Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77841
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李世光(Chih-Kung Lee)
dc.contributor.authorHui-Ting Changen
dc.contributor.author張惠婷zh_TW
dc.date.accessioned2021-07-11T14:35:49Z-
dc.date.available2022-08-31
dc.date.copyright2020-08-24
dc.date.issued2020
dc.date.submitted2020-08-18
dc.identifier.citation[1] World Health Organization. (2018) The top 10 causes of death [Online] Retrieved 2020 from https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
[2] Ministry of Health and Welfare (Taiwan). (2020) 108年國人死因統計結果 [Online] Retrieved 2020 from https://dep.mohw.gov.tw/DOS/np-1776-113.html
[3] World Health Organization. (2020) Obesity and overweight [Online] Retrieved 2020 from https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
[4] National Heart. Lung and Blood Institute. (2013) Managing overweight and obesity in adults: Systematic evidence review from the Obesity Expert Panel [Online] Retrieved 2020 from https://www.nhlbi.nih.gov/health-topics/managing-overweight-obesity-in-adults
[5] Grand View Research. (2020) Home Healthcare Market Size, Share Trends Analysis Report By Component (Services, Equipment, Software), By Region (North America, Europe, Asia Pacific, Latin America, Middle East Africa), And Segment Forecasts, 2020 - 2027 [Online] Retrieved 2020 from https://www.grandviewresearch.com/industry-analysis/home-healthcare-industry
[6] H. Gesche, D. Grosskurth, G. Küchler, and A. Patzak, 'Continuous blood pressure measurement by using the pulse transit time: comparison to a cuff-based method,' European journal of applied physiology, vol. 112, no. 1, pp. 309-315, 2012.
[7] J. Sola et al., 'Noninvasive and nonocclusive blood pressure estimation via a chest sensor,' IEEE Transactions on Biomedical Engineering, vol. 60, no. 12, pp. 3505-3513, 2013.
[8] Y. Choi, Q. Zhang, and S. Ko, 'Noninvasive cuffless blood pressure estimation using pulse transit time and Hilbert–Huang transform,' Computers Electrical Engineering, vol. 39, no. 1, pp. 103-111, 2013.
[9] F. S. Cattivelli and H. Garudadri, 'Noninvasive cuffless estimation of blood pressure from pulse arrival time and heart rate with adaptive calibration,' in 2009 Sixth international workshop on wearable and implantable body sensor networks, 2009: IEEE, pp. 114-119.
[10] R. Klabunde, Cardiovascular physiology concepts. Philadelphia, PA, USA: Lippincott Williams Wilkins, 2011.
[11] J. N. Singh, T. Nguyen, and A. S. Dhamoon, 'Physiology, Blood Pressure Age Related Changes,' in StatPearls [Internet]. Treasure Island, FL,USA: StatPearls Publishing, 2019.
[12] J. W. Krug, G. Rose, G. D. Clifford, and J. Oster, 'ECG-based gating in ultra high field cardiovascular magnetic resonance using an independent component analysis approach,' Journal of Cardiovascular Magnetic Resonance, vol. 15, no. 1, p. 104, 2013.
[13] S. Romagnoli et al., 'Accuracy of invasive arterial pressure monitoring in cardiovascular patients: an observational study,' Critical care, vol. 18, no. 6, p. 644, 2014.
[14] P. S. Ayyaswamy, 'Introduction to biofluid mechanics,' in Fluid Mechanics. Amsterdam, Netherlands: Elsevier, 2012, pp. 779-852.
[15] C. Vlachopoulos, M. O'Rourke, and W. W. Nichols, McDonald's blood flow in arteries: theoretical, experimental and clinical principles. Boca Raton, FL, USA: CRC press, 2011.
[16] M. Forouzanfar, H. R. Dajani, V. Z. Groza, M. Bolic, S. Rajan, and I. Batkin, 'Oscillometric blood pressure estimation: past, present, and future,' IEEE reviews in biomedical engineering, vol. 8, pp. 44-63, 2015.
[17] OMRON Inc. (2020) 血壓測量技術的發展歷程 [Online] Retrieved 2020 from https://www.omronhealthcare.com.hk/article/ins.php?index_am1_id=16 index_id=21
[18] T. G. Pickering et al., 'Recommendations for blood pressure measurement in humans and experimental animals: part 1: blood pressure measurement in humans: a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research,' Hypertension, vol. 45, no. 1, pp. 142-161, 2005.
[19] T. Sato, M. Nishinaga, A. Kawamoto, T. Ozawa, and H. Takatsuji, 'Accuracy of a continuous blood pressure monitor based on arterial tonometry,' Hypertension, vol. 21, no. 6_pt_1, pp. 866-874, 1993.
[20] Y. Kato (Nakagawa) and T. Hamaguchi. (2019) Sensor Technology to Realize Continuous Blood Pressure Monitoring [Online] Retrieved 2020 from https://www.omron.com/global/en/technology/omrontechnics/vol50/004.html#footnote-07
[21] F.-H. Ding, W.-X. Fan, R.-Y. Zhang, Q. Zhang, Y. Li, and J.-G. Wang, 'Validation of the noninvasive assessment of central blood pressure by the SphygmoCor and Omron devices against the invasive catheter measurement,' American journal of hypertension, vol. 24, no. 12, pp. 1306-1311, 2011.
[22] Tensys Medical Inc., 'TL400,' 2013.
[23] K.-I. Yamakoshi, H. Shimazu, and T. Togawa, 'Indirect measurement of instantaneous arterial blood pressure in the human finger by the vascular unloading technique,' IEEE Transactions on Biomedical Engineering, no. 3, pp. 150-155, 1980.
[24] J. Fortin et al., 'Continuous non-invasive blood pressure monitoring using concentrically interlocking control loops,' Computers in biology and medicine, vol. 36, no. 9, pp. 941-957, 2006.
[25] J. Penaz, 'Photoelectric measurement of blood pressure, volume and flow in the finger'In: Digest of the 10th International Conference on Medical and Biological Engineering,' Dresden, vol. 104, 1973.
[26] J. M. Solà i Carós, 'Continuous non-invasive blood pressure estimation,' Doctoral Thesis, ETH Zurich, Zürich, Switzerland, 2011. [Online]. Available: https://doi.org/10.3929/ethz-a-007273889
[27] R. Hahn, H. Rinösl, M. Neuner, and S. Kettner, 'Clinical validation of a continuous non-invasive haemodynamic monitor (CNAP™ 500) during general anaesthesia,' British journal of anaesthesia, vol. 108, no. 4, pp. 581-585, 2012.
[28] B. Gribbin, A. Steptoe, and P. Sleight, 'Pulse wave velocity as a measure of blood pressure change,' Psychophysiology, vol. 13, no. 1, pp. 86-90, 1976.
[29] A. I. Moens, Die Pulscurve. Leiden, the Netherlands: Brill, 1878.
[30] J. Proença, J. Muehlsteff, X. Aubert, and P. Carvalho, 'Is pulse transit time a good indicator of blood pressure changes during short physical exercise in a young population?,' in 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010: IEEE, pp. 598-601.
[31] W. Chen, T. Kobayashi, S. Ichikawa, Y. Takeuchi, and T. Togawa, 'Continuous estimation of systolic blood pressure using the pulse arrival time and intermittent calibration,' Medical and Biological Engineering and Computing, vol. 38, no. 5, pp. 569-574, 2000.
[32] P. Fung, G. Dumont, C. Ries, C. Mott, and M. Ansermino, 'Continuous noninvasive blood pressure measurement by pulse transit time,' in The 26th annual international conference of the IEEE engineering in medicine and biology society, 2004, vol. 1: IEEE, pp. 738-741.
[33] M. H. Pollak and P. A. Obrist, 'Aortic‐radial pulse transit time and ECG Q‐wave to radial pulse wave interval as indices of beat‐by‐beat blood pressure change,' Psychophysiology, vol. 20, no. 1, pp. 21-28, 1983.
[34] M. Sharma et al., 'Cuff-less and continuous blood pressure monitoring: a methodological review,' Technologies, vol. 5, no. 2, p. 21, 2017.
[35] G. S. Stergiou et al., 'A universal standard for the validation of blood pressure measuring devices: Association for the Advancement of Medical Instrumentation/European Society of Hypertension/International Organization for Standardization (AAMI/ESH/ISO) Collaboration Statement,' Hypertension, vol. 71, no. 3, pp. 368-374, 2018.
[36] A. f. t. A. o. M. Instrumentation, 'Non-invasive sphygmomanometers–Part 2: clinical investigation of automated measurement type ' ISO 81060-2/ANSI-AAMI, 2nd ed. Arlington, VA: AAMI, 2013.
[37] L. Peter, N. Noury, and M. Cerny, 'A review of methods for non-invasive and continuous blood pressure monitoring: Pulse transit time method is promising?,' Irbm, vol. 35, no. 5, pp. 271-282, 2014.
[38] 邱時雍, '非接觸式血壓監測之研究-運用三維疊紋干涉術量測手腕表面脈搏振動,' 碩士論文, 工程科學與海洋工程學系, 國立臺灣大學, 臺北市, 2018.
[39] S. Heist, A. Mann, P. Kühmstedt, P. Schreiber, and G. Notni, 'Array projection of aperiodic sinusoidal fringes for high-speed three-dimensional shape measurement,' Optical Engineering, vol. 53, no. 11, p. 112208, 2014.
[40] M. Takeda and K. Mutoh, 'Fourier transform profilometry for the automatic measurement of 3-D object shapes,' Applied optics, vol. 22, no. 24, pp. 3977-3982, 1983.
[41] J. Geng, 'Structured-light 3D surface imaging: a tutorial,' Advances in Optics and Photonics, vol. 3, no. 2, pp. 128-160, 2011.
[42] D. C. Ghiglia and L. A. Romero, 'Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods,' JOSA A, vol. 11, no. 1, pp. 107-117, 1994.
[43] Z. Zhang, D. Zhang, and X. Peng, 'Performance analysis of a 3D full-field sensor based on fringe projection,' Optics and lasers in engineering, vol. 42, no. 3, pp. 341-353, 2004.
[44] X.-R. Ding and Y.-T. Zhang, 'Photoplethysmogram intensity ratio: A potential indicator for improving the accuracy of PTT-based cuffless blood pressure estimation,' in 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2015: IEEE, pp. 398-401.
[45] 高育晟, '以相異位置PPG訊號間脈衝傳遞時間建立血壓量測模型,' 碩士論文, 應用力學研究所, 國立臺灣大學, 臺北市, 2020.
[46] earthslab.com. (2020) ARTERIES OF THE UPPER LIMB [Online] Retrieved 2020 from https://www.earthslab.com/anatomy/arteries-of-upper-limb/
[47] M. Danckers. (2018) Arterial Blood Gas Sampling Technique [Online] Retrieved 2020 from https://emedicine.medscape.com/article/1902703-technique#c2
[48] N. Pascal. (2020) Geometric Optics for DLP® [Online] Retrieved 2020 from https://www.ti.com/lit/pdf/dlpa044
[49] C. Zuo, T. Tao, S. Feng, L. Huang, A. Asundi, and Q. Chen, 'Micro Fourier transform profilometry (μFTP): 3D shape measurement at 10,000 frames per second,' Optics and Lasers in Engineering, vol. 102, pp. 70-91, 2018.
[50] R. Mukkamala et al., 'Toward ubiquitous blood pressure monitoring via pulse transit time: theory and practice,' IEEE Transactions on Biomedical Engineering, vol. 62, no. 8, pp. 1879-1901, 2015.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77841-
dc.description.abstract當前的血壓量測方法中可信度較高且運用廣泛的方法是聽音診斷法及示波振幅法,每次量測皆需要以袖帶阻斷血流,過程除了不舒服外也不適合連續量測血壓,因此,許多研究致力於開發非接觸式連續監控血壓的方法,這當中以光體積描記法量測之血液容積波形搭配脈衝傳導時間法最為被看好,但血壓成因複雜,若只考慮血液容積與心率等因素並不足以量測正確血壓。
本實驗開發了適用於微米級小尺度動態量測之實驗方法與架構,透過結構光投影法中的傅立葉轉換輪廓術以非接觸式的方法量測手腕橈動脈表面皮膚之振動波形,作為血管管徑變化量之參數以利後續改良血壓回歸模型。在本實驗之架構中,使用DLP投影機投射週期約為0.1295 mm之條紋結構光搭配每秒拍攝46 幀的相機,與待測物之間呈現三角關係,待測物產生的形變會使條紋相位產生變化並記錄於連續拍攝之影像中,因此,便可從影像之頻譜域中選取承載相位變化之條紋頻率範圍,進行解相後得到相位資訊,再從相位變化資訊與實際高度做轉換,得到脈搏表面振幅之波形。
本實驗將量測結果與商用儀器量測之心電圖、光體積描記波形做比較與驗證,評估心率、心臟變異率與週期之均方根誤差等生理訊號,證實本研究開發之方法能有足夠的精度描述脈搏振動波形,最後代入改良後的血壓回規模型,發現加入管徑變化因素的血壓回歸模型,三位受試者與收縮壓之相關係數分別從0.111提升至0.692、0.716提升至0.957、0.0961提升至0.251,與舒張壓之相關係數則分別從0.314提升至0.707、0.064提升至0.72、0.0627提升至0.291,因此本研究之研究結果能對於血壓回歸模型有非常顯著的改善。
zh_TW
dc.description.abstractAmong the current blood pressure measurement methods, the most reliable and widely used methods were Auscultatory and Oscillometric. However, both these measurements required a cuff to block the blood flow and the process was uncomfortable and not suitable for continuous measurement. Therefore, to realize continuous blood pressure measurement in non-contact way, many researches were devoted to the development of such as arterial tonometry, vascular unloading technique and pulse transit time methods, especially pulse transit time methods. In pulse transit time methods, the velocity between Photoplethysmography in two position was considered as an important indicator. But it was still not sufficient to measure the correct blood pressure.
In this research, an experimental method which was suitable for dynamic micron-level measurement was developed. The Fourier transform profilometry was used to measure the vibration waveform of the skin on the radial artery in a non-contact way. In addition, the vibration waveform as a parameter of radial artery diameter change was used to improve the model of blood pressure regression. The method, based on a triangular configuration, used a digital light processing (DLP) projector with 0.1295 mm structure light fringe pattern and a camera with frame rate of 46 fps. The fringe pattern with pre-defined spatial carrier frequency was projected on the subject's wrist. In the configuration design, instantaneous pulsation-induced skin vibrations of subtle amplitude can be observed and recorded within each frame of the fringe pattern. Using a two-dimensional Fourier transform, and chose a frequency region of interest (ROI) filter to collect the spectrum magnitude embedded with the deformation data to deliver the phase retrieval. After using a phase-to-height conversion, the results of the full-field dynamic vibrational field were analyzed.
Several indicators such as heart rhythm (HR), heart rate variable (HRV), and root mean squared errors (RMSE) were adopted to compare the pulsation signal with the ECG and PPG signals. Combining these indicators proved that the method developed in this research can be adequate accurately describe the pulse vibration waveform. Finally, it is found that the blood pressure model with radial artery diameter oscillation factors will increase the correlation coefficient with systolic blood pressure and diastolic blood pressure, so the results of this study can significantly improve the blood pressure regression model.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:35:49Z (GMT). No. of bitstreams: 1
U0001-1708202002460700.pdf: 4289359 bytes, checksum: 0ce46101ed6c4e9896612f789c57b859 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 #
致謝 i
中文摘要 ii
ABSTRACT iii
目錄 v
圖目錄 vii
表目錄 x
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 3
1.2.1 血壓的形成 3
1.2.2 現行血壓量測方法 4
1.2.3 連續血壓量測 7
1.2.4 血壓監測標準與方法比較 11
1.3 研究方法與目標 13
1.4 論文架構 14
第二章 研究原理. 15
2.1 傅立葉轉換輪廓術 15
2.2 相位提取 16
2.2.1 相位還原 17
2.2.2 相位重建:二維未加權相位重建法 18
2.2.3 相位重建:相位差延遲重建法 21
2.3 相位與高度轉換 22
2.4 考慮管徑變化之連續血壓量測 26
第三章 實驗架構 28
3.1 光學量測系統設計 28
3.1.1 手腕表面脈搏振動量測位置 28
3.1.2 光學量測系統之架構設備 28
3.1.3 光學量測系統之光路設計 30
3.1.4 光感測器及光源之同步控制 31
3.2 條紋相位模擬 32
3.3 實驗架設與流程 34
3.3.1 驗證實驗之架設與流程 34
3.3.2 量測實驗之架設與流程 36
3.4 影像處理程序 39
3.5 條紋分析程序 43
第四章 實驗結果 45
4.1 驗證實驗結果 45
4.2 橈動脈脈搏振動量測結果與統計分析 49
4.3 橈動脈管徑變化對血壓模型之相關性分析 51
4.3.1 收縮壓 52
4.3.2 舒張壓 52
4.3.3 回歸模型預測血壓與參考血壓之比較 53
第五章 結論與未來展望 56
5.1 結論 56
5.2 未來展望 57
dc.language.isozh-TW
dc.subject血壓zh_TW
dc.subject結構光zh_TW
dc.subject傅立葉轉換輪廓術zh_TW
dc.subject脈衝傳導時間法zh_TW
dc.subject橈動脈管徑變化zh_TW
dc.subjectstructured lighten
dc.subjectblood pressureen
dc.subjectradial artery diameter variationen
dc.subjectpulse transit time methoden
dc.subjectFourier transform profilometryen
dc.title利用結構光投影法實現非接觸式橈動脈表面振動測量及連續血壓監測
zh_TW
dc.titleNon-contact Radial Artery Surface Vibration Measurement and Continuous Blood Pressure Monitoring Using Structured Light Projection Methoden
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.coadvisor吳文中(Wen-Jong Wu)
dc.contributor.oralexamcommittee李舒昇(Shu-Sheng Lee),黃君偉(Jiun-Woei Huang)
dc.subject.keyword結構光,傅立葉轉換輪廓術,脈衝傳導時間法,橈動脈管徑變化,血壓,zh_TW
dc.subject.keywordstructured light,Fourier transform profilometry,pulse transit time method,radial artery diameter variation,blood pressure,en
dc.relation.page64
dc.identifier.doi10.6342/NTU202003660
dc.rights.note有償授權
dc.date.accepted2020-08-19
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
U0001-1708202002460700.pdf
  未授權公開取用
4.19 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved