Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77824
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳志宏
dc.contributor.authorFu-Hsing Wuen
dc.contributor.author吳福興zh_TW
dc.date.accessioned2021-07-11T14:35:31Z-
dc.date.available2022-09-08
dc.date.copyright2017-09-08
dc.date.issued2017
dc.date.submitted2017-09-06
dc.identifier.citationReferences
[1] P. B. Roemer, W. A. Edelstein, C. E. Hayes, S. P. Souza, and O. Mueller, “The NMR phased array,” Magnetic Resonance in Medicine, vol. 16, no. 2, pp. 192-225, 1990.
[2] D. K. Sodickson, and W. J. Manning, “Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays,” Magnetic Resonance in Medicine, vol. 38, no. 4, pp. 591-603, 1997.
[3] R. M. Heidemann, M. A. Griswold, A. Haase, and P. M. Jakob, “VD‐AUTO‐SMASH imaging,” Magnetic Resonance in Medicine, vol. 45, no. 6, pp. 1066-1074, 2001.
[4] M. Blaimer, F. Breuer, M. Mueller, R. M. Heidemann, M. A. Griswold, and P. M. Jakob, “SMASH, SENSE, PILS, GRAPPA: how to choose the optimal method,” Topics in Magnetic Resonance Imaging, vol. 15, no. 4, pp. 223-236, 2004.
[5] M. A. Griswold, P. M. Jakob, R. M. Heidemann, M. Nittka, V. Jellus, J. Wang, B. Kiefer, and A. Haase, “Generalized autocalibrating partially parallel acquisitions (GRAPPA),” Magnetic Resonance in Medicine, vol. 47, no. 6, pp. 1202-1210, 2002.
[6] Z. Wang, J. Wang, and J. A. Detre, “Improved data reconstruction method for GRAPPA,” Magnetic Resonance in Medicine, vol. 54, no. 3, pp. 738-742, 2005.
[7] Y. Li, and F. Huang, “Regionally optimized reconstruction for partially parallel imaging in MRI applications,” IEEE Transactions on Medical Imaging, vol. 28, no. 5, pp. 687-695, 2009.
[8] S. Bauer, M. Markl, M. Honal, and B. Jung, “The effect of reconstruction and acquisition parameters for GRAPPA‐based parallel imaging on the image quality,” Magnetic Resonance in Medicine, vol. 66, no. 2, pp. 402-409, 2011.
[9] W. Liu, X. Tang, Y. Ma, and J. H. Gao, “Improved parallel MR imaging using a coefficient penalized regularization for GRAPPA reconstruction,” Magnetic Resonance in Medicine, vol. 69, no. 4, pp. 1109-1114, 2013.
[10] S. Aja-Fernández, D. G. Martín, A. Tristán-Vega, and G. Vegas-Sánchez-Ferrero, “Improving GRAPPA reconstruction by frequency discrimination in the ACS lines,” Int. J. Computer Assisted Radiology and Surgery, vol. 10, no. 10, pp. 1699-1710, 2015.
[11] A. C. Zelinski, L. M. Angelone, V. K. Goyal, G. Bonmassar, E. Adalsteinsson, and L. L. Wald, “Specific absorption rate studies of the parallel transmission of inner‐volume excitations at 7T,” Journal of Magnetic Resonance Imaging, vol. 28, no. 4, pp. 1005-1018, 2008.
[12] U. Katscher, and P. Börnert, “Parallel RF transmission in MRI,” NMR in Biomedicine, vol. 19, no. 3, pp. 393-400, 2006.
[13] T. S. Ibrahim, R. Lee, B. A. Baertlein, A. Kangarlu, and P.-M. L. Robitaille, “Application of finite difference time domain method for the design of birdcage RF head coils using multi-port excitations,” Magnetic Resonance Imaging, vol. 18, no. 6, pp. 733-742, 2000.
[14] J. B. Weaver, “Simultaneous multislice acquisition of MR images,” Magnetic Resonance in Medicine, vol. 8, no. 3, pp. 275-284, 1988.
[15] P. M. Jakob, M. A. Grisowld, R. R. Edelman, and D. K. Sodickson, “AUTO-SMASH: a self-calibrating technique for SMASH imaging,” Magnetic Resonance Materials in Physics, Biology and Medicine, vol. 7, no. 1, pp. 42-54, 1998.
[16] K. P. Pruessmann, M. Weiger, M. B. Scheidegger, and P. Boesiger, “SENSE: sensitivity encoding for fast MRI,” Magnetic Resonance in Medicine, vol. 42, no. 5, pp. 952-962, 1999.
[17] D. G. Norris, R. Boyacioğlu, J. Schulz, M. Barth, and P. J. Koopmans, “Application of PINS radiofrequency pulses to reduce power deposition in RARE/turbo spin echo imaging of the human head,” Magnetic Resonance in Medicine, vol. 71, no. 1, pp. 44-49, 2014.
[18] C. Eichner, K. Setsompop, P. J. Koopmans, R. Lützkendorf, D. G. Norris, R. Turner, L. L. Wald, and R. M. Heidemann, “Slice accelerated diffusion‐weighted imaging at ultra‐high field strength,” Magnetic Resonance in Medicine, vol. 71, no. 4, pp. 1518-1525, 2014.
[19] P. J. Koopmans, R. Boyacioğlu, M. Barth, and D. G. Norris, “Whole brain, high resolution spin-echo resting state fMRI using PINS multiplexing at 7T,” Neuroimage, vol. 62, no. 3, pp. 1939-1946, 2012.
[20] P. J. Koopmans, R. Boyacioğlu, M. Barth, and D. G. Norris, “Simultaneous multislice inversion contrast imaging using Power Independent of the Number of Slices (PINS) and Delays Alternating with Nutation for Tailored Excitation (DANTE) radio frequency pulses,” Magnetic Resonance in Medicine, vol. 69, no. 6, pp. 1670-1676, 2013.
[21] C. Eichner, L. L. Wald, and K. Setsompop, “A low power radiofrequency pulse for simultaneous multislice excitation and refocusing,” Magnetic Resonance in Medicine, vol. 72, no. 4, pp. 949-958, 2014.
[22] A. Sharma, S. Holdsworth, R. O'Halloran, E. Aboussouan, A. T. Van, J. Maclaren, M. Aksoy, V. A. Stenger, R. Bammer, and W. A. Grissom, 'kT-PINS RF pulses for low-power field inhomogeneity-compensated multislice excitation,' In Proceedings of the 21st Annual Meeting of ISMRM, Salt Lake City, Utah, USA, 2013. p. 73.
[23] B. A. Gagoski, B. Bilgic, C. Eichner, H. Bhat, P. E. Grant, L. L. Wald, and K. Setsompop, “RARE/turbo spin echo imaging with simultaneous multislice Wave‐CAIPI,” Magnetic Resonance in Medicine, vol. 73, no. 3, pp. 929-938, 2015.
[24] R. E. Feldman, H. M. Islam, J. Xu, and P. Balchandani, “A SEmi‐Adiabatic Matched‐phase Spin echo (SEAMS) PINS pulse‐pair for B1‐insensitive simultaneous multislice imaging,” Magnetic Resonance in Medicine, vol. 75, no. 2, pp. 709-717, 2016.
[25] M. N. J. Paley, K. J. Lee, J. M. Wild, P. D. Griffiths, and E. H. Whitby, “Simultaneous parallel inclined readout image technique,” Magnetic Resonance Imaging, vol. 24, no. 5, pp. 557-562, 2006.
[26] F. H. Wu, E. L. Wu, L. W. Kuo, J. H. Chen, and T. D. Chiueh, 'Wideband parallel imaging,' In Proceedings of the 17th Annual Meeting of ISMRM, Honolulu, Hawaii, USA, 2009. p. 2677.
[27] D. G. Norris, P. J. Koopmans, R. Boyacioğlu, and M. Barth, “Power Independent of Number of Slices (PINS) radiofrequency pulses for low‐power simultaneous multislice excitation,” Magnetic Resonance in Medicine, vol. 66, no. 5, pp. 1234-1240, 2011.
[28] M. A. Bernstein, K. F. King, and X. J. Zhou, Handbook of MRI pulse sequences. Burlington. MA: Elsevier Academic Press; 2004. p 33 and p 795.
[29] B. Guérin, K. Setsompop, H. Ye, B. A. Poser, A. V. Stenger, and L. L. Wald, “Design of parallel transmission pulses for simultaneous multislice with explicit control for peak power and local specific absorption rate,” Magnetic Resonance in Medicine, vol. 73, no. 5, pp. 1946-1953, 2015.
[30] E. L. Wu, T.-D. Chiueh, and J.-H. Chen, “Multiple-frequency excitation wideband MRI (ME-WMRI),” Medical Physics, vol. 41, no. 9, pp. 092304, 2014.
[31] P. Mansfield, “Multi-planar image formation using NMR spin echoes,” Journal of Physics C: Solid State Physics, vol. 10, no. 3, pp. L55, 1977.
[32] J. Hennig, A. Nauerth, and H. Friedburg, “RARE imaging: a fast imaging method for clinical MR,” Magnetic Resonance in Medicine, vol. 3, no. 6, pp. 823-833, 1986.
[33] J. Hennig, “Multiecho imaging sequences with low refocusing flip angles,” Journal of Magnetic Resonance, vol. 78, no. 3, pp. 397-407, 1988.
[34] J. J. Cuppen, 'Method of reconstructing a nuclear magnetization distribution from a partial magnetic resonance measurement,' Google Patents, 1989.
[35] V. Rasche, R. W. D. Boer, D. Holz, and R. Proksa, “Continuous radial data acquisition for dynamic MRI,” Magnetic Resonance in Medicine, vol. 34, no. 5, pp. 754-761, 1995.
[36] M. Uecker, S. Zhang, and J. Frahm, “Nonlinear inverse reconstruction for real‐time MRI of the human heart using undersampled radial FLASH,” Magnetic Resonance in Medicine, vol. 63, no. 6, pp. 1456-1462, 2010.
[37] M. Uecker, S. Zhang, D. Voit, A. Karaus, K. D. Merboldt, and J. Frahm, “Real‐time MRI at a resolution of 20 ms,” NMR in Biomedicine, vol. 23, no. 8, pp. 986-994, 2010.
[38] S. Zhang, K. T. Block, and J. Frahm, “Magnetic resonance imaging in real time: advances using radial FLASH,” Journal of Magnetic Resonance Imaging, vol. 31, no. 1, pp. 101-109, 2010.
[39] A. Niebergall, S. Zhang, E. Kunay, G. Keydana, M. Job, M. Uecker, and J. Frahm, “Real‐time MRI of speaking at a resolution of 33 ms: Undersampled radial FLASH with nonlinear inverse reconstruction,” Magnetic Resonance in Medicine, vol. 69, no. 2, pp. 477-485, 2013.
[40] P. Qu, C. Wang, and G. X. Shen, “Discrepancy‐based adaptive regularization for GRAPPA reconstruction,” Journal of Magnetic Resonance Imaging, vol. 24, no. 1, pp. 248-255, 2006.
[41] D. Huo, and D. L. Wilson, “Robust GRAPPA reconstruction and its evaluation with the perceptual difference model,” Journal of Magnetic Resonance Imaging, vol. 27, no. 6, pp. 1412-1420, 2008.
[42] R. Nana, T. Zhao, K. Heberlein, S. M. LaConte, and X. Hu, “Cross‐validation‐based kernel support selection for improved GRAPPA reconstruction,” Magnetic Resonance in Medicine, vol. 59, no. 4, pp. 819-825, 2008.
[43] T. Zhao, and X. Hu, “Iterative GRAPPA (iGRAPPA) for improved parallel imaging reconstruction,” Magnetic Resonance in Medicine, vol. 59, no. 4, pp. 903-907, 2008.
[44] S. Madhusoodhanan, and J. S. Paul, “A quantitative survey of GRAPPA reconstruction in parallel MRI: impact on noise reduction and aliasing,” Concepts in Magnetic Resonance Part A, vol. 44, no. 6, pp. 287-305, 2015.
[45] P. C. Hansen, Rank-deficient and discrete ill-posed problems: numerical aspects of linear inversion: SIAM, 1998.
[46] F. H. Lin, K. K. Kwong, J. W. Belliveau, and L. L. Wald, “Parallel imaging reconstruction using automatic regularization,” Magnetic Resonance in Medicine, vol. 51, no. 3, pp. 559-567, 2004.
[47] W. Lin, F. Huang, Y. Li, and A. Reykowski, “GRAPPA operator for wider radial bands (GROWL) with optimally regularized self‐calibration,” Magnetic Resonance in Medicine, vol. 64, no. 3, pp. 757-766, 2010.
[48] K. J. Lee, M. N. Paley, I. D. Wilkinson, and P. D. Griffiths, “Fast two-dimensional MR imaging by Multiple Acquisition with Micro B0 Array (MAMBA),” Magnetic Resonance Imaging, vol. 20, no. 1, pp. 119-125, 2002.
[49] M. N. Paley, K. J. Lee, J. M. Wild, S. Fichele, E. H. Whitby, I. D. Wilkinson, E. J. Van Beek, and P. D. Griffiths, “B1AC‐MAMBA: B1 array combined with multiple‐acquisition micro B0 array parallel magnetic resonance imaging,” Magnetic Resonance in Medicine, vol. 49, no. 6, pp. 1196-1200, 2003.
[50] M. Paley, and K. Lee, Methods & apparatus for magnetic resonance imaging, US Patent 6,980,001, 2005.
[51] E. L. Wu, J. H. Chen, and T. D. Chiueh, 'Wideband MRI: A new dimension of MR image acceleration,' In Proceedings of the 17th Annual Meeting of ISMRM, Hawaii, USA, 2009. p. 2678.
[52] E. L. Wu, T. D. Chiueh, and J. H. Chen, 'A study of Wideband MR imaging-SNR and CNR,' In Proceedings of 18th Annual Meeting of ISMRM, Stockholm, Sweden, 2010. p. 4957.
[53] E. L. Wu, J. H. Chen, and T. D. Chiueh, “Wideband MRI: Theoretical analysis and its applications,” In Conf Proc IEEE Eng Med Biol Soc 2010, pp. 5681-5684.
[54] E. L. Wu, Y. A. Huang, T. D. Chiueh, and J. H. Chen, '2X accelerated whole brain isotropic MRA using multislice wideband MRI,' In Proceedings of the 20th Annual Meeting of ISMRM, Melbourne, Australia, 2012. p. 2327.
[55] E. L. Wu, T. D. Chiueh, and J. H. Chen, '3D isotropic brain imaging using multislice wideband MRI,' In Proceedings of the 17th Annual Meeting of ISMRM, Honolulu, Hawaii, USA, 2009. p. 2679.
[56] E. L. Wu, K. H. Cho, T. D. Chiueh, and J. H. Chen, 'Reduction of diffusion tensor imaging acquisition time with wideband MR imaging,' In Proceedings of the 17th Annual Meeting of ISMRM, Hawaii, USA, 2009. p. 2680.
[57] E. L. Wu, L. W. Kuo, F. H. Wu, C. F. Hsu, C. W. Hsieh, J. H. Chen, and T. D. Chiueh, “Ultra-fast brain MR imaging using simultaneous multi-slice acquisition (SMA) technique,” In Conf Proc IEEE Eng Med Biol Soc 2007, pp. 2618-2621.
[58] F. A. Breuer, M. Blaimer, R. M. Heidemann, M. F. Mueller, M. A. Griswold, and P. M. Jakob, “Controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) for multi‐slice imaging,” Magnetic Resonance in Medicine, vol. 53, no. 3, pp. 684-691, 2005.
[59] K. Setsompop, B. A. Gagoski, J. R. Polimeni, T. Witzel, V. J. Wedeen, and L. L. Wald, “Blipped‐controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g‐factor penalty,” Magnetic Resonance in Medicine, vol. 67, no. 5, pp. 1210-1224, 2012.
[60] D. A. Feinberg, S. Moeller, S. M. Smith, E. Auerbach, S. Ramanna, M. F. Glasser, K. L. Miller, K. Ugurbil, and E. Yacoub, “Multiplexed echo planar imaging for sub-second whole brain FMRI and fast diffusion imaging,” PloS one, vol. 5, no. 12, pp. e15710, 2010.
[61] S. Moeller, E. Yacoub, C. A. Olman, E. Auerbach, J. Strupp, N. Harel, and K. Uğurbil, “Multiband multislice GE‐EPI at 7 tesla, with 16‐fold acceleration using partial parallel imaging with application to high spatial and temporal whole‐brain fMRI,” Magnetic Resonance in Medicine, vol. 63, no. 5, pp. 1144-1153, 2010.
[62] T. D. Chiueh, P. Y. Tsai, and I. W. Lai, “Channel Estimation and Equalization,” Baseband Receiver Design for Wireless MIMO-OFDM Communications, pp. 167-208.
[63] E. L. Wu, Y.-A. Huang, T.-D. Chiueh, and J.-H. Chen, “Single-frequency excitation wideband MRI (SE-WMRI),” Medical Physics, vol. 42, no. 7, pp. 4320-4328, 2015.
[64] J. l Mispelter, M. Lupu, and A. Briguet, NMR probeheads for biophysical and biomedical experiments: theoretical principles & practical guidelines: Imperial College Press, 2006.
[65] J. Pauly, P. Le Roux, D. Nishimura, and A. Macovski, “Parameter relations for the Shinnar-Le Roux selective excitation pulse design algorithm,” IEEE Transactions on Medical Imaging, vol. 10, no. 1, pp. 53-65, 1991.
[66] E. Oran Brigham, “The fast Fourier transform and its applications,” UK: Prentice Hall, 1988.
[67] Y. Zhang, H. P. Hetherington, E. M. Stokely, G. F. Mason, and D. B. Twieg, “A novel k‐space trajectory measurement technique,” Magnetic Resonance in Medicine, vol. 39, no. 6, pp. 999-1004, 1998.
[68] C. J. Bakker, and R. de Roos, “Concerning the preparation and use of substances with a magnetic susceptibility equal to the magnetic susceptibility of air,” Magnetic Resonance in Medicine, vol. 56, no. 5, pp. 1107-1113, 2006.
[69] F. De Guio, H. Benoit-Cattin, and A. Davenel, “Signal decay due to susceptibility-induced intravoxel dephasing on multiple air-filled cylinders: MRI simulations and experiments,” Magnetic Resonance Materials in Physics, Biology and Medicine, vol. 21, no. 4, pp. 261-271, 2008.
[70] Y. P. Du, and Z. Jin, “Robust tissue–air volume segmentation of MR images based on the statistics of phase and magnitude: Its applications in the display of susceptibility‐weighted imaging of the brain,” Journal of Magnetic Resonance Imaging, vol. 30, no. 4, pp. 722-731, 2009.
[71] S. Buch, S. Liu, Y. Ye, Y. C. N. Cheng, J. Neelavalli, and E. M. Haacke, “Susceptibility mapping of air, bone, and calcium in the head,” Magnetic Resonance in Medicine, vol. 73, no. 6, pp. 2185-2194, 2015.
[72] S. Conolly, G. Glover, D. Nishimura, and A. Macovski, “A reduced power selective adiabatic spin‐echo pulse sequence,” Magnetic Resonance in Medicine, vol. 18, no. 1, pp. 28-38, 1991.
[73] S. Conolly, D. Nishimura, A. Macovski, and G. Glover, “Variable-rate selective excitation,” Journal of Magnetic Resonance, vol. 78, no. 3, pp. 440-458, 1988.
[74] R. F. Schulte, A. Henning, J. Tsao, P. Boesiger, and K. P. Pruessmann, “Design of broadband RF pulses with polynomial-phase response,” Journal of Magnetic Resonance, vol. 186, no. 2, pp. 167-175, 2007.
[75] R. F. Schulte, J. Tsao, P. Boesiger, and K. P. Pruessmann, “Equi-ripple design of quadratic-phase RF pulses,” Journal of Magnetic Resonance, vol. 166, no. 1, pp. 111-122, 2004.
[76] P. Balchandani, J. Pauly, and D. Spielman, “Designing adiabatic radio frequency pulses using the Shinnar–Le Roux algorithm,” Magnetic Resonance in Medicine, vol. 64, no. 3, pp. 843-851, 2010.
[77] P. V. O'Neil, Advanced engineering mathematics. Third edition. California: Wadsworth Publishing Company; 1991. p 1083 and p 1121.
[78] W. M. Brink, and A. G. Webb, “High permittivity pads reduce specific absorption rate, improve B1 homogeneity, and increase contrast‐to‐noise ratio for functional cardiac MRI at 3 T,” Magnetic Resonance in Medicine, vol. 71, no. 4, pp. 1632-1640, 2014.
[79] I. J. Day, “On the inversion of diffusion NMR data: Tikhonov regularization and optimal choice of the regularization parameter,” Journal of Magnetic Resonance, vol. 211, no. 2, pp. 178-185, 2011.
[80] J. Lyu, Y. Chang, and L. Ying, “Fast GRAPPA reconstruction with random projection,” Magnetic Resonance in Medicine, vol. 74, no. 1, pp. 71-80, 2015.
[81] R. Ramb, C. Binter, G. Schultz, J. Assländer, F. Breuer, M. Zaitsev, S. Kozerke, and B. Jung, “A g‐factor metric for k‐t‐GRAPPA‐and PEAK‐GRAPPA‐based parallel imaging,” Magnetic Resonance in Medicine, vol. 74, no. 1, pp. 125-135, 2015.
[82] O. Sayin, H. Saybasili, M. M. Zviman, M. Griswold, H. Halperin, N. Seiberlich, and D. A. Herzka, “Real‐time free‐breathing cardiac imaging with self‐calibrated through‐time radial GRAPPA,” Magnetic Resonance in Medicine, vol. 77, no. 1, pp. 250-264, 2017.
[83] P. A. Bottomley, R. W. Redington, W. A. Edelstein, and J. F. Schenck, “Estimating radiofrequency power deposition in body NMR imaging,” Magnetic Resonance in Medicine, vol. 2, no. 4, pp. 336-349, 1985.
[84] X. Wu, S. Schmitter, E. J. Auerbach, K. Uğurbil, and V. de Moortele, “A generalized slab‐wise framework for parallel transmit multiband RF pulse design,” Magnetic Resonance in Medicine, vol. 75, no. 4, pp. 1444-1456, 2016.
[85] T. E. Yankeelov, J. J. Luci, M. Lepage, R. Li, L. Debusk, P. C. Lin, R. R. Price, and J. C. Gore, “Quantitative pharmacokinetic analysis of DCE-MRI data without an arterial input function: a reference region model,” Magnetic Resonance Imaging, vol. 23, no. 4, pp. 519-529, 2005.
[86] C. Lavini, M. C. de Jonge, M. G. van De Sande, P. P. Tak, A. J. Nederveen, and M. Maas, “Pixel-by-pixel analysis of DCE MRI curve patterns and an illustration of its application to the imaging of the musculoskeletal system,” Magnetic Resonance Imaging, vol. 25, no. 5, pp. 604-612, 2007.
[87] T. E. Yankeelov, M. Lepage, A. Chakravarthy, E. E. Broome, K. J. Niermann, M. C. Kelley, I. Meszoely, I. A. Mayer, C. R. Herman, and K. McManus, “Integration of quantitative DCE-MRI and ADC mapping to monitor treatment response in human breast cancer: initial results,” Magnetic resonance imaging, vol. 25, no. 1, pp. 1-13, 2007.
[88] E. M. Haacke, R. W. Brown, M. R. Thompson, and R. Venkatesan, Magnetic resonance imaging: physical principles and sequence design: Wiley-Liss New York:, 1999.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77824-
dc.description.abstract自從四十年前發明以來,快速磁振造影一直是個不間斷之研究方向。因其可縮短掃描時間,並在同樣時間內能夠服務更多的民眾,提供快速舒適的磁振造影檢查
。同時多截面造影是多種快速磁振造影技術中之一支備受矚目的研究方向;而其中的多頻激發寬頻磁振造影為我們實驗室團隊在台大所研發的新技術。本研究主要目的為整合平行磁振造影技術與多頻激發寬頻磁振造影,以更進一步縮短造影時間
;並且發展射頻脈衝合成方法以降低特定吸收率。
為了克服多頻激發寬頻磁振造影中因相位偏移而產生的影像假影,我們應用
相位修正方法來修正信號相位不連續,以提升多頻激發寬頻磁振造影之影像品質;其次,我們將平行磁振造影技術結合多頻激發寬頻磁振造影,以進一步縮短造影時間,並提出降低其中之信號估計誤差的方法; 最後我們運用射頻脈衝設計技術,來降低同時多截面造影時之特定吸收率以及合成均勻的同時多截面激發輪廓。
相位修正方法大幅減少上述之影像假影,使加速後之多頻激發寬頻磁振造影的影像品質更接近於標準影像; 再者,我們將具相位修正之多頻激發寬頻磁振造影與平行磁振造影技術結合,將整體造影速度加速超過3倍; 至於射頻脈衝設計研究,在同時5切面仿體及3切面人腦造影,可將特定吸收率分別降低至32% 與 28%,且維持相同之影像品質。
總結而言,藉由導入相位修正、平行造影與低特定吸收率之射頻脈衝等方法,使得多頻激發寬頻磁振造影成為更佳的、更快速的以及更安全的磁振造影技術。本論文之結果與提出的方法對於多頻激發寬頻磁振造影為基礎,應用於同時多截面造影之研究與臨床應用將有所助益。
zh_TW
dc.description.abstractSince its invention four decades ago, faster magnetic resonance imaging (MRI) has always been a popular research topic. Fast MR imaging shortens the scan time, and provides swift as well as comfortable services for more subjects within the same period. Simultaneous multi-slice (SMS) MRI is a growing field of fast MRI methods; in which multiple-frequency excitation wideband magnetic resonance imaging (ME-WMRI) is a novel technique developed by our group in NTU. The main goal of this study is to integrate parallel imaging technique with ME-WMRI to achieve further scan time reduction while develop new pulse synthesis methods to minimize the specific absorption rate (SAR). To reduce the image artifacts resulting from phase offsets in ME-WMRI, we applied phase correction methods to fix the signal phase discontinuity and improve the image quality of ME-WMRI. We then added parallel MR imaging (pMRI) onto ME-WMRI to further reduce the MR scan time and proposed a reconstruction algorithm to minimize errors caused by the fitting problem. Finally, we adopted SLR algorithm for radiofrequency (RF) pulse synthesis to reduce the SAR and obtain the uniform excitation profile for SMS MRI. The phase correction method greatly reduces the image artifacts and causes the quality of accelerated ME-WMRI images to be closer to standard images. Furthermore, by integrating phase corrected ME-WMRI with pMRI, the total acceleration rate adds up to more than 3-fold. As for RF pulse study, the simultaneous 5-slice phantom imaging and 3-slice human brain imaging reduced the SAR values to 32% and 28% while providing similar image qualities. In summary, by introducing phase correction, pMRI reconstruction and low SAR RF pulse synthesis methods, ME-WMRI has been made better, faster, and safer. The results and proposed techniques would be helpful on the researches and clinical applications of ME-WMRI-based SMS MRI.en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:35:31Z (GMT). No. of bitstreams: 1
ntu-106-D95921027-1.pdf: 12449441 bytes, checksum: 61ac1af50f81580f96985a8bc3be7cfc (MD5)
Previous issue date: 2017
en
dc.description.tableofcontentsContents
口試委員會審定書……………………………………………………...I
誌謝………………………………………………………………………..II
中文摘要………………………………………………………………..III
Abstract…………………………………………………………………..V
Contents……………………………………………………………….......VII
List of Figure……………………………………………………………..X
List of Table…………………………………………………….….…XVIII
Chapter 1 Introduction……………………………………………….1
1.1 Background……………………………………………………….1
1.2 Motivation and Purpose…………………………………………..2
1.2.1 Motivation………………………….………………….….2
1.2.2 Purpose…………………………………………………...4
1.3 Outline……………………………………………….……….…5
Chapter 2 Basics of Fast Magnetic Resonance Imaging Methods……...7
2.1 Introduction to Fast Magnetic Resonance Imaging Methods…………7
2.2 Parallel Imaging……………………………...…………………7
2.2.1 Multi-coil MR Imaging………………………………...8
2.2.2 GRAPPA………………………………………………...17
2.2.3 Modified GRAPPA Reconstruction Methods………..21
2.3 Simultaneous Multislice Magnetic Resonance Imaging……….…….28
2.3.1 The Classification of SMS MR Imaging Methods…….29
2.3.2 Multiple-frequency Excitation Wideband MRI….…30
2.4 Wideband Parallel Imaging……………………………….……….….31
2.5 Interleaved Sampled MultiLine Fitting and Equalization for Wideband Parallel Imaging..………………….…………………………....…37
2.6 A Multislice Excitation Profile Optimization Method for Simultaneous
Multislice Magnetic Resonance Imaging……………………............52
2.6.1 Introduction………………………….…..……….…52
2.6.2 Methods………………………..………………….…54
2.6.3 Results……..…………..……………………………60
2.6.4 Discussion……….…………..…..…………………70
2.6.5 Summary..…….……………….……………………70
Chapter 3 Phase Correction and Parallel Acquisition Methods for
Multiple-frequency Excitation Wideband MRI: Feasibility Study……………………………………………………….…71
3.1 Introduction…………………………………….…..……….…71
3.2 Methods…………………………………..………………….…71
3.2.1 An Ideal Acquisition and Reconstruction Method for
pME-WMRI………………….……………………….72
3.2.2 Image Artifacts Caused by the Refocusing Gradient
During Coherent Acquisition……………………………73
3.2.3 A Practical Acquisition and Reconstruction Method for
pME-WMRI………….…….………………....…………86
3.2.4 Phase Correction……………..………………………….87
3.2.5 Experimental Setup…………………………………….….91
3.3 Results……..…….……………………………………….…94
3.4 Discussion……….…………………………………………113
3.5 Summary..……….…………………………………………117
Chapter 4 A SAR Reduction Method for Simultaneous Multislice
Magnetic Resonance Imaging…………..………….…118
4.1 Introduction…………………………………….…..……….119
4.2 Methods…………………………………..………………….122
4.2.1 Optimization Method of the Multislice SLR RF Pulse……125
4.2.2 Low SAR SLR RF pulse…………………………………..127
4.2.3 PINS SLR RF Pulse…………………………………...134
4.2.4 Estimation of Relative SAR………….……………...138
4.2.5 Figure of Merit…………………………..…………...141
4.2.6 Experimental Setup..………………………...……...142
4.3 Results……..…….…………………………………………….144
4.3.1 Simulation Results………….……………..………..144
4.3.2 Experimental Results………..…………....………..150
4.4 Discussion……….…………………………………………….156
4.5 Summary..……….…………………………………………….160
Chapter 5 Discussion, Conclusion and Future Works.…………..161
5.1 Discussion……………………………………….…..……….….161
5.2 Conclusion………………………………..………………….….168
5.3 Future Works……..…….………………………………………169
Appendix….…………………………………………………………….172
A.1 SAR Computation……………………………………….……….172
References……………………………………………………………….174
Publications……………………………………………………………….180
dc.language.isoen
dc.subject相位修正zh_TW
dc.subject寬頻磁振造影zh_TW
dc.subject快速造影zh_TW
dc.subject降低特定吸收率zh_TW
dc.subject平行磁振造影zh_TW
dc.subjectFast Imagingen
dc.subjectSAR Reductionen
dc.subjectWideband MRIen
dc.subjectParallel Imagingen
dc.subjectPhase Correctionen
dc.title低特定吸收率與平行擷取之多頻激發寬頻磁振造影zh_TW
dc.titleSpecific Absorption Rate Reduction and Parallel
Acquisition for Multiple-frequency Excitation
Wideband Magnetic Resonance Imaging
en
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree博士
dc.contributor.coadvisor闕志達
dc.contributor.oralexamcommittee林慶波,謝長倭,吳昌衛,陳德祐
dc.subject.keyword寬頻磁振造影,平行磁振造影,相位修正,降低特定吸收率,快速造影,zh_TW
dc.subject.keywordWideband MRI,Parallel Imaging,Phase Correction,SAR Reduction,Fast Imaging,en
dc.relation.page181
dc.identifier.doi10.6342/NTU201704199
dc.rights.note有償授權
dc.date.accepted2017-09-06
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-106-D95921027-1.pdf
  未授權公開取用
12.16 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved