Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77822
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳敏璋(Miin-Jang Chen)
dc.contributor.authorPo-Shuan Yangen
dc.contributor.author楊博軒zh_TW
dc.date.accessioned2021-07-11T14:35:28Z-
dc.date.available2023-05-02
dc.date.copyright2018-05-02
dc.date.issued2018
dc.date.submitted2018-04-09
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77822-
dc.description.abstract離子束微影技術在奈米結構,穿透式電子顯微鏡(Transmission Electron microscope)樣品製備和奈米結構沉積等等多種領域得到了廣泛的應用。離子束微影技術有很多優點,如無需光阻,特定區域上的離子佈質,較少的背向散射(和電子束微影相比)等。原子層沉積(Atomic Layer Deposition, ALD)是另一種在奈米結構製造中很有前景的方法,ALD可提供大面積上的良好保形性(conformality),良好的再現性和高均勻性使其成為光電元件製作的重要技術。在本論文中,展示了結合離子束微影技術和ALD技術可以製造小於10nm的奈米結構以及其在表面電漿子方面的應用。
首先,我提出了一個叫自我微縮介電光罩(Self-Shrinking Dielectric Mask, SDM)的技術。SDM主要的原理來自於離子照射期間的再沉積效應和因為被離子照射加熱後介電層的溶融狀態變形,將其收縮到想要的奈米尺度。甚至可以透過這種技術製造小於3nm的結構。利用SDM的概念,可以在奈米尺度上任意地作出奈米結構。因此,SDM可以在下一代微影中扮演重要的角色。此外,透過調整氧化鋁陣列的初始深度,也可以做出小於10奈米的氧化鋁奈米柱。
另一方面,具有氧化鋁覆蓋層的表面電漿增強晶片可以透過ALD和熱蒸鍍系統的配合來製造。有氧化鋁覆蓋的晶片可以耐環境污染,有利於重複測量。極薄層的氧化鋁透過ALD的沉積可以均勻的包覆在銀的奈米顆粒外,ALD製程的高溫也可以使得奈米銀顆粒變得更圓。在氧化鋁包覆的狀態下,甚至也可以達到106的拉曼散射增強。
最後,我提出了透過氦離子束的金屬沉積與ALD的選擇性成長來製造高質量純化金屬結構的方法。在這篇研究中,我們選擇氦離子束,因為借由它所做出的ALD選擇性成長可以做到對基板的零破壞(damage-free)與十奈米的解析度。在此方法中的ALD金屬將僅沉積在預先由氦離子束寫入的種子層上來達到選擇性沉積。
小於10nm的微影對於半導體製程和高品質的表面電漿增強晶片是很重要的。而透過ALD和離子束系統的組合,可以做到小於五奈米的奈米結構,也可以做到對基板零破壞的選擇性成長同時保有十奈米的解析度,讓這兩個技術的結合在未來有更多的應用。
zh_TW
dc.description.abstractIon beam lithography has been widely used and shown a great promise in a variety of fields such as nanostructures fabrication, TEM sample milling, or nanostructure deposition. There are a lot of advantages of the ion beam lithography technique, such as resistless lithography, ion implantation on specific area, less back scattering occurring as comparing to electron beam lithography, etc. Atomic layer deposition (ALD) is another promising technique to act a role in nanostructure fabrication. Several advantages such as good conformality, good reproducibility, and high uniformity over a large area make it an important technique in electrical and optical devices. In this dissertation, the combination of the ion beam lithography and ALD technique to fabricate sub-10nm nanostructures and their applications in plasmonics are demonstrated.
First, a technique called Self-shrinking dielectric mask (SDM) was demonstrated. SDM method relies on a hard dielectric mask which will automatically shrink the critical dimension of nanopatterns thanks to the thermally induced reflow and the redeposition effect during the ion irradiation. Even sub-3nm patterns can be fabricated by this technique. With the concept of SDM, nanopatterns can be manipulated arbitrarily small on the nanometer scale. Hence SDM has paved a promising way towards the next-generation lithography in a variety of applications. Moreover, nanopillar can also be made by adjusting the initial patterns of the alumina array.
On the other hand, plasmonic chips with alumina covered layer can be fabricated by the combination of ALD and thermal evaporation system. The alumina covered chips are resistant to detrimental environment which is advantageous to the repetition of the chemical detections. Furthermore, ultra-thin and comformal Al2O3 layer is covered on the Ag nanoparticles and the high temperature of the ALD process for the alumina growth reform the Ag particles on the plasmonic substrate. A 106 times Raman enhancement factor is measured even with the Al2O3 cover.
Finally, a method based on a combination of the helium ion beam induced deposition and the area-selective ALD to fabricate high quality and purified metal structures was demonstrated. In this study, helium ion beam induced deposition was selected to deposit the seed layer owing to its abilities to do the damage-free seed layer deposition together with a 10 nm resolution. By this method, the ALD metal will only be deposited on the seed layer which was previously written by the helium ion beam.
Sub-10nm lithography is critical and important to semiconductor process and high quality SERS substrate. By the combination of the ALD and the ion beam system, sub-5nm structures can be fabricated and the damage-free, high resolution metal deposition can be realized, which gives this combination promising possibilities.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:35:28Z (GMT). No. of bitstreams: 1
ntu-107-F01527042-1.pdf: 5861184 bytes, checksum: 12a7063dd73aad85fb2f833c5a5caee1 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents誌謝 I
摘要 II
Abstract IV
Contents VII
List of Figures X
Chapter 1. Introduction 1
1.1 Motivation 1
1.2 Outline of this thesis 3
Chapter 2. Background 5
2.1 Ion beam lithography 5
2.1.1 Ion- Solid interactions 6
2.1.2 Ion beam system 9
2.1.3 He ion and Ne ion beam microscopy 10
2.2 Atomic layer deposition 16
2.2.1 Mechanism 20
2.2.2 ALD Window 26
2.3 Plasmonics 28
2.3.1 Localized Surface Plasmon Resonances 28
2.3.2 Surface Enhanced Raman Scattering (SERS) 35
2.3.3 Electromagnetic Enhancement (EM) 36
2.3.4 Chemical Enhancement (CE) 39
Chapter 3 Novel Self-shrinking Mask for Sub-3nm Pattern Fabrication 41
3.1 Introduction 41
3.2 Methods 44
3.3 Results and Discussions 45
3.3.1 Pitch reduction by multiple patterning 60
3.3.2 The line edge roughness of the SDM line patterns 62
3.3.3 The TEM pictures and analysis of the SDM process 62
3.3.4 Junctionless Si transistors on SOI (silicon on insulator) substrate with a sub-10nm gate defined by the SDM method 66
3.4 Conclusion 68
Chapter 4 High chemical resistance and Raman enhancement in core-shell plasmonic nanostructures tailored by atomic layer deposition 70
4.1 Introduction 70
4.2 Methods 73
4.3 Results and Discussions 75
4.4 Conclusion 88
Chapter 5 Nano-line selective growth from helium ion beam induced deposition accompanied with atomic layer deposition 89
5.1 Introduction 89
5.2 Methods 93
5.3 Results and Discussions 94
5.4 Conclusion 104
Chapter 6 Summary and Future work 106
6.1 Summary 106
6.2 Future work 107
Reference 109
dc.language.isoen
dc.title使用原子層沉積與聚焦離子束技術應用於奈米微結構之製作與奈米電漿子之研究zh_TW
dc.titleApplications of Atomic Layer Deposition and Focused Ion Beam Techniques on Nanofabrication and Nanoplasmonicsen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree博士
dc.contributor.oralexamcommittee王玉麟(Yuh-lin Wang),薛景中(Jing-Jong Shyue),顏鴻威(Hung-Wei Yen),陳良益(Liang-Yih Chen),陳景翔(Ching-Hsiang Chen)
dc.subject.keyword原子層沉積,表面增強拉曼散射,奈米結構製備,聚焦離子束,氦離子束微影,選擇性成長,zh_TW
dc.subject.keywordAtomic Layer Deposition,Surface Enhanced Raman Scattering,Nanostructures fabrication,Focused Ion Beam Lithography,Helium Ion Beam Lithography,Selective Growth,en
dc.relation.page124
dc.identifier.doi10.6342/NTU201800712
dc.rights.note有償授權
dc.date.accepted2018-04-09
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-F01527042-1.pdf
  目前未授權公開取用
5.72 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved