請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77848
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 范士岡(Shih-Kang Fan) | |
dc.contributor.author | Jing-Jhe Gao | en |
dc.contributor.author | 高敬哲 | zh_TW |
dc.date.accessioned | 2021-07-11T14:35:58Z | - |
dc.date.available | 2022-09-13 | |
dc.date.copyright | 2017-09-13 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-08-18 | |
dc.identifier.citation | [1] R. A. Hayes and B. J. Feenstra, “Video-speed electronic paper based on electrowetting.,” Nature 425.6956, 2003, 383-385.
[2] K. Blankenbach, A. Schmoll, A. Bitman, F. Bartels and D. Jerosch, “Novel highly reflective and bistable electrowetting displays.,” Journal of the Society for Information Display 16.2, 2008, 237-244. [3] J. Heikenfeld, K. Zhou, E. Kreitl, B. Raj, S. Yang, B. Sun, A. Milarcik, L. Clapp and R. Schwartz, “Electrofluidic displays using Young-Laplace transposition of brilliant pigment dispersions.,” Nature Photonisc 3.5, 2009, 292-296. [4] M. Hagedon, S. Yang, A. Russell and J. Heikenfeld, “Bright e-Paper by transport of ink through a white Electrofluidic imaging film.,” Nature Communications 4, 1173, 2012. [5] H. You and A. J. Steckl, “Versatile electrowetting arrays forsmart window applications from small to large pixels on fixed and flexible substrates.,” Solar EnergyMaterials & SolarCells 117, 2013, 544-548. [6] A. Steckl, D.-Y. Kim and H. You, “Electrowetting: a flexible electronic-paper technology.,” SPIE Newsroom, 2011. [7] B. Comiskey, J. D. Albert, H. Yoshizawa and J. Jacobson, “An electrophoretic ink for all-printed reflective electronic displays.,” Nature 394.6690, 1998, 253-255. [8] Y.-H. Lu and C.-H. Tien, “Principal Component Analysis of Multi-Pigment Scenario in Full-Color Electrophoretic Display.,” Journal of Display Technology 9.10, 2013, 807-812. [9] R. C. Liang, J. Hou, H. M. Zang, J. Chung and S. Tseng, “Microcup® displays: Electronic paper by roll-to-roll manufacturing processes.,” Journal of the Society for Information Display 11.4, 2003, 621-628. [10] S. Mukherjee, W. L. Hsieh, N. Smith, M. Goulding and J. Heikenfeld, “Electrokinetic pixels with biprimary inks for color displays and color-temperature-tunable smart windows.,” Applied Optics 54.17, 2015, 5603-5609. [11] B. Berge, “Electrocapillarity and wetting of insulator films by water.,” Comptes Rendus De L Academie Des Sciences Serie Ii 317.2, 1993, 157-163. [12] M. G. Pollack, R. B. Fair and A. D. Shenderov, “Electrowetting-based actuation of liquid droplets for microfluidic applications.,” Applied Physics Letters 77.11, 2000, 1725-1726. [13] S. K. Cho, H. Moon and C.-J. Kim, “Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits.,” Journal of Microelectromechanical Systems 12.1, 2003, 70-80. [14] J. Gong, S.-K. Fan and C.-J. Kim, “Portable Digital Microfluidics Platform with Active but Disposable Lab-On-Chip.,” Micro Electro Mechanical Systems, The 17th IEEE International Conference on. (MEMS), 2004, 355-358. [15] S.-K. Fan, C. Hashi and C.-J. Kim, “Manipulation of Multiple Droplets on NxM Grid by Cross-Reference EWOD Driving Scheme and Pressure-Contact Packaging.,” Micro Electro Mechanical Systems, The 16th IEEE International Conference on. (MEMS), 2003, 694-697. [16] S.-K. Fan*, P.-W. Huang, T.-T. Wang and Y.-H. Peng, “Cross-scale electric manipulations of cells and droplets by frequency-modulated dielectrophoresis and electrowetting.,” Lab on a Chip 8.8, 2008, 1325-1331. [17] C.-P. Chiu, P.-W. Huang and S.-K. Fan, “Reflective Electronic Paper Display Utilizing Electric Polarized Particle Chains.,” SID Symposium Digest of Technical Papers 38, No. 1, 2007, 1466-1469. [18] S.-K. Fan*, C.-P. Chiu, C.-H. Hsu, S.-C. Chen, L.-L. Huang, Y.-H. Lin, W.-F. Fang, J.-K. Chen and J.-T. Yang, “Particle Chain Display – an Optofluidic Electronic Paper.,” Lab on a Chip 12.22, 2012, 4870-4876. [19] P. Dommersnes, Z. Rozynek, A. Mikkelsen, R. Castberg, K. Kjerstad, K. Hersvik and J. O. Fossum, “Active structuring of colloidal armour on liquid drops.,” Nature Communications 4, 2066, 2013. [20] Y. Xia and G. M. Whitesides*, “Soft Lithography.,” Annual review of materials science 28.1., 1998, 153-184. [21] S. Okushima, T. Nisisako*, T. Torii and T. Higuchi, “Controlled Production of Monodisperse Double Emulsions by Two-Step Droplet Breakup in Microfluidic Devices.,” Langmuir 20.23, 2004, 9905-9908. [22] N.-N. Deng, Z.-J. Meng, R. Xie, X.-J. Ju, C.-L. Mou, W. Wang and L.-Y. Chu, “Simple and cheap microfluidic devices for the preparation of monodisperse emulsions.,” Lab on a Chip 11.23, 2011, 3963-3969. [23] N.-N. Deng, S.-X. Sun, W. Wang, X.-J. Ju, R. X. and L.-Y. Chu*, “A novel surgery-like strategy for droplet coalescence in microchannels.,” Lab on a Chip 13.18, 2013, 3653-3657. [24] N. N. Deng, W. Wang, X.-J. Ju, R. Xie, D. A. Weitz and L.-Y. Chu, “Wetting-induced formation of controllable monodisperse multiple emulsions in microfluidics.,” Lab on a Chip 13.20, 2013, 4047-4052. [25] T. Nisisako*, T. Torii, T. Takahashi and Y. Takizawa, “Synthesis of Monodisperse Bicolored Janus Particles with Electrical Anisotropy Using a Microfluidic Co-Flow System.,” Advanced Materials 18.9 , 2006, 1152-1156. [26] T. He, M. Jin, J. C. T. Eijkel, G. Zhou and L. Shui, “Two-phase microfluidics 1 in electrowetting displays and its effect on optical performance.,” Biomicrofluidics 10.1, 2016, 011908. [27] G. T. Vladisavljević, I. Kobayashi and M. Nakajima, “Production of uniform droplets using membrane, microchannel and microfluidic emulsification devices.,” Microfluidics and nanofluidics 13.1, 2012, 151-178. [28] L. Li, C. Liu, H. Ren and Q.-H. Wang, “Adaptive liquid iris based on electrowetting.,” Optics Letters 38.13, 2013, 2336-2338. [29] D. J. Collins, A. Neild, A. deMello, A.-Q. Liu and Y. Ai, “The poisson distribution and beyond: methods for microfluidic droplet production and single cell encapsulation.,” Lab on a Chip 15.17, 2015, 3439-3459. [30] T. Thorsen, R. W. Roberts, F. H. Arnold and S. R. Quake, “Dynamic pattern formation in a vesicle-generating microfluidic device.,” Physical review letters 86.18, 2001, 4163. [31] L.-Y. Chu, A. S. Utada, R. K. Shah, J.-W. Kim and D. A. Weitz, “Controllable monodisperse multiple emulsions.,” Angewandte Chemie International Edition 46.47, 2007, 8970-8974. [32] L. L. A. Adams, T. E. Kodger, S.-H. Kim, H. C. Shum, T. Franke and D. A. Weitz, “Single step emulsification for the generation of multi-component double emulsions.,” Soft Matter 8.41, 2012, 10719-10724. [33] M. Azarmanesh, M. Farhadi, and P. Azizian, “Double emulsion formation through hierarchical flow-focusing microchannel.,” Physics of Fluids 28.3, 2016, 032005. [34] J. Thiele and S. Seiffert, “Double emulsions with controlled morphology by microgel scaffolding.,” Lab on a Chip 11.18, 2011, 3188-3192. [35] A. Gupta, S. M. S. Murshed and R. Kumar, “Droplet formation and stability of flows in a microfluidic T-junction.,” Applied Physics Letters 94.16, 2009, 164107. [36] Y. Yan, D. Guo and S. Z. Wen, “Numerical simulation of junction point pressure during droplet formation in a microfluidic T-junction.,” Chemical Engineering Science 84, 2012, 591-601. [37] H. Morgan and N. G. Green, “AC electrokinetics.,” Research Studies Press, 2003. [38] H. A. Pohl, “Dielectrophoresis.,” Cambridge University Press, Cambridge, 1987. [39] H. A. Pohl, “The motion and precipitation of suspensoids in divergent electric fields.,” Journal of Applied Physics 22.7, 1951, 869-871. [40] G. Medoro, R. Guerrieri, N. Manaresi, C. Nastruzzi and R. Gambari, “Lab on a chip for live-cell manipulation.,” IEEE Design & Test of Computers 24.1, 2007, 26-36. [41] T. B. Jones, “Electromechanics of Particles.,” Cambridge University Press, Cambridge, 1995. [42] J. A. Hernández-Castro, K. Li, A. Meunier, D. Juncker and T. Veres, “Fabrication of large-area polymer microfilter membranes and their application for particle and cell enrichment,” Lab on a Chip 17, 2017, 1960-1969. [43] A. Pitto-Barry and N. P. E. Barry, “Pluronic® block-copolymers in medicine: from chemical and biological versatility to rationalisation and clinical advances.,” Polymer Chemistry 5.10, 2014, 3291-3297. [44] M. Nakamae, K. Yuki, T. Sato and H. Maruyama., “Preparation of polymer emulsions using a poly(vinyl alcohol) as protective colloid.,” Colloids and Surfaces A: Physicochemical and Engineering Aspects 153.1, 1999, 367-372. [45] V. R. S. S. Mokkapati, O. Bethge, R. Hainberger and H Brueckl, “Microfluidic chips fabrication from UV curable adhesives for heterogeneous integration.,” Electronic Components and Technology Conference, The 62nd IEEE International Conference on (ECTC), 2012, 1965-1969. [46] C. J. DeJournette, J. Kim, H. Medlen, X. Li, L. J. Vincent and C. J. Easley, “Creating biocompatible oil–water interfaces without synthesis: direct interactions between primary amines and carboxylated perfluorocarbon surfactants.,” Analytical chemistry 85.21, 2013, 10556-10564. [47] H. F. Chan, Y. Zhang, Y.-P. Ho, Y.-L. Chiu, Y. Jung and K. W. Leong, “Rapid formation of multicellular spheroids in double-emulsion droplets with controllable microenvironment.,” Scientific reports 3, 2013, 3462. [48] Q. Chu, M. S. Yua and D. P. Curran, “New fluorous/organic biphasic systems achieved by solvent tuning.,” Tetrahedron 63.39, 2007, 9890-9895. [49] S. Galindo-Rodriguez, E. Alle´mann, H. Fessi and E. Doelker, “Physicochemical parameters associated with nanoparticle formation in the salting-out, emulsification-diffusion, and nanoprecipitation methods.,” Pharmaceutical research 21.8, 2004, 1428-1439. [50] P. Prakash, U. Satheesh and D. Devaprakasam, “Study of High Temperature Thermal Behavior of Alkyl and Perfluoroalkylsilane Molecules Self-Assembled on Titanium Oxide Nanoparticles.,” Cornell University Library, arXiv: 1409.6823, 2014. [51] N. K. Sheridon, E. A. Richley, J. C. Mikkelsen, D. Tsuda, J. M. Crowley, K. A. Oraha, M. E. Howard, M. A. Rodkin, R. Swidler and R. Sprague, “The gyricon rotating ball display.,” Journal of the society for information display 7.2, 1999, 141-144. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77848 | - |
dc.description.abstract | 本實驗整合微流體、粒子極化與介電泳等技術,透過在微流道中建立具乳化液滴結構的顯示元件,達到反射式顯示介質之功能。反射式顯示器具有不需要背光模組的優勢,不僅可節能省電,更可避免使用者們長時間觀看下的不適感。以往這些顯示器在像素結構的建立、液體封裝及填充,都是透過微機電製程的技術來完成。本實驗透過微流道乳化技術,將這些相關的製程簡化並實現在一片微流體晶片上。實驗內容以建立單層的乳化液滴陣列為核心,液滴組成為水溶液包覆均勻分散二氧化鈦粒子(Titanium dioxide)或聚苯乙烯球(Polystyrene,PS),而環境的液體為熱固化的聚二甲基矽氧烷(Polydimethylsiloxane,PDMS)及光固化的油MD700、NOA 74,當液滴緊密的在微流道中堆疊出陣列結構,再透過環境液體的固化,可以得到整個顯示介質的封裝。實驗中可透過開板的方式取出封裝好的薄膜顯示介質,在置於平行板晶片中操控,或者直接於流道中整合電極晶片進行操控,施以電壓40 V及頻率1 MHz之交流電訊號控制微奈米粒子。首先粒子受電場影響極化成串,接著受介電泳力而聚集於球體邊緣,達到介電泳顯示器的作用,並在移除電壓後分散回來,達到3秒的反應時間,以及對比度5:1的顯示效果,驗證了以微流體液滴系統實現介電泳顯示器之功能。 | zh_TW |
dc.description.abstract | We developed a particle-based reflective display medium fabricated with microfluidic emulsion technique and driven with dielectrophoresis (DEP) and particle polarization. Without backlight, the reflective displays are power saving and offer comfortable viewing experience for a long time. However, the fabrication of particle- or liquid-based reflective displays require several critical and complicated processes including liquid filling and packaging without leakage. In this thesis, the fabrication processes were simplified and implemented on a microfluidic chip through the microfluidic emulsion technique. The emulsion droplet array in this study consisted of dispersed droplets with suspended titanium dioxide or polystyrene particles. The droplets were surrounded in a continuous phase of thermally crosslinkable polydimethylsiloxane (PDMS) or photo crosslinkable MD700 or NOA74. The encapsulation of the display medium was obtained after crosslinking the continuous phase after the formation of the droplet emulsion array. We then opened the microfluidic device to retrieve the crosslinked thin film display medium. The display medium was consequently placed between parallel plates containing electrodes for driving with an appropriation electric signal. The particles were polarized to form particle chains and moved by DEP to the sides of the droplets where the electric field was weak. With the 40 V and 1 MHz AC electric signal, the response time was 3 s to achieve a contrast of 5:1. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T14:35:58Z (GMT). No. of bitstreams: 1 ntu-106-R04522314-1.pdf: 9150682 bytes, checksum: 90a2c28daa7b2d838c65ed270f4f74e7 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 目錄
致謝 I 中文摘要 II ABSTRACT III 目錄 IV 第一章 緒論 1 1-1 前言 1 1-2 光流體反射式顯示器 2 1-2.1. 流體與流體: 電濕潤顯示器 2 1-2.2. 流體與粒子: 電泳顯示器 8 1-3 微流體系統 13 1-3.1 介電濕潤 13 1-3.2 介電泳 15 1-3.3 粒子極化 16 1-3.4 乳化液滴 20 1-4 研究目的與動機 27 第二章 理論介紹 28 2-1 乳化液滴原理 28 2-1.1 穩定性與界面活性劑 29 2-2 微流道系統原理 31 4-1.1 流道幾何與表面性質 31 4-1.2 乳化液滴與毛細數 36 2-3 粒子介電泳與極化關係 37 第三章 實驗架構與製程 40 3-1 介電泳顯示器材料 40 3-1.1 界面活性劑 41 3-2.1 單層乳化液滴組成 42 3-2.1 微奈米粒子材料處理 45 3-2 實驗設計與架構 47 3-3.1介電泳顯示器結構 47 3-3.3 微流道操控系統架設 52 3-3.4 電極晶片操控系統架設 56 3-3 整合式微流體晶片製程 58 3-3.1 微流道製程 58 3-3.2 電極晶片製程 61 第四章 實驗結論與探討 64 4-1. 實現介電泳顯示器 64 4-1.1 第一組材料 64 4-1.2 第二組材料 68 4-1.3 第三組材料 77 4-2. 介電泳顯示器結果比較 91 第五章 實驗結論與探討 95 5-1. 結論 95 5-2. 未來展望 96 參考文獻 97 附錄 103 實驗藥品與設備規格 103 實驗藥品 103 實驗設備 103 | |
dc.language.iso | zh-TW | |
dc.title | 反射式顯示介質:分散於固化相之乳化液滴內粒子驅動 | zh_TW |
dc.title | Reflective display medium: particle actuation in emulsion droplets dispersed in a crosslinked phase | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 葛煥彰(Huan-Jang Keh),張天立(Tien-Li Chang),林耿慧(Keng-Hui Lin) | |
dc.subject.keyword | 光流體,反射式顯示器,介電泳,粒子極化, | zh_TW |
dc.subject.keyword | optofluidics,reflective display,dielectrophoresis,particle polarization, | en |
dc.relation.page | 103 | |
dc.identifier.doi | 10.6342/NTU201703983 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-08-19 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-R04522314-1.pdf 目前未授權公開取用 | 8.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。