Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77808Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 趙玲(Ling Chao) | |
| dc.contributor.author | Jheng-Jie Hong | en |
| dc.contributor.author | 洪鉦傑 | zh_TW |
| dc.date.accessioned | 2021-07-11T14:35:13Z | - |
| dc.date.available | 2025-08-17 | |
| dc.date.copyright | 2020-09-14 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-18 | |
| dc.identifier.citation | 1. Giacomini, K.M., et al., Membrane transporters in drug development. Nature Reviews Drug Discovery, 2010. 9(3): p. 215-236. 2. Britannica, T.E.o.E. Membrane. [Membrane] 2020 January 13; Available from: https://www.britannica.com/science/membrane-biology. 3. Yeagle, P.L., Cholesterol and the cell membrane. Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, 1985. 822(3): p. 267-287. 4. Orwick-Rydmark, M., T. Arnold, and D. Linke, The Use of Detergents to Purify Membrane Proteins. Current Protocols in Protein Science, 2016. 84(1): p. 4.8.1-4.8.35. 5. Privé, G.G., Detergents for the stabilization and crystallization of membrane proteins. Methods, 2007. 41(4): p. 388-397. 6. Rigaud, J.-L. and D. Lévy, Reconstitution of Membrane Proteins into Liposomes, in Methods in Enzymology. 2003, Academic Press. p. 65-86. 7. Lévy, D., et al., Reconstitution of the sarcoplasmic reticulum Ca2+-ATPase: mechanisms of membrane protein insertion into liposomes during reconstitution procedures involving the use of detergents. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1992. 1107(2): p. 283-298. 8. Murray, D.T., J. Griffin, and T.A. Cross, Detergent Optimized Membrane Protein Reconstitution in Liposomes for Solid State NMR. Biochemistry, 2014. 53(15): p. 2454-2463. 9. Granéli, A., et al., Formation of Supported Lipid Bilayer Membranes on SiO2 from Proteoliposomes Containing Transmembrane Proteins. Langmuir, 2003. 19(3): p. 842-850. 10. Bolean, M., et al., Topographic analysis by atomic force microscopy of proteoliposomes matrix vesicle mimetics harboring TNAP and AnxA5. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2017. 1859(10): p. 1911-1920. 11. Ohlsson, P.-Å., et al., Liposome and proteoliposome fusion onto solid substrates, studied using atomic force microscopy, quartz crystal microbalance and surface plasmon resonance. Biological activities of incorporated components. Bioelectrochemistry and Bioenergetics, 1995. 38(1): p. 137-148. 12. le Maire, M., P. Champeil, and J.V. Møller, Interaction of membrane proteins and lipids with solubilizing detergents. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2000. 1508(1): p. 86-111. 13. Tunuguntla, R., et al., Lipid Bilayer Composition Can Influence the Orientation of Proteorhodopsin in Artificial Membranes. Biophysical Journal, 2013. 105(6): p. 1388-1396. 14. Pos, K.M. and P. Dimroth, Functional Properties of the Purified Na+-Dependent Citrate Carrier of Klebsiella pneumoniae: Evidence for Asymmetric Orientation of the Carrier Protein in Proteoliposomes. Biochemistry, 1996. 35(3): p. 1018-1026. 15. Chiang, P.-C., et al., Rupturing Giant Plasma Membrane Vesicles to Form Micron-sized Supported Cell Plasma Membranes with Native Transmembrane Proteins. Scientific Reports, 2017. 7(1): p. 15139. 16. Richards, M.J., et al., Membrane Protein Mobility and Orientation Preserved in Supported Bilayers Created Directly from Cell Plasma Membrane Blebs. Langmuir, 2016. 32(12): p. 2963-2974. 17. Sezgin, E., et al., Elucidating membrane structure and protein behavior using giant plasma membrane vesicles. Nature Protocols, 2012. 7(6): p. 1042-1051. 18. Chan, Y.-H.M. and S.G. Boxer, Model membrane systems and their applications. Current Opinion in Chemical Biology, 2007. 11(6): p. 581-587. 19. Stroumpoulis, D., A. Parra, and M. Tirrell, A kinetic study of vesicle fusion on silicon dioxide surfaces by ellipsometry. AIChE Journal, 2006. 52(8): p. 2931-2937. 20. Salafsky, J., J.T. Groves, and S.G. Boxer, Architecture and Function of Membrane Proteins in Planar Supported Bilayers: A Study with Photosynthetic Reaction Centers. Biochemistry, 1996. 35(47): p. 14773-14781. 21. Contino, P.B., et al., Use of an oriented transmembrane protein to probe the assembly of a supported phospholipid bilayer. Biophysical Journal, 1994. 67(3): p. 1113-1116. 22. Hamai, C., P.S. Cremer, and S.M. Musser, Single Giant Vesicle Rupture Events Reveal Multiple Mechanisms of Glass-Supported Bilayer Formation. Biophysical Journal, 2007. 92(6): p. 1988-1999. 23. Tanaka, M., et al., Selective Deposition of Native Cell Membranes on Biocompatible Micropatterns. Journal of the American Chemical Society, 2004. 126(10): p. 3257-3260. 24. Tutus, M., et al., Orientation-Selective Incorporation of Transmembrane F0F1 ATP Synthase Complex from Micrococcus luteus in Polymer-Supported Membranes. Macromolecular Bioscience, 2008. 8(11): p. 1034-1043. 25. Tanaka, M., et al., Orientation selective immobilization of human erythrocyte membranes on ultrathin cellulose films. Physical Chemistry Chemical Physics, 2001. 3(18): p. 4091-4095. 26. Kataoka-Hamai, C. and T. Yamazaki, Induced Rupture of Vesicles Adsorbed on Glass by Pore Formation at the Surface–Bilayer Interface. Langmuir, 2015. 31(4): p. 1312-1319. 27. Lyu, S.-W., J.-F. Wang, and L. Chao, Constructing Supported Cell Membranes with Controllable Orientation. Scientific Reports, 2019. 9(1): p. 2747. 28. Castellana, E.T. and P.S. Cremer, Solid supported lipid bilayers: From biophysical studies to sensor design. Surf Sci Rep, 2006. 61(10): p. 429-444. 29. Richter, R.P., R. Bérat, and A.R. Brisson, Formation of Solid-Supported Lipid Bilayers: An Integrated View. Langmuir, 2006. 22(8): p. 3497-3505. 30. Seddon, A.M., P. Curnow, and P.J. Booth, Membrane proteins, lipids and detergents: not just a soap opera. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2004. 1666(1): p. 105-117. 31. von Heijne, G., Membrane-protein topology. Nature Reviews Molecular Cell Biology, 2006. 7(12): p. 909-918. 32. Goennenwein, S., et al., Functional Incorporation of Integrins into Solid Supported Membranes on Ultrathin Films of Cellulose: Impact on Adhesion. Biophysical Journal, 2003. 85(1): p. 646-655. 33. von Heijne, G., Control of topology and mode of assembly of a polytopic membrane protein by positively charged residues. Nature, 1989. 341(6241): p. 456-8. 34. Selestina, G. and K. Vanja, Collagen- vs. Gelatine-Based Biomaterials and Their Biocompatibility: Review and Perspectives. 2011: INTECH Open Access Publisher. 35. Huang, Y., et al., Optimization of a two-step desolvation method for preparing gelatin nanoparticles and cell uptake studies in 143B osteosarcoma cancer cells. Journal of pharmacy pharmaceutical sciences : a publication of the Canadian Society for Pharmaceutical Sciences, Société canadienne des sciences pharmaceutiques, 2006. 9: p. 124-32. 36. Osorio, F.A., et al., Effects of concentration, bloom degree, and pH on gelatin melting and gelling temperatures using small amplitude oscillatory rheology. International Journal of Food Properties, 2007. 10(4): p. 841-851. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77808 | - |
| dc.description.abstract | 在細胞的生理現象中,膜蛋白扮演極重要的角色。然而在傳統膜蛋白的研究上,常先將膜蛋白從細胞膜中取出,將之分離純化後再插入人工脂質膜進行研究,而膜蛋白雙親性的不穩定結構常造成分離純化過程中潛在的膜蛋白失活風險,且膜蛋白插入人工脂質球的面相亦在實驗中難以控制,增加研究膜蛋白的困難。因此,近期許多研究開始致力於發展將膜蛋白維持在原生膜環境中進行膜蛋白研究的方法,以此維持雙親性膜蛋白的活性與統一的膜蛋白面向。在本實驗中,我們直接從海拉細胞中(Hela cell)取得從膜發出含有原生膜蛋白的巨大細胞囊泡(GPMV),將此巨大細胞囊泡在玻璃上鋪成支撐式細胞膜平台,並展示這種支撐式細胞膜平台具有統一的細胞膜面向。此外,為了同時對細胞膜兩側的蛋白進行雙向研究,我們發展出一吉利丁翻膜技術,來控制細胞膜在基材上的面向:我們先將巨大細胞囊泡鋪在吉利丁上形成支撐式細胞膜平台,再用重力壓印的方式,將吉利丁上的支撐式細胞膜轉印至新的基材上以翻轉細胞膜與膜蛋白的面向。我們利用海拉細胞膜中富含的一種穿膜蛋白-水通道蛋白3 (Aquaporin 3) 作為免疫染色的抗體標靶,來檢測直接鋪於基材與翻膜後基材上支撐式細胞膜的面向,藉由分別針對水通道蛋白3在細胞膜內側或細胞膜外側結構的抗體結合結果,可推知巨大細胞囊泡直接鋪在基材上的面向為原細胞膜內側朝上,而透過吉利丁翻膜技術將細胞膜轉印到基材上的面向為原細胞膜外側朝上。此外,我們透過調整吉利丁種類與環境酸鹼值來改變吉利丁表面電荷性質,以達到更好的細胞膜覆蓋率以及翻膜的效率。透過這套吉利丁翻膜技術,我們可以在實驗中控制基材上支撐式細胞膜的面向,並藉此同時研究細胞膜蛋白兩側的性質與功能。 | zh_TW |
| dc.description.abstract | Membrane proteins play important roles in many cellular processes. Conventional methods often extract membrane proteins from cell membranes and reconstitute them into artificial liposomes to study membrane proteins. However, amphiphilic membrane proteins may denature during the extraction process, and it is also a challenge to control the inserted orientation of membrane proteins in artificial liposomes. Methods that can retain membrane protein structure and orientation in their native cell plasma membrane are desirable for membrane protein studies. Here, we derived giant plasma membrane vesicles (GPMV) directly from Hela cells in order to retain the protein structure and orientation, and the supported cell membrane platforms formed by GPMV deposition showed consistent orientation of membrane proteins. In addition, to study membrane proteins from either cytoplasmic side or extracellular side, we constructed a gelatin blotting method to reverse the orientation of the supported cell membrane. We first deposited GPMV on gelatin to form the supported cell membrane, and then blotted it to a glass coverslip to obtain the supported cell membrane with reversed orientation. We used Aquaporin 3, an abundant native transmembrane protein in Hela cells, as a target to examine the topology of AQP3 in either directly deposited or blotted cell membranes. The immunostaining results of AQP3 showed that the intracellular side of the protein faced to the bulk solution in the directly-deposited membrane, while the extracellular side of the protein faced to the bulk solution in the blotted membrane. We further improved the supported cell membrane coverage on gelatin and the blotting efficiency by adjusting the gelatin type and pH condition, which are factors that influence the electrostatic properties of gelatin. With the developed gelatin blotting methods, we can control the orientation of lipids and membrane proteins in supported cell membranes and study membrane protein properties and functions from either the cytoplasmic side or extracellular side. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:35:13Z (GMT). No. of bitstreams: 1 U0001-1708202012493200.pdf: 4756709 bytes, checksum: c5a78ea808f0ba8e2707daa77e354211 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 誌謝 ii 摘要 iii Abstract iv Table of Content vi Figure Captions viii Chapter 1 Introduction 1 1.1 Biomimic Membrane Models 3 1.1.1 Supported Lipid Membranes (SLMs) 5 1.2 Traditional Method for Membrane Protein Study 7 1.2.1 Protein extraction and reconstitution into liposomes 7 1.2.2 Drawbacks of Protein Extraction and Reconstitution into Liposomes 8 1.3 Giant Plasma Membrane Vesicles (GPMVs) Directly Derived 9 1.4 Hydrogel-Supported Membranes Formed by Vesicles Fusion 10 1.5 Gelatin 11 1.6 Directionality of Supported Membranes Formed by Vesicle 13 1.7 Blotting Method 17 Chapter 2 Materials and Methods 19 2.1 Materials 19 2.2 Apparatus 22 2.3 Cell Culture 22 2.4 Preparation of Fluorescent Giant Plasma Membrane Vesicles (GPMVs) from Cells 23 2.5 Preparation of Polydimethylsiloxane (PDMS) Well 24 2.6 Preparation of Glass Substrate 25 2.7 Preparation of Hydrogel Substrate 25 2.7.1 Polyacrylamide (PAAM) 25 2.7.2 Gelatin 26 2.8 Preparation of Concentrated GPMVs on PAAM 26 2.9 Supported Lipid Membrane Formation on Glass 27 2.9.1 Vesicle Deposition and Fusion 27 2.9.2 Weight Pressure 28 2.10 Supported Lipid Membrane Formation on Gelatin 28 2.10.1 Vesicle Deposition and Fusion 28 2.10.2 Weight Pressure 29 2.11 Lipid Membrane Blotting 29 2.11.1 Weight Blotting 29 2.11.2 Gelatin Dissolution 30 2.12 Immunostaining of Lipid Membranes Patches 31 2.13 Fluorescence Microscope Imaging and Fluorescence Recovery after Photobleaching (FRAP) Assay 31 Chapter 3 Results and Discussion 33 3.1 Preparation of Fluorescent Giant Plasma Membrane Vesicles (GPMVs) from Cells 33 3.2 Supported Plasma Membrane Bilayer Formation on Gelatin 34 3.3 Blotting to Reverse the Orientation of Deposited GPMV Membranes 36 3.4 Immunostaining to Examine the Membrane Topology 42 3.5 Improvement of the Coverage of GPMV Patches on Gelatin 45 3.5.1 Concentrate GPMVs on Polyacrylamide (PAAM) 45 3.5.2 Adjust Gelatin Surface Charges to enhance the GPMV deposition 46 3.6 Improvement of the Coverage of Blotted GPMV Membranes on Glass 48 Chapter 4 Conclusion 55 References 56 | |
| dc.language.iso | en | |
| dc.subject | 巨大細胞囊泡 | zh_TW |
| dc.subject | 吉利丁 | zh_TW |
| dc.subject | 支撐式細胞膜平台 | zh_TW |
| dc.subject | 細胞膜方向性 | zh_TW |
| dc.subject | giant plasma membrane vesicles | en |
| dc.subject | supported cell membrane platform | en |
| dc.subject | cell membrane topology | en |
| dc.subject | gelatin | en |
| dc.subject | blotting method | en |
| dc.title | 利用吉利丁翻膜技術翻轉支撐式細胞膜中之脂質與蛋白質面向 | zh_TW |
| dc.title | Using a Gelatin Blotting Method to Reverse the Orientation of Lipid and Membrane Proteins in Supported Cell Membranes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 謝之真(Chih-Chen Hsieh),廖英志(Ying-Chih Liao) | |
| dc.subject.keyword | 巨大細胞囊泡,支撐式細胞膜平台,細胞膜方向性,吉利丁, | zh_TW |
| dc.subject.keyword | giant plasma membrane vesicles,supported cell membrane platform,cell membrane topology,gelatin,blotting method, | en |
| dc.relation.page | 58 | |
| dc.identifier.doi | 10.6342/NTU202003724 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-19 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-08-17 | - |
| Appears in Collections: | 化學工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| U0001-1708202012493200.pdf Restricted Access | 4.65 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
