請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77842完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王兆麟(Jaw-Lin Wang) | |
| dc.contributor.author | Po-Chun Yen | en |
| dc.contributor.author | 嚴柏鈞 | zh_TW |
| dc.date.accessioned | 2021-07-11T14:35:51Z | - |
| dc.date.available | 2022-08-31 | |
| dc.date.copyright | 2017-08-31 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-19 | |
| dc.identifier.citation | 1. 台灣脊椎研究中心. 脊柱. Available at: http://taiwanspinecenter.com.tw/tsc_c/education/spine_anatomy/vertebral_column.htm.
2. Siemionow K, An H, Masuda K, et al. The Effects of Age, Gender, Ethnicity, and Spinal Level on the Rate of Intervertebral Disc Degeneration. A review of 1712 Intervertebral Discs. Spine 2011;36:1333-9. 3. Andersson GBJ. Epidemiological features of chronic low-back pain. The Lancet 1999;354:581-5. 4. Katz JN. Lumbar Disc Disorders and Low-Back Pain: Socioeconomic Factors and Consequences. The Journal of Bone & Joint Surgery 2006;88:21-4. 5. Miller J. Bulging Disc], 2017. Available at: http://physioworks.com.au/injuries-conditions-1/bulging_disc. 6. Moller H, Hedlund R. Surgery versus conservative management in adult isthmic spondylolisthesis--a prospective randomized study: part 1. Spine (Phila Pa 1976) 2000;25:1711-5. 7. Mobbs RJ, Sivabalan P, Li J. Minimally invasive surgery compared to open spinal fusion for the treatment of degenerative lumbar spine pathologies. Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia 2012;19:829-35. 8. Whang PG, Sasso RC, Patel VV, et al. Comparison of axial and anterior interbody fusions of the L5-S1 segment: a retrospective cohort analysis. Journal of spinal disorders & techniques 2013;26:437-43. 9. Jiang SD, Chen JW, Jiang LS. Which procedure is better for lumbar interbody fusion: anterior lumbar interbody fusion or transforaminal lumbar interbody fusion? Archives of orthopaedic and trauma surgery 2012;132:1259-66. 10. Watanabe K, Yamazaki A, Morita O, et al. Clinical outcomes of posterior lumbar interbody fusion for lumbar foraminal stenosis: preoperative diagnosis and surgical strategy. Journal of spinal disorders & techniques 2011;24:137-41. 11. Sim HB, Murovic JA, Cho BY, et al. Biomechanical comparison of single-level posterior versus transforaminal lumbar interbody fusions with bilateral pedicle screw fixation: segmental stability and the effects on adjacent motion segments. Journal of neurosurgery. Spine 2010;12:700-8. 12. Marotta N, Cosar M, Pimenta L, et al. A novel minimally invasive presacral approach and instrumentation technique for anterior L5-S1 intervertebral discectomy and fusion: technical description and case presentations. Neurosurgical focus 2006;20:E9. 13. Salehi SA, Tawk R, Ganju A, et al. Transforaminal lumbar interbody fusion: surgical technique and results in 24 patients. Neurosurgery 2004;54:368-74; discussion 74. 14. Mayer HM. The ALIF concept. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society 2000;9 Suppl 1:S35-43. 15. Mobbs RJ, Phan K, Malham G, et al. Lumbar interbody fusion: techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF. J Spine Surg 2015;1:2-18. 16. Silvestre C, Mac-Thiong JM, Hilmi R, et al. Complications and Morbidities of Mini-open Anterior Retroperitoneal Lumbar Interbody Fusion: Oblique Lumbar Interbody Fusion in 179 Patients. Asian Spine J 2012;6:89-97. 17. Medtronic iSaBBWH. OLIF51™ Procedure OBLIQUE LATERAL INTERBODY FUSION FOR L5-S1 SURGICAL TECHNIQUE. Available at: http://www.infusebonegraft.com/wcm/groups/mdtcom_sg/@mdt/documents/documents/olif-51-procedure.pdf. 18. Saraph V, Lerch C, Walochnik N, et al. Comparison of conventional versus minimally invasive extraperitoneal approach for anterior lumbar interbody fusion. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society 2004;13:425-31. 19. Mayer HM. A new microsurgical technique for minimally invasive anterior lumbar interbody fusion. Spine (Phila Pa 1976) 1997;22:691-9; discussion 700. 20. Lim JK, Kim SM. Radiographic Results of Minimally Invasive (MIS) Lumbar Interbody Fusion (LIF) Compared with Conventional Lumbar Interbody Fusion. Korean Journal of Spine 2013;10:65-71. 21. German JW, Adamo MA, Hoppenot RG, et al. Perioperative results following lumbar discectomy: comparison of minimally invasive discectomy and standard microdiscectomy. Neurosurgical focus 2008;25:E20. 22. Kozak JA, Heilman AE, O'Brien JP. Anterior lumbar fusion options. Technique and graft materials. Clinical orthopaedics and related research 1994:45-51. 23. Sembrano JN, Horazdovsky RD, Sharma AK, et al. Do lordotic Cages Provide Better Segmental Lordosis Versus Non-lordotic Cages in Lateral Lumbar Interbody Fusion (LLIF)? Journal of spinal disorders & techniques 2014. 24. Glassman SD, Bridwell K, Dimar JR, et al. The impact of positive sagittal balance in adult spinal deformity. Spine (Phila Pa 1976) 2005;30:2024-9. 25. Glassman SD, Berven S, Bridwell K, et al. Correlation of radiographic parameters and clinical symptoms in adult scoliosis. Spine (Phila Pa 1976) 2005;30:682-8. 26. Lord MJ, Small JM, Dinsay JM, et al. Lumbar lordosis. Effects of sitting and standing. Spine (Phila Pa 1976) 1997;22:2571-4. 27. Companies D. DePuy.com | Welcome To DePuy Synthes. July 24, 2014. Available at: http://www.depuy.com/. 28. Companies S. Stryker: Home - Surgeons, 2014. Available at: http://www.stryker.com/en-us/glp/index.htm. 29. Companies Z. Zimmer. January 17, 2013. Available at: http://www.zimmer.com/en-US/index.jspx. 30. Aesculap Implant Systems L-aBBc. Aesculap Implant Systems, 2014. Available at: http://www.aesculapimplantsystems.com/. 31. SAS S. SmartSpine - Innovative Spinal Implants], 2011. Available at: http://www.smartspine.fr/. 32. Spine Smith L. SpineSmith, 2014. Available at: http://www.spinesmithusa.com/. 33. Inc. GM. Globus Medical - Minimally Invasive Spine Surgery, Scoliosis, 2014. Available at: http://www.globusmedical.com/. 34. Spine A. Axis Spine - World-Class Spinal Implant Devices, 2011. Available at: http://axisspine.com/. 35. Life Spine I. Life Spine Designs For Life, 2016. Available at: https://lifespine.com/prolift-3/. 36. Spine C. PIVOTEC® TLIF CAGE, 2007. Available at: https://www.captivaspine.com/pivotec-tlif-cage/#features. 37. U.S. Department of Health and Human Services FaDA, Center for Devices and Radiological Health. Guidance for Industry and FDA Staff - Class II Special Controls Guidance Document: Intervertebral Body Fusion Device. 2007. 38. Bones of the Pelvis. Available at: http://www.corpshumain.ca/en/Os_Bassin_en.php#_. 39. Vadapalli S, Sairyo K, Goel VK, et al. Biomechanical rationale for using polyetheretherketone (PEEK) spacers for lumbar interbody fusion-A finite element study. Spine (Phila Pa 1976) 2006;31:E992-8. 40. Headquarters MSaBW. MAST QUADRANT™ Medial Lateral Blades Procedural Solutions Technique, 2006. Available at: http://www.mtortho.com/public/mast_quadrant.pdf. 41. Goh JC, Wong HK, Thambyah A, et al. Influence of PLIF cage size on lumbar spine stability. Spine (Phila Pa 1976) 2000;25:35-9; discussion 40. 42. Inc. DS. Spine_MIS_Lateral_Platform_OR_Guide], 2010. Available at: http://www.depuy.com/sites/default/files/products/files/Spine_MIS_Lateral_Platform_OR_Guide_MI07-02-000.pdf. 43. Wilke HJ, Neef P, Caimi M, et al. New in vivo measurements of pressures in the intervertebral disc in daily life. Spine (Phila Pa 1976) 1999;24:755-62. 44. McGlashen KM, Miller JA, Schultz AB, et al. Load displacement behavior of the human lumbo-sacral joint. Journal of orthopaedic research : official publication of the Orthopaedic Research Society 1987;5:488-96. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77842 | - |
| dc.description.abstract | 背景簡介:側路前腰椎融合手術為目前臨床醫師較新穎之手術路徑選擇,多份臨床報告顯示此手術能有效改善病人症狀,在術後骨融合率及併發症比率方面,皆與其他路徑腰椎融合手術相比無顯著性差異;但是此手術方法在手術時間及術中血量流失有明顯地下降,進而促進醫療成本的降低。然而,此手術於L5-S1節有一限制,因L5-S1椎間盤兩側,有骨盆包覆而阻擋手術路徑。微創手術日漸流行,已被證實有效降低術中血量流失及住院天數。欲打破以上限制,針對L5-S1側路前腰椎融合手術發展一款專門的新型微創手術器械是有必要性的。
目的:本研究針對L5-S1側路前腰椎融合手術擬開發一款具備植入轉向功能之手術器械,以避開於手術路徑的骨盆,進而將植入物植入椎間盤位置。此外,為了恢復椎體間高度及椎間盤之穩定性,本研究並開發一款同時具備高度及水平擴張功能之可變形椎間籠。 方法:根據上述需求設計出多款手術器械及椎間籠並經臨床醫師評估後持續進行改良修正,使用有限元素法針對設計成果進行靜態結構分析,評估機構強度足以承受脊柱所施予軸向附載與否,選定最佳設計進行加工製作原型,並利用假體模型進行手術模擬,測試機構整體操作便利性。 結果:我們將機構原形最終版本進行有限元分析,機構足以承受2000牛頓軸向附載,且在機構最薄弱處安全係數仍大於2,並且將加工成品進行假體植入模擬成果,驗證此機構能確實閃避骨盆結構對稱植入L5-S1椎間盤位置,並能垂直與水平撐開,達到穩定椎節的目的。 結論:本研究成功開發出一款適用於L5-S1微創側路前腰椎融合手術且達成上述功能需求之椎間籠及其配合手術器械,具備高度擴張恢復及維持椎體間高度、水平擴張功能增加椎間籠放置後的穩定性、並植入轉向避開兩側骨盆將椎間籠植入椎間盤位置。經由有限元分析模擬得知此機構強度足夠承受人體脊柱所施予軸向附載,並能順利植入假體模型。就目前所知市面上無類似產品,相信本研究在未來手術應用上具備相當開創性及新穎性。 | zh_TW |
| dc.description.abstract | Background: Oblique lumber interbody fusion (OLIF) is an innovative selection of surgery path for clinical surgeons. Clinical reports have shown that this procedure can improve multiple symptoms of patient effectively. In postoperative bone fusion and complication, the results of this procedure is similar to the paths of other lumbar interbody fusion, but at the benefit of less surgery time and blood loss. However, this procedure in the L5-S1 section remains a surgical challenge because of the blocking of surgery path by the pelvis. In order to overcome the restrictions, there is a need to develop a minimally invasive surgical instrument specifically for L5-S1 oblique lumbar interbody fusion.
Objective: To develop a surgical device for L5-S1 OLIF surgery with the function of controlling the implant direction to avoid the pelvis blocking in the surgery path. In addition, in order to restore the intervertebral disc height and stability, this device should be able to expand vertically and horizontally after implantation. Methods: Four prototypes that fulfill the above requirements were developed. The feasibility of all the designs was examined and subsequent modification were undergone. After the mechanism was confirmed, Finite Element (FE) simulation was used to confirm if the design meet the clinical biomechanical requirement. The final version of the device was physically manufactured for the simulation of the surgery procedure with a lumbar phantom to test the operational convenience and feasibility. Result: In finite element analysis, the result demonstrated the final version version could withstand 2000 N axial loading. The version four was physically manufactured and tested with a phantom. It showed this device can rotate, and expand vertically and horizontally after the implantation. Conclusion: We designed a device that is suitable for the L5-S1 minimally invasive oblique lumbar interbody fusion (MIS-OLIF). This design can be expanded vertically with the restoration of the disc height, expanded horizontally to increase the disc stability and changed the direction of implantation simultaneously. To the best of our knowledge, there is no similar products on the current market. We believe that this study has great novelty and potential in the future surgical application. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:35:51Z (GMT). No. of bitstreams: 1 ntu-106-R04548045-1.pdf: 3848352 bytes, checksum: 66922ce0183efdc29e08798f64a76191 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 致謝 I
中文摘要 II Abstract IV 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1.1 脊椎 1 1.2 腰椎病變 (Lumbar Spondylosis) 2 1.2.1 椎間盤突出 (Disc herniation) 2 1.2.2 椎體滑脫 (Spondylolisthesis) 3 1.3 腰椎融合手術 (Lumbar Interbody Fusion, LIF) 3 1.3.1 側路前腰椎融合手術 (Oblique Lumbar interbody Fusion, OLIF) 5 1.4 微創手術 6 1.5 椎間籠 7 1.6 法規需求 10 1.7 實驗目的 11 第二章 材料與方法 13 2.1 機構設計 13 2.1.1 版本一 13 2.1.2 版本二 15 2.1.3 版本三 19 2.1.4 版本四 22 2.2 機構製造加工 27 2.2.1 光固化3D列印 28 2.2.2 金屬圓棒 29 2.2.3 機械工廠加工 29 2.3 有限元素分析模擬 29 2.4 植入假體模擬 31 第三章 實驗結果 32 3.1 機構加工成果 32 3.1.1 植入器械金屬加工成品 32 3.1.2 椎間籠加工成品 (光固化樹脂主體) 33 3.1.3 椎間籠加工成品 (金屬主體) 34 3.2 有限元素分析 35 3.2.1 椎間籠形變分布 35 3.2.2 椎間籠應力分布 36 3.3 植入假體模擬 37 第四章 討論 40 4.1 椎間籠變形 40 4.2 椎間籠尺寸 41 4.3 椎間籠設計 42 4.4 有限元素法模擬分析 43 4.5 轉向植入角度 44 第五章 結論與未來展望 46 5.1 結論 46 參考文獻 47 | |
| dc.language.iso | zh-TW | |
| dc.subject | 薦椎 | zh_TW |
| dc.subject | 微創手術 | zh_TW |
| dc.subject | 側路前腰椎融合手術 | zh_TW |
| dc.subject | 可變形椎間籠 | zh_TW |
| dc.subject | Expandable cage | en |
| dc.subject | L5-S1 | en |
| dc.subject | OLIF | en |
| dc.subject | Minimally invasive surgery | en |
| dc.title | 適用於L5-S1前側路椎體融合術之可變形椎間籠設計 | zh_TW |
| dc.title | Design of An Expandable Disc Cage for L5-S1 Oblique Interbody Fusion (OLIF) Surgery | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 賴達明(Dar-Ming Lai),林峻立(Chun-Li Lin) | |
| dc.subject.keyword | 可變形椎間籠,薦椎,側路前腰椎融合手術,微創手術, | zh_TW |
| dc.subject.keyword | Expandable cage,L5-S1,OLIF,Minimally invasive surgery, | en |
| dc.relation.page | 51 | |
| dc.identifier.doi | 10.6342/NTU201703199 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-20 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-R04548045-1.pdf 未授權公開取用 | 3.76 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
