 12, pp. 96-104, 2015.
[65] J. You et al., 'Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility,' 2014.
[66] F. Zuo, S. T. Williams, P. W. Liang, C. C. Chueh, C. Y. Liao, and A. K. Y. Jen, 'Binary‐Metal Perovskites Toward High‐Performance Planar‐Heterojunction Hybrid Solar Cells,' Advanced Materials, vol. 26, no. 37, pp. 6454-6460, 2014.
[67] S. S. Mali and C. K. Hong, 'pin/nip type planar hybrid structure of highly efficient perovskite solar cells towards improved air stability: synthetic strategies and the role of p-type hole transport layer (HTL) and n-type electron transport layer (ETL) metal oxides,' Nanoscale, vol. 8, no. 20, pp. 10528-10540, 2016.
[68] C. Chen et al., 'High efficiency CH 3 NH 3 PbI 3: CdS perovskite solar cells with CuInS 2 as the hole transporting layer,' Journal of Power Sources, vol. 341, pp. 396-403, 2017.
[69] B. Eliasson and U. Kogelschatz, 'Nonequilibrium volume plasma chemical processing,' IEEE transactions on plasma science, vol. 19, no. 6, pp. 1063-1077, 1991.
[70] 徐逸明, '常壓電漿原理、技術與應用,' http://www.creating-nanotech.com/big5/download/20110520145713437.pdf, [Accessed: 25 Jun. 2016]
[71] F. Paschen, 'Ueber die zum Funkenübergang in Luft, Wasserstoff und Kohlensäure bei verschiedenen Drucken erforderliche Potentialdifferenz,' Annalen der Physik, vol. 273, no. 5, pp. 69-96, 1889.
[72] A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, and R. F. Hicks, 'The atmospheric-pressure plasma jet: a review and comparison to other plasma sources,' IEEE transactions on plasma science, vol. 26, no. 6, pp. 1685-1694, 1998.
[73] C. Hsu, S. Lien, Y. Yang, J. Chen, I. Cheng, and C. Hsu, 'Deposition of transparent and conductive ZnO films by an atmospheric pressure plasma-jet-assisted process,' Thin Solid Films, vol. 570, pp. 423-428, 2014.
[74] O. Godoy-Cabrera et al., 'Effect of air-oxygen and argon-oxygen mixtures on dielectric barrier discharge decomposition of toluene,' Brazilian journal of physics, vol. 34, no. 4B, pp. 1766-1770, 2004.
[75] N. Tran, N. Harada, T. Sasaki, and T. Kikuchi, 'Effect of Dielectric in a Plasma Annealing System at Atmospheric Pressure,' in Dielectric Material: InTech, 2012.
[76] J.-S. Chang, P. A. Lawless, and T. Yamamoto, 'Corona discharge processes,' IEEE Transactions on plasma science, vol. 19, no. 6, pp. 1152-1166, 1991.
[77] T. Yuji and Y.-M. Sung, 'Surface Treatment of TiO2 Films by 4kHz Pulse Plasma for Dye-Sensized Solar Cells Applications,' in Discharges and Electrical Insulation in Vacuum, 2006. ISDEIV'06. International Symposium on, 2006, vol. 2, pp. 801-804: IEEE.
[78] W.-Y. Liao, Y.-J. Yang, C.-M. Hsu, C.-C. Hsu, I.-C. Cheng, and J.-Z. Chen, 'Atmospheric-pressure-plasma-jet sintered dual-scale porous TiO 2 using an economically favorable NaCl solution,' Journal of Power Sources, vol. 281, pp. 252-257, 2015.
[79] H. Chang et al., 'Dye-sensitized solar cells with nanoporous TiO 2 photoanodes sintered by N 2 and air atmospheric pressure plasma jets with/without air-quenching,' Journal of Power Sources, vol. 251, pp. 215-221, 2014.
[80] S. Zen, Y. Teramoto, R. Ono, and T. Oda, 'Development of low-temperature sintering technique for dye-sensitized solar cells combined with dielectric barrier discharge treatment,' Japanese Journal of Applied Physics, vol. 51, no. 5R, p. 056201, 2012.
[81] R. Sanders, 'Using ionized plasmas as cheap sterilizers for developing world,' NOVEMBER 14, 2011.
[82] K. Vijayalakshmi and D. Sivaraj, 'Substrate effect on the properties of functionalized multiwalled carbon nanotubes grown by e-beam evaporation for high performance H 2 O 2 detection,' Analyst, vol. 141, no. 21, pp. 6149-6159, 2016.
[83] 羅聖全, '掃描式電子顯微鏡(SEM),' 科學研習, vol. 52-5, 2013.
[84] E. Casero, L. Vázquez, A. M. Parra-Alfambra, and E. Lorenzo, 'AFM, SECM and QCM as useful analytical tools in the characterization of enzyme-based bioanalytical platforms,' Analyst, vol. 135, no. 8, pp. 1878-1903, 2010.
[85] 李其紘, '原子力顯微鏡的基本介紹,' 科學研習, vol. No. 52-5, 2013 年5 月.
[86] 駱榮富, '材料進階實驗-傅立葉轉換紅外線光譜儀(FTIR)與電性量測分析實驗.'
[87] J. F. J. R. S. Sternberg, 'The Design of Optical Spectrometers,' 1969.
[88] J. John, 'Spectrograph Design Fundamentals (Cambridge University Press),' 2007.
[89] M. K. Hoque, 'Ionic conducting oxide materials for clean energy applications: synthesis, structure and conductivity,' 2013.
[90] 鄭信民, 'X光繞射應用簡介,' 2002年1月.
[91] 中華民國生物醫學工程協會, '生醫感測器,' 2010.
[92] D. Yang, R. Yang, J. Zhang, Z. Yang, S. F. Liu, and C. Li, 'High efficiency flexible perovskite solar cells using superior low temperature TiO 2,' Energy & Environmental Science, vol. 8, no. 11, pp. 3208-3214, 2015.
[93] M. Bag et al., 'Kinetics of ion transport in perovskite active layers and its implications for active layer stability,' Journal of the American Chemical Society, vol. 137, no. 40, pp. 13130-13137, 2015.
[94] 蔡進譯, '超高效率太陽電池-從愛因斯坦的光電效應談起,' 2005年10月.
[95] Y.-K. Jo et al., 'A Non-thermal plasma seed treatment method for management of a seedborne fungal pathogen on rice seed,' Crop Science, vol. 54, no. 2, pp. 796-803, 2014.
[96] Y.-Y. Huang, G. Gollavelli, Y.-H. Chao, and C.-S. Hsu, 'Rejuvenation of perovskite solar cells,' Journal of Materials Chemistry C, vol. 4, no. 32, pp. 7595-7600, 2016.
[97] J. Liu et al., 'High‐Quality Mixed‐Organic‐Cation Perovskites from a Phase‐Pure Non‐stoichiometric Intermediate (FAI) 1− x‐PbI2 for Solar Cells,' Advanced Materials, vol. 27, no. 33, pp. 4918-4923, 2015.
[98] F. Wang, D. Meng, X. Li, Z. Zhu, Z. Fu, and Y. Lu, 'Influence of annealing temperature on the crystallization and ferroelectricity of perovskite CH 3 NH 3 PbI 3 film,' Applied Surface Science, vol. 357, pp. 391-396, 2015.
[99] M.-C. Jung, S. R. Raga, L. K. Ono, and Y. Qi, 'Substantial improvement of perovskite solar cells stability by pinhole-free hole transport layer with doping engineering,' Scientific reports, vol. 5, 2015.
[100] Y. Kato, L. K. Ono, M. V. Lee, S. Wang, S. R. Raga, and Y. Qi, 'Silver iodide formation in methyl ammonium lead iodide perovskite solar cells with silver top electrodes,' Advanced Materials Interfaces, vol. 2, no. 13, 2015.
[101] L. Zheng et al., 'Improved light absorption and charge transport for perovskite solar cells with rough interfaces by sequential deposition,' Nanoscale, vol. 6, no. 14, pp. 8171-8176, 2014.
[102] 財團法人塑膠工業技術發展中心, 'FTIR-傅立葉轉換紅外線光譜儀 ' 2014.
[103] P. Qin et al., 'A novel oligomer as a hole transporting material for efficient perovskite solar cells,' Advanced Energy Materials, vol. 5, no. 2, 2015.
[104] P. Umari, E. Mosconi, and F. De Angelis, 'Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications,' Scientific reports, vol. 4, p. 4467, 2014.
[105] H. Wang, X. Hu, and H. Chen, 'The effect of carbon black in carbon counter electrode for CH 3 NH 3 PbI 3/TiO 2 heterojunction solar cells,' RSC Advances, vol. 5, no. 38, pp. 30192-30196, 2015.
[106] J. Qiu et al., 'All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO 2 nanowire arrays,' Nanoscale, vol. 5, no. 8, pp. 3245-3248, 2013.
[107] Z. Zhang, C.-C. Wang, R. Zakaria, and J. Y. Ying, 'Role of particle size in nanocrystalline TiO2-based photocatalysts,' The Journal of Physical Chemistry B, vol. 102, no. 52, pp. 10871-10878, 1998.
[108] L.-C. Chen, Z.-L. Tseng, C.-C. Chen, S. H. Chang, and C.-H. Ho, 'Fabrication and characteristics of CH3NH3PbI3 perovskite solar cells with molybdenum-selenide hole-transport layer,' Applied Physics Express, vol. 9, no. 12, p. 122301, 2016.
[109] W. Li et al., 'Graphene oxide as dual functional interface modifier for improving wettability and retarding recombination in hybrid perovskite solar cells,' Journal of Materials Chemistry A, vol. 2, no. 47, pp. 20105-20111, 2014.
[110] Fishe, 'http://xpssimplified.com/elements/carbon.php,' Adventitious Carbon Contamination 2013.
[111] Y. Li et al., 'Degradation by exposure of coevaporated CH3NH3PbI3 thin films,' The Journal of Physical Chemistry C, vol. 119, no. 42, pp. 23996-24002, 2015.
[112] X. Guo, C. McCleese, C. Kolodziej, A. C. Samia, Y. Zhao, and C. Burda, 'Identification and characterization of the intermediate phase in hybrid organic–inorganic MAPbI 3 perovskite,' Dalton Transactions, vol. 45, no. 9, pp. 3806-3813, 2016.
[113] G. Niu, W. Li, J. Li, X. Liang, and L. Wang, 'Enhancement of thermal stability for perovskite solar cells through cesium doping,' RSC Advances, vol. 7, no. 28, pp. 17473-17479, 2017.
[114] P. Luo, Z. Liu, W. Xia, C. Yuan, J. Cheng, and Y. Lu, 'A simple in situ tubular chemical vapor deposition processing of large-scale efficient perovskite solar cells and the research on their novel roll-over phenomenon in J–V curves,' Journal of Materials Chemistry A, vol. 3, no. 23, pp. 12443-12451, 2015.
[115] E. J. Juarez-Perez et al., 'Role of the selective contacts in the performance of lead halide perovskite solar cells,' The journal of physical chemistry letters, vol. 5, no. 4, pp. 680-685, 2014.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77851-
dc.description.abstract本論文研究低溫介電質放電處理對於鈣鈦礦(Perovskite)薄膜特性的影響,並將其應用於正規結構平面式鈣鈦礦太陽能電池中。研究中鈣鈦礦薄膜(lead methylammonium tri-iodide, MAPbI3)採一步驟溶液式製程沉積在鍍上二氧化鈦(TiO2)之摻氟氧化錫(fluorine doped tin oxide, FTO)透明導電基板上,厚度約為350 nm,待其軟烤冷卻後,以介電質放電(dielectric barrier discharge, DBD)分別處理5、10、20、40和60 s,隨即塗佈電洞傳輸層Spiro-OMeTAD,最後以蒸鍍上對電極完成太陽能電池製作。藉由電漿放射光譜得知DBD可與鈣鈦礦薄膜中殘餘之有機前驅溶液反應,產生N-O放射譜線。透過X射線能譜(XPS)分析,我們發現10~20 s DBD處理能有效降低鈣鈦礦薄膜中的碳汙染。而電化學阻抗分析(electrochemical impedance spectroscopy, EIS)顯示,鈣鈦礦薄膜經DBD短時間處理後,能降低其載子複合阻抗(carrier recombination resistance),亦即減少載子複合機率。最後,我們以電性分析發現,鈣鈦礦薄膜經DBD處理約20 s能大幅增加其分流電阻,所製作出之正規結構平面式鈣鈦礦太陽能電池的能量轉換效率達14.29 %,開路電壓為1.022 V,短路電流為19.45 mA/cm2,填充係數為0.72。相較於未經DBD處理之能量轉換效率10.32 %,開路電壓0.976 V,短路電流18.52 mA/cm2與填充係數0.57,效能有顯著的提升。
在本研究中,我們成功於一步驟沉積鈣鈦礦製程中加入低溫電漿處理,並能以短時間處理改善其界面特性,且介電質放電不需昂貴成本,對於應用於鈣鈦礦太陽能電池是一種相當有效的方法。
zh_TW
dc.description.abstractIn this work, the effect of dielectric barrier discharge (DBD) on the properties of perovskite films was studied. We then applied the DBD treatment to facilate the fabrication of planar perovskite solar cells with regular structure. The 350-nm-thick perovskite (MAPbI3) thin films were deposited by one-step solution process on TiO2-coated FTO glass substrates. After soft baking on a hot plate, they were treated by DBD for 5、10、20、40 and 60 s, followd by the deposition of hole transport layers, Spiro-OMeTAD. Finally, the counter electrodes were evaporated to complete the cell process. N-O emissions were observed during the DBD treatment, indicating the plasma reacts with the residual organic precursors in the perovskite film. The X-ray photoemission spectroscopy (XPS) analysis shows that 10 to 20 s DBD treatments can effectively reduce the carbon contaminations in the perovskite thin films. The electrochemical impedance spectroscopy (EIS) analysis reveals that a short DBD treatment can increase the recombination resistance, thus reduce the carrier recombination probability in the perovskite thin film. Finally, from the I-V analysis of the cell performance, we found that a 20 s DBD treatment of the perovskite thin film can greatly enhance the shunt resistance. The solar cell with the 20 s DBD-treated perovskite exhibits an energy conversion efficiency of 14.29%, open circuit voltage of 1.022 V, short circuit current of 19.45 mA/cm2, and fill factor of 0.72, while the corresponding values for the untreated counterpart are 10.32%, 0.976 V, 18.52 mA/cm2 and 0.57, respectively. The result shows that the low-temperature DBD treatment is an effective approach to enhance the solution-processed perovskite solar cells.en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:36:01Z (GMT). No. of bitstreams: 1
ntu-106-R04941084-1.pdf: 6422948 bytes, checksum: 29c1ab0d56af37e8803671a9fb516070 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents致謝 i
中文摘要 ii
Abstract iii
目錄 v
圖目錄 ix
表目錄 xv
第1章 緒論 1
1.1 前言 1
1.2 鈣鈦礦太陽能電池中之界面簡介 2
1.3 研究動機 3
1.4 論文架構 4
第2章 文獻回顧 5
2.1 太陽能電池 5
2.1.1 太陽能電池發展 5
2.1.2 太陽能電池特性參數 6
2.2 鈣鈦礦太陽能電池 9
2.2.1 中孔性結構 9
2.2.2 平面結構 10
2.2.3 正規結構 11
2.2.4 倒置結構 12
2.2.5 一步驟製程 13
2.2.6 兩步驟製程 15
2.2.7 蒸鍍製程 15
2.2.8 可撓性基板應用 16
2.3 鈣鈦礦之界面層 19
2.3.1 能階匹配 19
2.3.2 電洞萃取層 19
2.3.3 電子萃取層 21
2.3.4 界面層導電性 22
2.3.5 缺陷態之鈍化 23
2.3.6 元件穩定性 25
2.4 電漿 28
2.4.1 電漿原理 28
2.4.2 電漿操作電壓 30
2.4.3 常壓電漿系統 31
2.4.4 常壓電漿處理應用於太陽能電池 34
第3章 研究方法 36
3.1 製程儀器 36
3.1.1 介電質放電架設 36
3.1.2 氮氣手套箱 37
3.1.3 旋轉塗佈系統 38
3.1.4 電子束蒸鍍系統 38
3.2 量測分析 40
3.2.1 掃描式電子顯微鏡 40
3.2.2 原子力顯微鏡 41
3.2.3 傅立葉轉換紅外光譜儀 42
3.2.4 光譜分析儀 44
3.2.5 紫外光-可見光光譜儀 45
3.2.6 X光子繞射儀 46
3.2.7 X光子能譜儀 48
3.3 鈣鈦礦電池製作流程 50
3.4 太陽能電池特性分析 55
3.4.1 太陽光模擬系統 55
3.4.2 電化學阻抗分析 55
3.4.3 分流電阻分析 58
第4章 研究方法 59
4.1 電漿分析 59
4.1.1 工作溫度 59
4.1.2 電漿放射光譜 60
4.2 薄膜分析 62
4.2.1 鈣鈦礦掃描式電子顯微分析 62
4.2.2 鈣鈦礦原子力顯微分析 64
4.2.3 鈣鈦礦傅立葉轉換紅外光譜分析 67
4.2.4 鈣鈦礦吸收頻譜分析 68
4.2.5 鈣鈦礦X光子繞射分析 70
4.2.6 鈣鈦礦X光子能譜分析 73
4.3 太陽能電池特性 85
4.3.1 電性分析 85
4.3.2 電化學阻抗分析 91
第5章 結論與未來展望 93
附錄A:台大物質元件中心以介電質放電處理鈣鈦礦電池元件統計 96
附錄B:元件效率統計資料 101
附錄C:DBD處理鈣鈦礦冷卻後沉積Spiro-OMeTAD測試(溫度對Spiro-OMeTAD影響) 114
參考文獻 117
dc.language.isozh-TW
dc.title以介電質放電處理之鈣鈦礦太陽能電池特性研究zh_TW
dc.titleDielectric Barrier Discharge (DBD) Processed
CH3NH3PbI3 Layer for Perovskite Solar Cells
en
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳建彰(Jian-Zhang Chen),徐振哲(Cheng-Che Hsu),許聿翔(Yu-Hsiang Hsu)
dc.subject.keyword介電質放電,低溫電漿處理,鈣鈦礦太陽能電池,zh_TW
dc.subject.keyworddielectric barrier discharge,low temperature plasma,perovskite solar cells,en
dc.relation.page130
dc.identifier.doi10.6342/NTU201703951
dc.rights.note有償授權
dc.date.accepted2017-08-19
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-R04941084-1.pdf
  目前未授權公開取用
6.27 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved