請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77844完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 何孟樵(Meng-Chiao Ho) | |
| dc.contributor.author | Yung-Hsiang Huang | en |
| dc.contributor.author | 黃湧翔 | zh_TW |
| dc.date.accessioned | 2021-07-11T14:35:53Z | - |
| dc.date.available | 2020-09-04 | |
| dc.date.copyright | 2017-09-04 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-19 | |
| dc.identifier.citation | Aggarwal, A. (1990). Crystallization of DNA binding proteins with oligodeoxynucleotides. Methods, 1(1), pp.83-90.
Allen, M., Yamasaki, K., Ohme-Takagi, M., Tateno, M. and Suzuki, M. (1998). A novel mode of DNA recognition by a β-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. The EMBO Journal, 17(18), pp.5484-5496. Alpuerto, J., Hussain, R. and Fukao, T. (2015). The key regulator of submergence tolerance, SUB1A, promotes photosynthetic and metabolic recovery from submergence damage in rice leaves. Plant, Cell & Environment, 39(3), pp.672-684. BAILEY-SERRES, J. and COLMER, T. (2014). Plant tolerance of flooding stress - recent advances. Plant, Cell & Environment, p.n/a-n/a. Bailey-Serres, J. and Voesenek, L. (2008). Flooding Stress: Acclimations and Genetic Diversity. Annual Review of Plant Biology, 59(1), pp.313-339. Bergfors, T. (2009). Protein crystallization. La Jolla, Calif.: International University Line. Bornhorst, B. and Falke, J. (2011). Reprint of: Purification of Proteins Using Polyhistidine Affinity Tags. Protein Expression and Purification. Brown, D. and Freemont, P. (n.d.). Crystallography in the Study of Protein-DNA Interactions. Crystallographic Methods and Protocols, pp.293-318. Bumgarner, R. (2013). Overview of DNA Microarrays: Types, Applications, and Their Future. Current Protocols in Molecular Biology. Catling, D. (1993). Rice in deep water. Endeavour, 17(4), p.206. Charlton, A. and Zachariou, M. (2008). Immobilized Metal Ion Affinity Chromatography of Histidine-Tagged Fusion Proteins. Affinity Chromatography, pp.137-150. Chayen, N. and Saridakis, E. (2008). Protein crystallization: from purified protein to diffraction-quality crystal. Nature Methods, 5(2), pp.147-153. Corsini, L., Hothorn, M., Scheffzek, K., Sattler, M. and Stier, G. (2008). Thioredoxin as a fusion tag for carrier-driven crystallization. Protein Science, 17(12), pp.2070-2079. Crawford, R. (1992). Oxygen Availability as an Ecological Limit to Plant Distribution. Advances in Ecological Research, pp.93-185. Eckardt, N. (2007). GA Signaling: Direct Targets of DELLA Proteins:. The Plant Cell, 19(10), pp.2970-2970. Ella, E., Kawano, N., Yamauchi, Y., Tanaka, K. and Ismail, A. (2003). Blocking ethylene perception enhances flooding tolerance in rice seedlings. Functional Plant Biology, 30(7), p.813. Fukao, T. and Bailey-Serres, J. (2008). Ethylene—A key regulator of submergence responses in rice. Plant Science, 175(1-2), pp.43-51. Fukao, T. and Bailey-Serres, J. (2008). Submergence tolerance conferred by Sub1A is mediated by SLR1 and SLRL1 restriction of gibberellin responses in rice. Proceedings of the National Academy of Sciences, 105(43), pp.16814-16819. Fukao, T., Yeung, E. and Bailey-Serres, J. (2011). The Submergence Tolerance Regulator SUB1A Mediates Crosstalk between Submergence and Drought Tolerance in Rice. The Plant Cell, 23(1), pp.412-427. Gaberc-Porekar, V. and Menart, V. (2001). Perspectives of immobilized-metal affinity chromatography. Journal of Biochemical and Biophysical Methods, 49(1-3), pp.335-360. Gibbs, D., Lee, S., Md Isa, N., Gramuglia, S., Fukao, T., Bassel, G., Correia, C., Corbineau, F., Theodoulou, F., Bailey-Serres, J. and Holdsworth, M. (2011). Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants. Nature, 479(7373), pp.415-418. Goldberg, A., Banaszynski, L., Noh, K., Lewis, P., Elsaesser, S., Stadler, S., Dewell, S., Law, M., Guo, X., Li, X., Wen, D., Chapgier, A., DeKelver, R., Miller, J., Lee, Y., Boydston, E., Holmes, M., Gregory, P., Greally, J., Rafii, S., Yang, C., Scambler, P., Garrick, D., Gibbons, R., Higgs, D., Cristea, I., Urnov, F., Zheng, D. and Allis, C. (2010). Distinct Factors Control Histone Variant H3.3 Localization at Specific Genomic Regions. Cell, 140(5), pp.678-691. Greenfield, N. (2007). Using circular dichroism spectra to estimate protein secondary structure. Nature Protocols, 1(6), pp.2876-2890. Harvell, C. (2002). Climate Warming and Disease Risks for Terrestrial and Marine Biota. Science, 296(5576), pp.2158-2162. Hattori, Y., Nagai, K., Furukawa, S., Song, X., Kawano, R., Sakakibara, H., Wu, J., Matsumoto, T., Yoshimura, A., Kitano, H., Matsuoka, M., Mori, H. and Ashikari, M. (2009). The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature, 460(7258), pp.1026-1030. He, F., Hogan, S., Latypov, R., Narhi, L. and Razinkov, V. (2010). High throughput thermostability screening of monoclonal antibody formulations. Journal of Pharmaceutical Sciences, 99(4), pp.1707-1720. Highscope.ch.ntu.edu.tw. (2017). 圓偏光二色光譜 | 科學Online – 科技部高瞻自然科學教學資源平台. [online] Available at: http://highscope.ch.ntu.edu.tw/wordpress/?p=46556 [Accessed 9 Jul. 2017]. Hirabayashi, Y. (2013). Global flood risk under climate change. Nature Climate Change, [online] 3(9), pp.816-821. Available at: http://www.nature.com/nclimate/journal/v3/n9/full/nclimate1911.html [Accessed 9 Feb. 2017]. Hol, W. ed., (2011). BSTR521 Biocrystallography Crystallography of RNA and RNA-Protein Complexes. Huke, R. and Huke, E. (1997). Rice area by type of culture: South, Southeast, and East Asia. A review and updated data base.. 1st ed. Los Baños, Philippines: International Rice Research Institute. Hunsberger, J. and Newton, S. (2007). Microarray analysis of gene expression. Protocol Exchange. Itoh, H. (2002). The Gibberellin Signaling Pathway Is Regulated by the Appearance and Disappearance of SLENDER RICE1 in Nuclei. THE PLANT CELL ONLINE, 14(1), pp.57-70. Itoh, H., Shimada, A., Ueguchi-Tanaka, M., Kamiya, N., Hasegawa, Y., Ashikari, M. and Matsuoka, M. (2005). Overexpression of a GRAS protein lacking the DELLA domain confers altered gibberellin responses in rice. The Plant Journal, 44(4), pp.669-679. Johnson, D., Mortazavi, A., Myers, R. and Wold, B. (2007). Genome-Wide Mapping of in Vivo Protein-DNA Interactions. Science, 316(5830), pp.1497-1502. Jung, K., Seo, Y., Walia, H., Cao, P., Fukao, T., Canlas, P., Amonpant, F., Bailey-Serres, J. and Ronald, P. (2010). The Submergence Tolerance Regulator Sub1A Mediates Stress-Responsive Expression of AP2/ERF Transcription Factors. PLANT PHYSIOLOGY, 152(3), pp.1674-1692. Kende, H., van der Knaap, E. and Cho, H. (1998). Deepwater Rice: A Model Plant to Study Stem Elongation. Plant Physiology, 118(4), pp.1105-1110. Kolodziej, K., Pourfarzad, F., de Boer, E., Krpic, S., Grosveld, F. and Strouboulis, J. (2009). Optimal use of tandem biotin and V5 tags in ChIP assays. BMC Molecular Biology, 10(1), p.6. Koo, J., Nelson, G., Robertson, R., Rosegrant, M., Sulser, T., Zhu, T., Ringler, C., Msangi, S., Palazzo, A., Batka, M., Magalhaes, M., Valmonte-Santos, R., Ewing, M. and Lee, D. (2009). Climate change. 1st ed. Washington, DC: Internat. Food Policy Research Inst. Kuzmič, P. (1996). Program DYNAFIT for the Analysis of Enzyme Kinetic Data: Application to HIV Proteinase. Analytical Biochemistry, 237(2), pp.260-273. Luo, F., Nagel, K., Scharr, H., Zeng, B., Schurr, U. and Matsubara, S. (2010). Recovery dynamics of growth, photosynthesis and carbohydrate accumulation after de-submergence: a comparison between two wetland plants showing escape and quiescence strategies. Annals of Botany, 107(1), pp.49-63. Mackill, D., Coffman, W. and Garrity, D. (1996). Rainfed lowland rice improvement. 1st ed. Manila, Philippines: IRRI. Mackill, D., Heuer, S., Ismail, A., Ronald, P., Fukao, T. and Bailey-Serres, J. (2010). Submergence tolerant rice: SUB1's journey from Landrace to modern Cultivar. Rice, 3(2-3), pp.138-147. Mekhedov, S. and Kende, H. (1996). Submergence Enhances Expression of a Gene Encoding 1-Aminocyclopropane-1-Carboxylate Oxidase in Deepwater Rice. Plant and Cell Physiology, 37(4), pp.531-537. Melillo, J., Richmond, T., Yohe, G. and Eds. (2014). Climate Change Impacts in the United States: The Third National Climate Assessment. 1st ed. Washington, DC: U.S. Global Change Research Program. Melotto, M., Underwood, W. and He, S. (2008). Role of Stomata in Plant Innate Immunity and Foliar Bacterial Diseases. Annual Review of Phytopathology, 46(1), pp.101-122. Moon, A., Mueller, G., Zhong, X. and Pedersen, L. (2010). A synergistic approach to protein crystallization: Combination of a fixed-arm carrier with surface entropy reduction. Protein Science, p.NA-NA. Muller, P., Li, X. and Niyogi, K. (2001). Non-Photochemical Quenching. A Response to Excess Light Energy. PLANT PHYSIOLOGY, 125(4), pp.1558-1566. Nagai, K., Kondo, Y., Kitaoka, T., Noda, T., Kuroha, T., Angeles-Shim, R., Yasui, H., Yoshimura, A. and Ashikari, M. (2014). QTL analysis of internode elongation in response to gibberellin in deepwater rice. AoB PLANTS, 6(0), pp.plu028-plu028. Owen, B. and McMurray, C. (2009). Rapid method for measuring DNA binding to protein using fluorescence anisotropy. Protocol Exchange. Pakotiprapha, D. and Jeruzalmi, D. (2014). Crystallization of Protein-DNA Complexes. eLS. Panda, D., Sharma, S. and Sarkar, R. (2008). Chlorophyll fluorescence parameters, CO2 photosynthetic rate and regeneration capacity as a result of complete submergence and subsequent re-emergence in rice (Oryza sativa L.). Aquatic Botany, 88(2), pp.127-133. Park, P. (2009). ChIP–seq: advantages and challenges of a maturing technology. Nature Reviews Genetics, 10(10), pp.669-680. Pedersen, O., Rich, S. and Colmer, T. (2009). Surviving floods: leaf gas films improve O2 and CO2 exchange, root aeration, and growth of completely submerged rice. The Plant Journal, 58(1), pp.147-156. Pezeshki, S. and DeLaune, R. (2012). Soil Oxidation-Reduction in Wetlands and Its Impact on Plant Functioning. Biology, 1(3), pp.196-221. Phukan, U., Mishra, S. and Shukla, R. (2017). Waterlogging and submergence stress: affects and acclimation. Porath, J. and Olin, B. (1983). Immobilized metal affinity adsorption and immobilized metal affinity chromatography of biomaterials. Serum protein affinities for gel-immobilized iron and nickel ions. Biochemistry, 22(7), pp.1621-1630. Pryor, E., Wozniak, D. and Hollis, T. (2012). Crystallization ofPseudomonas aeruginosaAmrZ protein: development of a comprehensive method for obtaining and optimization of protein–DNA crystals. Acta Crystallographica Section F Structural Biology and Crystallization Communications, 68(8), pp.985-993. Riley, T., Slattery, M., Abe, N., Rastogi, C., Liu, D., Mann, R. and Bussemaker, H. (2014). SELEX-seq: A Method for Characterizing the Complete Repertoire of Binding Site Preferences for Transcription Factor Complexes. Methods in Molecular Biology, pp.255-278. Rossi, A. and Taylor, C. (2011). Analysis of protein-ligand interactions by fluorescence polarization. Nature Protocols, 6(3), pp.365-387. Ruban, A. (2014). Evolution under the sun: optimizing light harvesting in photosynthesis. Journal of Experimental Botany, 66(1), pp.7-23. Schmitz, A., Folsom, J., Jikamaru, Y., Ronald, P. and Walia, H. (2013). SUB1A-mediated submergence tolerance response in rice involves differential regulation of the brassinosteroid pathway. New Phytologist, 198(4), pp.1060-1070. Seabrook, S. and Newman, J. (2013). High-Throughput Thermal Scanning for Protein Stability: Making a Good Technique More Robust. ACS Combinatorial Science, 15(8), pp.387-392. Setter, T., Bhekasut, P. and Greenway, H. (2010). Desiccation of leaves after de-submergence is one cause for intolerance to complete submergence of the rice cultivar IR 42. Functional Plant Biology, 37(11), p.1096. Setter, T., Waters, I., Sharma, S., Singh, K., Kulshreshtha, N., Yaduvanshi, N., Ram, P., Singh, B., Rane, J., McDonald, G., Khabaz-Saberi, H., Biddulph, T., Wilson, R., Barclay, I., McLean, R. and Cakir, M. (2008). Review of wheat improvement for waterlogging tolerance in Australia and India: the importance of anaerobiosis and element toxicities associated with different soils. Annals of Botany, 103(2), pp.221-235. Singh, P. and Sinha, A. (2016). A Positive Feedback Loop Governed by SUB1A-1 Interaction with MITOGEN-ACTIVATED PROTEIN KINASE3 Imparts Submergence Tolerance in Rice. The Plant Cell, 28(5), pp.1127-1143. Slabinski, L., Jaroszewski, L., Rychlewski, L., Wilson, I., Lesley, S. and Godzik, A. (2007). XtalPred: a web server for prediction of protein crystallizability. Bioinformatics, 23(24), pp.3403-3405. Steffens, B. and Sauter, M. (2009). Epidermal Cell Death in Rice Is Confined to Cells with a Distinct Molecular Identity and Is Mediated by Ethylene and H2O2 through an Autoamplified Signal Pathway. THE PLANT CELL ONLINE, 21(1), pp.184-196. Steffens, B., Kovalev, A., Gorb, S. and Sauter, M. (2012). Emerging Roots Alter Epidermal Cell Fate through Mechanical and Reactive Oxygen Species Signaling. The Plant Cell, 24(8), pp.3296-3306. Stoll, V., Manohar, A., Gillon, W., Macfarlane, E., Hynes, R. and Pai, E. (1998). A thioredoxin fusion protein of VanH, a D-lactate dehydrogenase fromEnterococcus faecium: Cloning, expression, purification, kinetic analysis, and crystallization. Protein Science, 7(5), pp.1147-1155. Tsai, Y. (2016). The biophysical characterization of Sub1A-1, the transcription factor for rice submergence survival. [online] Dx.doi.org. Available at: http://dx.doi.org/10.6342%2fNTU201601222 [Accessed 11 Jun. 2017]. Vergara, B. and Mazaredo, A. (1975). Screening for resistance to submergence under greenhouse conditions. In Proceedings International Seminar on Deepwater Rice.. 1st ed. Dhaka, Bangladesh: Bangladesh Rice Research Institute, pp.p. 67–70. Voesenek, L., Colmer, T., Pierik, R., Millenaar, F. and Peeters, A. (2006). How plants cope with complete submergence. New Phytologist, 170(2), pp.213-226. Wada, K., Marumo, S., Ikekawa, N., Morisaki, M. and Mori, K. (1981). Brassinolide and Homobrassinolide Promotion of Lamina Inclination of Rice Seedlings. Plant and Cell Physiology. Winkel, A., Pedersen, O., Ella, E., Ismail, A. and Colmer, T. (2014). Gas film retention and underwater photosynthesis during field submergence of four contrasting rice genotypes. Journal of Experimental Botany, 65(12), pp.3225-3233. Xu, K. and Mackill, D. (1996). A major locus for submergence tolerance mapped on rice chromosome 9. Molecular Breeding, 2(3), pp.219-224. Xu, K., Xu, X., Fukao, T., Canlas, P., Maghirang-Rodriguez, R., Heuer, S., Ismail, A., Bailey-Serres, J., Ronald, P. and Mackill, D. (2006). Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature, 442(7103), pp.705-708. Zentella, R., Zhang, Z., Park, M., Thomas, S., Endo, A., Murase, K., Fleet, C., Jikumaru, Y., Nambara, E., Kamiya, Y. and Sun, T. (2007). Global Analysis of DELLA Direct Targets in Early Gibberellin Signaling inArabidopsis. The Plant Cell, 19(10), pp.3037-3057. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77844 | - |
| dc.description.abstract | 全球暖化與氣候變遷日益加劇,使得全球洪水跟旱災頻繁且難以預期。在這個情勢之下,確保作物能抵抗逆境且穩定地產出是各國糧食安全的重要課題。現今大多水稻在七天淹水後即凋亡,而印度南部卻發現一水稻品種能表達轉錄因子Sub1A-1降低生長與代謝速率,進而能在長達14天缺氧逆境後存活。近期經由基因體分析發現,轉錄因子ERF67受Sub1A-1正向調控,且在缺氧下才得以穩定存在於植體中,為目前發現遵守N-end rule,對調控抗淹水逆境可能有著重要地位。Sub1A-1與 ERF67同屬於第七群乙烯反應因子(Group VII ethylene response factors, ERF-VIIs),擁有可以辨認GCC box (GCCGCC)的APETALA 2 (AP2) domain。然而稻米基因組中有近10,000 個GCC boxes,ERF67 和 Sub1A-1 的 AP2 domain序列也十分相似。在淹水逆境中,他們如何精準地調控各自的下游還不清楚。除此之外,先前證據指出Sub1A-1的 N-domain對 DNA有很高的親和力。然而這段序列是藉由怎樣的作用力與DNA結合,其機制尚不清楚。為了剖析這個議題,我們從結構角度出發,嘗試培養出ERF67 和 Sub1A-1的protein/DNA複合晶體。為了增加獲得晶體的機率,我們將蛋白結構鬆散的coil去除,並與硫氧還蛋白 (Thioredoxin) 接在一起。藉由偏極化螢光試驗 (Fluorescence Polarization assay) 檢測發現,這些改變並不顯著影響複合體形成。目前我們已經找到某些條件能促成ERF67/DNA與Sub1A-1/DNA形成微小結晶或phase separation。進一步微調這些條件或許能獲得更大、排列更規則的晶體,最終解開他們的分子結構。 | zh_TW |
| dc.description.abstract | Global warming is a serious issue that increases the chances of flooding in Asia. Due to this situation, maintaining stable crop production, especially rice, is challenged. However, there was a rice strain found in south India that could resist up to 14 days submerged. In this rice, a crucial transcription factor, Sub1A-1 was upregulated to decrease the speed of steam elongation and energy consumption. In addition, our recent studies showed that ERF67, a transcription factor that follows the N-end rule of targeted proteolysis, is the direct downstream signaling molecule of Sub1A-1 and might play an important role in oxygen sensing. Sub1A-1 and ERF67 both belong to group VII ethylene response factors (ERF-VIIs). All the ERF-VII family members possess a conserved DNA binding domain, Apetala 2 (AP2) to interact with a cis-regulatory element, the GCC box. However, GCC boxes were found in 1Kb promoter region of 10,000 encoded rice genes. Since ERF67 and Sub1A-1 possess conserved AP2 domain, how the DNA binding specificity is determined still remains unknown. Our previous study showed that Sub1A-1’s N-domain may also interact with DNA. Whether this domain involved in DNA binding specificity remains unknown. To investigate this issue, we rely on protein crystallography to obtain structural information of Sub1A-1/DNA complex. At first, the protein’s coil regions were truncated to increase the conformational uniformity of complex. Besides, thioredoxin, a solubility tag that may increase crystal packing area, was fused with target proteins. Confirmed by the fluorescence polarization assay, these protein constructs for protein crystallization did not apparently influence DNA binding affinity. After screening with more than 75 96-well crystallization trays, protein-rich phase separation or small crystalline were observed in some of the conditions. Future refinement of these conditions may yield well-diffracted crystals to obtain Sub1A-1/DNA complexes at atomic resolution. With structural information, the molecular mechanism of DNA binding specificity will be elucidated. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:35:53Z (GMT). No. of bitstreams: 1 ntu-106-R04b46003-1.pdf: 6909259 bytes, checksum: d4a4418d954756fdc287ec4b03b1c005 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 摘要 iii Abstract iv Table of contents v Index of figures viii Index of tables x Chapter 1: Introduction 1 1.1 Rice production is threaten by increasing possibility of flood 1 1.2 Strategy of submergence tolerant rice 2 1.2.1 Stress from plant submergence 2 1.2.2 Escape strategy 3 1.2.3 Quiescence strategy 4 1.2.4 Sub1A-1’s binding specificity in atomic level remains unknown 6 1.3 The unknown mechanism of ERFVII’s downstream specificities 9 1.4 Goal for the thesis project 10 Chapter 2 Material and methods 11 2.1 Materials 11 2.1.1 Bacterial strain and molecular cloning related 11 2.2.2 Chemical 11 2.2.3 Reagents 12 2.2 Apparatus 14 2.2.1 Cloning, cell culture and cell extraction 14 2.2.2 Protein purification machine and column 14 2.2.3 Centrifuge 15 2.3 Methods 16 2.3.1 Truncation of recombinant Sub1A-1 and ERF67 protein 16 2.3.2 Expression of recombinant Sub1A-1 and ERF67 protein 16 2.3.3 Purification of recombinant Sub1A-1 and ERF67 protein 17 2.3.3.1 Cell lysis by shearing forces 17 2.3.3.2 Cell lysis by sonication 18 2.3.3.3 Immobilized metal ion affinity chromatography (IMAC) 18 2.3.3.4 Heparin affinity chromatography 19 2.3.3.5 Size exclusion chromatography (SEC) 19 2.3.4 Medium-throughput protein buffer screening 20 2.3.4.1 Differential scanning fluorimetry (DSF) 20 2.3.4.2 Buffer screening by vapor diffusion 21 2.3.5 Characterization of Sub1A-1 and ERF67 protein 22 2.3.5.1 Protein concentration determination 22 2.3.5.2 SDS-PAGE analysis 22 2.3.5.3 Mass spectroscopy 23 2.3.5.4 Circular dichroism (CD) Spectroscope 23 2.3.6 Fluorescence polarization assay 24 2.3.7 Protein crystallization 26 Chapter 3 Results and discussions 28 3.1 Cloning of recombinant Trx-ERF67 and Trx-Sub1A-1 28 3.1.1 Constructing recombinant Trx-Sub1A-1 NAP2∆1-63 28 3.1.2 Constructing of recombinant Trx-ERF67 NAP2 ∆1-30 28 3.2 Protein purification of recombinant ERF67 and Sub1A-1 30 3.2.1 Buffer optimization 30 3.2.2 Buffer optimization by differential scanning fluorimetry (DSF) 31 3.2.3 Buffer optimization by vapor diffusion 31 3.3 Characterization of ERF67 DNA binding specificity 33 3.3.1 DNA binding specificity Comparison between ERF67 and Sub1A-1 33 3.1.2 DNA binding specificity of ERF67 in different pH and DNA length 34 3.4 Protein construct optimization for crystallization 35 3.4.1 Secondary structure of ERF67 and Sub1A-1 35 3.4.2 C-domain truncation 36 3.4.3 N terminal truncation 36 3.4.4 Thioredoxin fusion-ERF67 and Sub1A-1 38 3.5 Crystallization of recombinant protein 40 3.5.1 Determination of DNA oligonucleotides for crystallization 40 3.5.2 Sub1A-1 crystallization 40 3.5.3 ERF67 crystallization 42 Chapter 4 Conclusion and perspective 44 4.1 Buffer optimization by vapor diffusion can be applied to extended protein 44 4.2 Different flanking region of the GCC box results in different DNA binding specificity to ERFVII 45 4.3 Truncated and fusion proteins show similar DNA binding affinity comparing to full-length 45 4.4 Promising protein/DNA crystals were yielded 46 4.5 NMR as an alternative approach for complex structure determination 47 Chapter 5 Tables and figures 48 5.1 Tables 48 5.2 Figures 57 Chapter 6 References 109 Appendix 120 | |
| dc.language.iso | en | |
| dc.subject | 水稻轉錄因子ERF67 | zh_TW |
| dc.subject | 偏極化螢光 | zh_TW |
| dc.subject | 水稻轉錄因子Sub1A-1 | zh_TW |
| dc.subject | 淹水 | zh_TW |
| dc.subject | 第七群乙烯反應因子 | zh_TW |
| dc.subject | 蛋白質結晶 | zh_TW |
| dc.subject | Sub1A-1 | en |
| dc.subject | Protein crystallization | en |
| dc.subject | Fluorescence polarization | en |
| dc.subject | Submergence | en |
| dc.subject | ERFVII | en |
| dc.subject | ERF67 | en |
| dc.title | 稻米抗淹水機制蛋白Sub1A-1與ERF67之生物物理與結構特性研究 | zh_TW |
| dc.title | Structural and biophysical studies of rice submergence related proteins, Sub1A-1 and ERF67 | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蕭超隆,葉國禎 | |
| dc.subject.keyword | 水稻轉錄因子Sub1A-1,水稻轉錄因子ERF67,第七群乙烯反應因子,淹水,偏極化螢光,蛋白質結晶, | zh_TW |
| dc.subject.keyword | Sub1A-1,ERF67,ERFVII,Submergence,Fluorescence polarization,Protein crystallization, | en |
| dc.relation.page | 121 | |
| dc.identifier.doi | 10.6342/NTU201703796 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-20 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-R04b46003-1.pdf 未授權公開取用 | 6.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
