Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77829
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王兆麟
dc.contributor.authorMao-Wei Huangen
dc.contributor.author黃茂維zh_TW
dc.date.accessioned2021-07-11T14:35:36Z-
dc.date.available2022-09-04
dc.date.copyright2017-09-04
dc.date.issued2017
dc.date.submitted2017-08-21
dc.identifier.citation1. 赵典典 侯, 张婧思,胡红刚, 晏 琼. 三维细胞培养技术的发展及其在干细胞和肿瘤细胞中应用. 理学院生命科学与生物工程研究院: 北京交通大学, 2015.
2. Bierwolf J, Lutgehetmann M, Feng K, et al. Primary rat hepatocyte culture on 3D nanofibrous polymer scaffolds for toxicology and pharmaceutical research. Biotechnol Bioeng 2011;108:141-50.
3. Dayton PA, Morgan KE, Klibanov ALS, et al. A preliminary evaluation of the effects of primary and secondary radiation forces on acoustic contrast agents. Ieee T Ultrason Ferr 1997;44:1264-77.
4. Levenberg S, Huang NF, Lavik E, et al. Differentiation of human embryonic stem cells on three-dimensional polymer scaffolds. Proc Natl Acad Sci U S A 2003;100:12741-6.
5. Chan HF, Zhang Y, Ho YP, et al. Rapid formation of multicellular spheroids in double-emulsion droplets with controllable microenvironment. Sci Rep 2013;3:3462.
6. Edmondson R, Broglie JJ, Adcock AF, et al. Three-Dimensional Cell Culture Systems and Their Applications in Drug Discovery and Cell-Based Biosensors. Assay Drug Dev Techn 2014;12:207-18.
7. 盧雅雯. 以Genipin與戊二醛交聯處理幾丁聚醣膠原蛋白支架之物性與對纖維母細胞生長之探討. 食品科學系: 國立臺灣海洋大學, 2006.
8. Li XM, Chen SW, Li JC, et al. 3D Culture of Chondrocytes in Gelatin Hydrogels with Different Stiffness. Polymers-Basel 2016;8.
9. 洪琬婷. 綠梔子素或戊二醛交聯山藥黏多醣支架對物性及纖維母細胞增生之探討. 食品科學系: 國立臺灣海洋大學, 2007.
10. Liu Y, Chan-Park MB. A biomimetic hydrogel based on methacrylated dextran-graft-lysine and gelatin for 3D smooth muscle cell culture. Biomaterials 2010;31:1158-70.
11. Haisler WL, Timm DM, Gage JA, et al. Three-dimensional cell culturing by magnetic levitation. Nat Protoc 2013;8:1940-9.
12. Ravi M, Paramesh V, Kaviya SR, et al. 3D cell culture systems: advantages and applications. J Cell Physiol 2015;230:16-26.
13. Lin RZ, Chang HY. Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnol J 2008;3:1172-84.
14. Fennema E, Rivron N, Rouwkema J, et al. Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol 2013;31:108-15.
15. Breslin S, O'Driscoll L. Three-dimensional cell culture: the missing link in drug discovery. Drug Discov Today 2013;18:240-9.
16. Neto AI, Correia CR, Oliveira MB, et al. A novel hanging spherical drop system for the generation of cellular spheroids and high throughput combinatorial drug screening. Biomater Sci 2015;3:581-5.
17. Mitteregger R, Vogt G, Rossmanith E, et al. Rotary cell culture system (RCCS): a new method for cultivating hepatocytes on microcarriers. Int J Artif Organs 1999;22:816-22.
18. Shi JJ, Ahmed D, Mao X, et al. Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW). Lab Chip 2009;9:2890-5.
19. 周伟,毛一葳,刘杰惠,刘晓宙*,龚秀芬. 声流中力学特性的实验研究. 声学所,近代声学教育部重点实验室: 南京大学, 2015.
20. Karlsen JT, Augustsson P, Bruus H. Acoustic Force Density Acting on Inhomogeneous Fluids in Acoustic Fields. Phys Rev Lett 2016;117:114504.
21. Li P, Mao Z, Peng Z, et al. Acoustic separation of circulating tumor cells. Proc Natl Acad Sci U S A 2015;112:4970-5.
22. G.D. Skotis JR, D.R.S. Cumming, M. O. Riehle, A.L. Bernassau. Acoustic Tweezing for Patterning and Discriminating. School of Engineering: University of Glasgow, 2015.
23. Chen K, Wu M, Guo F, et al. Rapid formation of size-controllable multicellular spheroids via 3D acoustic tweezers. Lab Chip 2016;16:2636-43.
24. Xiaoyun Dinga, Peng Lia,, Sz-Chin Steven Lina, Zackary S. Strattona, Nitesh Namaa, Feng, Guoa DS, Xiaole Maob, Jinjie Shia, Francesco Costanzoa, and Tony Jun, Huang PH. Surface acoustic wave microfluidics. Department of Engineering Science and Mechanics: The Pennsylvania State University, 2013.
25. Lata JP, Guo F, Guo J, et al. Surface Acoustic Waves Grant Superior Spatial Control of Cells Embedded in Hydrogel Fibers. Adv Mater 2016;28:8632-8.
26. Guo F, Mao ZM, Chen YC, et al. Three-dimensional manipulation of single cells using surface acoustic waves. P Natl Acad Sci USA 2016;113:1522-7.
27. Ding XY, Peng ZL, Lin SCS, et al. Cell separation using tilted-angle standing surface acoustic waves. P Natl Acad Sci USA 2014;111:12992-7.
28. Larson EM, Doughman DJ, Gregerson DS, et al. A new, simple, nonradioactive, nontoxic in vitro assay to monitor corneal endothelial cell viability. Invest Ophthalmol Vis Sci 1997;38:1929-33.
29. Hartono D, Liu Y, Tan PL, et al. On-chip measurements of cell compressibility via acoustic radiation. Lab Chip 2011;11:4072-80.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77829-
dc.description.abstract研究目的:
開發一利用聲學鑷子使細胞聚集成球團培養的系統,使用35 mm的培養盤進行培養,研究在不同超音波頻率的條件下,細胞球團的大小、間距以及生成時間。
背景簡介:
相對於二維細胞培養,三維細胞培養更能完整的保存細胞本身之性質且更有利於細胞分化,並在藥物檢測及組織培養等方面具有良好的反應。二維細胞培養方式由於細胞與培養盤直接接觸,細胞沿著塑膠平面生長,這樣的生長環境可能改變細胞本來的分化特性,造成體外細胞培養的研究難以在生物體中有相同的結果,又或使細胞失去原來的特性;而三維的細胞培養方式,能模擬出近似細胞實際生長的立體環境,並且能讓細胞在增值、分化的過程更貼近真實情況。現行研究中有許多三維細胞培養的方式,其中有讓細胞貼附於微載體、凝膠或生物支架上等使細胞不再只是在二維平面的環境下生長;此外,還有利用力學或化學方式使細胞不貼附培養盤讓細胞彼此貼附並形成球團的培養方式。本實驗利用自製的超音波探頭產生駐波,運用聲學鑷子原理使培養盤中的細胞成團聚集並以陣列方式排列,使用不同頻率的超音波探頭,可以改變細胞球團的大小以及細胞聚集成團所需的生成時間。透過這樣的方式不僅可以在單位面積的培養環境中產生更多的細胞球團,亦可能增加細胞球團的生成效率。
材料與方法:
本研究於35 mm培養盤中使用小鼠纖維母細胞(L929)為實驗素材,使用四顆匹配良好相同中心頻率的超音波探頭,於培養盤的四周施打超音波,實驗使用的超音波探頭其中心頻率有1 MHz、1.5 MHz、3 MHz此三種。超音波系統是由訊號產生器輸出正弦波的電訊號,透過功率放大器進行訊號放大,能量在輸入到超音波探頭前會先經過電功率計與電功率感測器,量測系統的FWD、RFL、VSWR,最後再經過匹配電路傳到超音波探頭。四顆分別匹配好且相同頻率的超音波探頭使用串並聯的方式連接,並將輸入電功率與輸出聲功率校正曲線相近之探頭放置於培養盤對側。將細胞培養盤放置於設計的夾具上固定,施打的超音波能量會經過夾具再傳遞到培養盤中。透過改變訊號產生器所輸出的電壓,來改變最後輸入到培養盤的聲功率,藉此觀察不同能量下細胞的聚集效果;透過使用不同頻率的超音波探頭,能改變細胞球團的大小、細胞球團之間的間距以及細胞球團的生成時間。細胞聚集的結果由顯微鏡觀察並拍攝記錄,細胞球團的大小與球團之間的距離使用ImageJ進行影像分析。細胞培養方面,先使用幾丁聚醣(Chitosan)對35 mm細胞培養盤進行表面處理避免細胞貼附培養盤,實驗分為一般培養的對照組與使用超音波使細胞聚集的超音波組,使用Alamar Blue進行螢光檢定作為細胞活性比較的依據,檢測並比較實驗對照組與超音波組的細胞球團在培養三天之後的代謝效率。
結果:
在1MHz的超音波環境置中,細胞球團的間距約為717 ± 10 µm,細胞球團的大小約為23,461 ± 7,887 µm2;而在1.5 MHz的超音波環境置中,細胞球團的間距約為514 ± 36 µm,細胞球團的大小約為7,132 ± 3,078 µm2;而在3 MHz的超音波環境置中,細胞球團的間距約為241 ± 10 µm,細胞球團的大小約為1,805 ± 1,105 µm2。Alamar Blue的檢測結果中,對照組與超音波組所測得的相對螢光值分別為9,039 RFU以及9,593 RFU。
結論:
利用聲學鑷子的原理可使細胞聚集成球團,以此方法所形成的細胞球團彼此之間的距離為所施打超音波的半倍波長,而使用高頻率超音波探頭時,由於波長較短,超音波聲場中波節與波節之間的距離較短,所形成的壓力節點較小;壓力節點變小意味著所能聚集的細胞也跟著變少,所產生的細胞球團因而變小,較小的細胞球團生成所需要的時間也較短。實驗上主要遇到兩大問題導致實驗結果不穩定,首先是四個探頭的能量校正要達到平衡,再者細胞球團的大小受細胞分佈影響,若無法讓細胞平均分佈在聲場節點,所形成的細胞球團大小不能一致。細胞活性的檢測結果顯示超音波組略高於對照組,但未達顯著差異。
zh_TW
dc.description.abstractObjective:
To develop an ultrasound acoustic tweezer system to aggregate the cells into multicellular spheroids, and to determine the effect of frequency of this system on the spheroids formation.
Summary of background data:
The three-dimensional cell culture systems are reported to be more efficient than two-dimensional cell culture systems. The three-dimensional cell culture systems have good responses on drug testing and tissue culture especially on stem cell and cancer cell culture. In two-dimensional culture systems, the cells are directly adhered to the culture dish and grow along the plastic surface of the culture dish so that the cells may change the properties of the differentiation. As a result, the cultured cells sometimes become difficult to plant back into the organism or lose the original cell characteristics. In three-dimensional culture systems, one can accurately simulate the environment where the cells reside in, keep the cells in reproduction and make them differentiate in vitro. Currently, many three-dimensional culture systems are being researched, including systems using carriers, biological stent or hydrogel. In this experiment, a home-made ultrasound system is developed to generate the standing wave. The principle of acoustic tweezers is used to aggregate the cells in the culture dish. By adjusting the output power and the frequency, the size of the multicellular spheroid and the time of multicellular spheroid generation can be tuned.

Methods:
Mouse fibroblasts (L929) were used to make multicellular spheroids in the 35 mm culture dish. Four well-matched ultrasound probes were placed in four directions of the culture dish. This research used three frequencies of ultrasound probes, i.e. 1 MHz, 1.5 MHz and 3 MHz. Ultrasound system outputted a sine wave electrical signal from a function generator and the signal was amplified by connection to a power amplifier. Before the power input to the ultrasound probe, a RF power meter will measure Forward Power (FWD), Reflect Power (RFL) and Voltage Standing Wave Ratio (VSWR) of the system. The impendence of ultrasound probe was also matched to optimize the power output. The acoustic power efficiency of all probes were measured by the correlation between the input electric power and output acoustic power. The average size of multicellular spheroids and the distance between the multicellular spheroids were analyzed by ImageJ. Alamar Blue fluorescence test is used to analyze cell viability.
Result:
For the formation of using 1 MHz frequency, the distance between multicellular spheroids is 717±10 µm, and the area of the cellular spheroid is 23,461±7,887 µm2.. For the formation of using 1.5 MHz frequency, the distance between cellular spheroids is about 513±36 µm, and the area of cellular spheroid is 7,132±3,078 µm2. For the formation of using 3 MHz frequency, the distance between cellular spheroids is 241±10 µm, and the area of the cellular spheroid is about 1,805±1,105 µm2. In Alamar Blue fluorescence test, the relative fluorescence unit (RFU) of control group and ultrasound group are 9,039 RFU and 9,593 RFU.

Discussion and Conclusion:
The distance between multicellular spheroids is half of the wavelength of applied ultrasound frequency. When using the high-frequency ultrasound probes (short wavelength), the nodes in the ultrasound field become closer and smaller. Nodes are where cells aggregated and formed the multicellular spheroids. The area of the node becomes smaller and thus the multicellular spheroid.
Limitations in this research should be noted. The size of multicellular spheroid depends on the condition of cellular distribution. If the cells is not evenly distributed, the size of the multicellular spheroid may varies. In conclusion, with four ultrasound probes placed in four directions, the ultrasound system could provide a stable acoustic field to aggregate and align in array. With higher frequency, the aggregation time is shorter, and the area of the multicellular spheroid and the distance between multicellular spheroids become smaller.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:35:36Z (GMT). No. of bitstreams: 1
ntu-106-R04548015-1.pdf: 2931197 bytes, checksum: b5673567a1b3dc3c8d9622e2cc42daef (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員會審定書 I
誌謝 II
中文摘要 IV
Abstract VII
圖目錄 XIII
表目錄 XV
第一章 緒論 1
1.1 三維細胞培養 1
1.2 細胞球團 2
1.2.1 外力懸浮法(Forced -floating method) 2
1.2.2 懸滴法(Hanging drop method) 2
1.2.3 攪拌法(Agitation-based approaches) 3
1.2.4 3D微重力細胞培養系統(Rotary cell culture system, RCCS) 3
1.3 聲學鑷子之原理 4
1.3.1 聲場 4
1.3.2 聲輻射力 4
1.3.3 聲學鑷子 5
1.3.4 聲學鑷子應用 6
1.4 Alamar Blue 8
1.5 實驗目的 8
第二章 材料與方法 9
2.1 研究方法簡介 9
2.2 實驗儀器 10
2.2.1 超音波探頭 10
2.2.2 超音波功率檢測器 (Ultrasound Power Meter) 10
2.2.3 阻抗分析儀 11
2.2.4 訊號產生器 12
2.2.5 功率放大器 12
2.2.6 電功率計 (Power Meter) 13
2.2.7 電功率計感測器 (Power Sensor) 13
2.3 實驗流程 14
2.3.1 試樣準備 14
2.3.2 超音波聲學鑷子系統建立 14
2.3.3 細胞球團培養 16
2.3.4 超音波聚集細胞 17
2.3.5 顯微鏡觀察細胞聚集 17
2.4 資料分析 18
第三章 實驗結果 19
3.1 超音波電路匹配 19
3.2 超音波強度 20
3.2.1 單一探頭 20
3.2.2 多探頭串並聯 22
3.3 培養盤夾具 25
3.4 細胞聚集效果 26
3.4.1 聲輻射力 26
3.4.2 不同超音波頻率線性聚集效果 27
3.4.3 不同超音波頻率下聚集效果 27
3.5 細胞球團培養 30
第四章 討論 32
4.1 穩定聲場的建立 32
4.2 超音波探頭匹配 32
4.3 超音波能量 33
4.4 細胞聚集結果 33
4.5 細胞培養結果 34
4.6 實驗限制 34
第五章 結論與未來展望 36
5.1 結論 36
5.2 未來展望 36
參考文獻 37
dc.language.isozh-TW
dc.subject細胞球團zh_TW
dc.subject三維細胞培養zh_TW
dc.subject聲學鑷子zh_TW
dc.subject聲輻射力zh_TW
dc.subject超音波zh_TW
dc.subjectUltrasounden
dc.subjectAcoustic tweezeren
dc.subjectAcoustic radiation forceen
dc.subjectThree-dimensional cell cultureen
dc.subjectMulticellular spheroiden
dc.title利用聲學鑷子建立三維多細胞球團培養系統zh_TW
dc.titleDevelopments of Three-dimensional Culture Systems Multicellular Spheroid Using Acoustic Tweezeren
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林?輝,林文澧,趙本秀,徐善慧
dc.subject.keyword超音波,聲學鑷子,聲輻射力,三維細胞培養,細胞球團,zh_TW
dc.subject.keywordUltrasound,Acoustic tweezer,Acoustic radiation force,Three-dimensional cell culture,Multicellular spheroid,en
dc.relation.page38
dc.identifier.doi10.6342/NTU201704162
dc.rights.note有償授權
dc.date.accepted2017-08-22
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-R04548015-1.pdf
  未授權公開取用
2.86 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved