請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77764完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳湘鳳(Shana Smith) | |
| dc.contributor.author | Yu-Min Wang | en |
| dc.contributor.author | 汪鈺珉 | zh_TW |
| dc.date.accessioned | 2021-07-11T14:34:24Z | - |
| dc.date.available | 2025-08-19 | |
| dc.date.copyright | 2020-08-28 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-19 | |
| dc.identifier.citation | Arjovsky, M., Chintala, S., Bottou, L. (2017). Wasserstein generative adversarial networks. Paper presented at the Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia. Bergstra, J., Bengio, Y. (2012). Random search for hyper-parameter optimization. 13( J. Mach. Learn. Res.), 281–305 Chauhan, R., Ghanshala, K. K., Joshi, R. C. (2018). Convolutional neural network (CNN) for image detection and recognition. Paper presented at the 2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC), Jalandhar, India. Chen, J., Huang, H., Hao, W., Xu, J. (2019). A machine learning method correlating pulse pressure wave data with pregnancy. International Journal for Numerical Methods in Biomedical Engineering, 36(1), e3272 Chen, Y., Zhang, L., Zhang, D., Zhang, D. (2011). Computerized wrist pulse signal diagnosis using modified auto-regressive models. Journal of Medical Systems, 35(3), 321-328 Chow, W. H., Wu, C. K., Tsang, K. F., Li, B. Y. S., Chui, K. T. (2014). Wrist pulse signal classification for inflammation of appendix, pancreas, and duodenum. Paper presented at the IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society, Dallas, TX, USA. Gatys, L. A., Ecker, A. S., Bethge, M. (2015). A neural algorithm of artistic style. e-prints, 1508.06576 Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Bengio, Y. (2014). Generative adversarial nets. Paper presented at the Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2, Montreal, Canada. Goyal, K., Agarwal, R. (2017). Pulse based sensor design for wrist pulse signal analysis and health diagnosis. Biomedical Research (India), 28, 5187-5195 Hall, J., O’Quinn, W., Haddad, R. J. (2019). An efficient visual-based method for classifying instrumental audio using deep learning. Paper presented at the 2019 SoutheastCon, Huntsville, AL,USA. Hochreiter, S., Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780 Hu, X., Zhu, H., Xu, J., Xu, D., Dong, J. (2014). Wrist pulse signals analysis based on deep convolutional neural networks. Paper presented at the 2014 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology, Honolulu, HI, USA. Kang, G., Dong, X., Zheng, L., Yang, Y. (2017). Patchshuffle regularization. arXiv e-prints, 1707.07103 karn, u. (2016). An intuitive explanation of convolutional neural networks. Retrieved from https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/ Khaire, N. N., Joshi, Y. V. (2015). Diagnosis of disease using wrist pulse signal for classification of pre-meal and post-meal samples. Paper presented at the 2015 International Conference on Industrial Instrumentation and Control (ICIC), Pune, India. LeCun, Y., Bengio, Y., Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444 Li, G., Watanabe, K., Anzai, H., Song, X., Qiao, A., Ohta, M. (2019). Pulse-wave-pattern classification with a convolutional neural network. Scientific Reports, 9(1), 14930 Li, Y., Liu, G. (2016). Sound classification based on spectrogram for surveillance applications. Paper presented at the 2016 IEEE International Conference on Network Infrastructure and Digital Content (IC-NIDC), Beijing, China. Mikolov, T., Karafiát, M., Burget, L., Cernocký, J., Khudanpur, S. (2010). Recurrent neural network based language model. Paper presented at the INTERSPEECH 2010, Makuhari, Chiba, Japan. Mirza, M., Osindero, S. (2014). Conditional generative adversarial nets. arXiv e-prints, arXiv:1411.1784 Moreno-Barea, F. J., Strazzera, F., Jerez, J. M., Urda, D., Franco, L. (2018). Forward noise adjustment scheme for data augmentation. Paper presented at the 2018 IEEE Symposium Series on Computational Intelligence (SSCI), Bangalore, India. Naguslaeva, I. V., Boronoyev, V. V., Garmaev, B. Z., Pupysheva, N. V., Ompokov, V. D. (2018). The classification potentialities of a pulse waveform based on its derivative. Paper presented at the 2018 Dynamics of Systems, Mechanisms and Machines (Dynamics), Omsk, Russia. Nie, J., Ji, M., Chu, Y., Meng, X., Wang, Y., Zhong, J., Lin, L. (2019). Human pulses reveal health conditions by a piezoelectret sensor via the approximate entropy analysis. Nano Energy, 58, 528-535 Odena, A., Dumoulin, V., Olah, C. (2016). Deconvolution and checkerboard artifacts. Olah, C. (2015). Understanding lstm networks. Retrieved from https://colah.github.io/posts/2015-08-Understanding-LSTMs/ Radford, A., Metz, L., Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv e-prints, abs/1511.06434 Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., Freitas, N. d. (2016). Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1), 148-175 Shorten, C., Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal of Big Data, 6(1), 60 Shu, J. J., Sun, Y. (2007). Developing classification indices for chinese pulse diagnosis. Complement Ther Med, 15(3), 190-198 Snoek, J., Larochelle, H., Adams, R. P. (2012). Practical Bayesian optimization of machine learning algorithms. Paper presented at the NIPS'12: Proceedings of the 25th International Conference on Neural Information Processing Systems, El Dorado County,California, United States. Wang, D., Zhang, D., Lu, G. (2016). An optimal pulse system design by multichannel sensors fusion. IEEE Journal of Biomedical and Health Informatics, 20(2), 450-459 Wang, G., Chen, X., Qiao, F.-L., Wu, Z., Huang, N. (2010). On intrinsic mode function. Advances in Adaptive Data Analysis, 2, 277-293 Wang, H., Cheng, Y. (2005). A quantitative system for pulse diagnosis in traditional chinese medicine. Paper presented at the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China. Xu, L., Meng, M. Q. H., Wang, K., Lu, W., Li, N. (2009). Pulse images recognition using fuzzy neural network. Expert Systems with Applications, 36(2), 3805-3811 Xu, L., Zhang, D., Wang, K., Wang, L. (2006). Arrhythmic pulses detection using Lempel-Ziv complexity analysis. EURASIP journal on advances in signal processing, 2006 Zhang, L., Tan, J., Han, D., Zhu, H. (2017). From machine learning to deep learning: Progress in machine intelligence for rational drug discovery. Drug Discovery Today, 22(11), 1680-1685 Zhang, S., Sun, Q. (2016). Human pulse recognition based on convolutional neural networks. Paper presented at the 2016 International Symposium on Computer, Consumer and Control (IS3C), Xi'an, China. Zhang, Z., Zhang, Y., Song, H., Yao, L., Kos, A. (2018). A sensor-based wrist pulse signal processing and lung cancer recognition. Journal of Biomedical Informatics, 79 Zhong, Z., Zheng, L., Kang, G., Li, S., Yang, Y. (2017). Random erasing data augmentation. e-prints, 1708.04896 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77764 | - |
| dc.description.abstract | 把脈是中醫師判斷患者重要的依據,藉由手部按壓感受脈搏,可以診斷患者的生理狀況。但隨著科技的進步,開始有許多研究利用電腦資訊技術來輔助脈搏判讀。過去已經有研究將量測的脈搏數據進行健康者與不健康者的分類,也有探討特定脈搏與特定疾病的關聯性。這些研究大部分探討脈搏與病理的對應關係,並且搭配大量不同演算法做脈搏特徵的擷取。然而這種擷取特徵的方式會有許多應用上的限制,因為必須先了解脈搏哪些特徵是具有這類病理的資訊,才接續探討演算法的選用,最後提取這類特定的特徵進行分類。 本研究將利用深度學習(deep learning)建構脈搏分類器,進行脈搏多分類的研究。藉由深度學習自主擷取特徵的優勢,改善過往耗費大量時間尋找、選用特定演算法來擷取脈搏特徵。本研究建立七個深度學習的模型並加以比較,在實驗中發現卷積神經模型(convolutional neural network, CNN)搭配卷積的長短期記憶模型(convolutional long short-term memory, CNN-LSTM)分類效果最好,準確率可以達到94 %。最後利用數據增強的技術,增加訓練模型的脈搏數量,產生更大的數據集。最終藉由數據增強之技術提供分類效果最好的模型更多穩健的數據,並強化模型分類。 | zh_TW |
| dc.description.abstract | Pulse taking is an important skill for Chinese medicine practitioners to diagnose a patient. By feeling the pulse fluctuation, the patient's symptoms can be diagnosed. Owing to advances in technology, using computers to assist pulse interpretation has gained popularity. In the past, there had been studies to classify the measured pulse data between healthy and unhealthy people and explored the correlation between pulse patterns and diseases. Most of these studies discussed the correspondence between pulse and pathology and used many different algorithms to extract pulse features. However, extracting pulse features have many application limitations, because you must first understand which features containing with information needs to be understood first. Then algorithms for extracting specific features for classification can be selected. In this study, deep learning will be applied to construct a pulse classifier to conduct pulse multi-classification research. Deep learning extracting features that are not designed by human engineers, time to find and select specific algorithms to extract pulse features could be avoid. First, seven deep learning models were established and compared. In the experiment, CNN (convolution neural network) with CNN-LSTM (convolutional long short-term memory) classification had the best accuracy of 94%. Then, data augmentation technology was applied to increase pulse datasets. In the study, data augmentation technology provided more robust data for the model with the best classification of 95%. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:34:24Z (GMT). No. of bitstreams: 1 U0001-1708202014380900.pdf: 4417409 bytes, checksum: abf6ba196ff6ee78b4a39b58c5df48da (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 致謝 I 摘要 II Abstract III 圖目錄 VIII 表目錄 XI 第1章 緒論 1 1.1 研究背景 1 1.2 研究動機與研究目的 2 第2章 文獻回顧 3 2.1 人工設計特徵擷取 4 2.1.1 時域特徵 4 2.1.2 頻域特徵 8 2.1.3 非時域或頻域的特徵 10 2.2 自動擷取特徵 11 2.3 統整人工設計特徵擷取與自動擷取特徵之研究 13 第3章 研究架構 15 第4章 資料前處理 17 4.1 資料收集 17 4.2 去除基線偏移 23 4.3 單一週期波 27 4.4 脈搏時頻譜 28 第5章 單輸入分類器 33 5.1 超參數設定與優化 34 5.2 CNN_spectrogram(模型一) 36 5.2.1 CNN模型介紹 36 5.2.2 CNN_spectrogram模型分類 41 5.3 CNN_single_waveform(模型二) 49 5.3.1 CNN_single_waveform模型分類 49 5.4 LSTM(模型三) 53 5.4.1 LSTM模型介紹 53 5.4.2 LSTM模型分類 57 5.5 CNN-LSTM (模型四) 61 5.5.1 CNN-LSTM模型分類 61 5.6 單輸入分類比較 66 第6章 多輸入分類器 67 6.1 CNN_spectrogram+ time domain features(模型五) 68 6.1.1 CNN_spectrogram+ time domain features模型分類 68 6.2 CNN_spectrogram+CNN_single_waveform(模型六) 73 6.2.1 CNN_spectrogram+CNN_single_waveform模型分類 73 6.3 CNN_spectrogram+CNN-LSTM(模型七) 79 6.3.1 CNN_spectrogram+CNN-LSTM模型分類 79 6.4 多輸入分類結果比較 85 第7章 數據增強(data augmentation) 86 7.1 數據增強方法 87 7.2 生成對抗網路介紹 89 7.2.1 WGAN (Wasserstein generative adversarial network) 92 7.3 WGAN模型建立 95 7.3.1 WGAN模型架構 95 7.3.2 脈波生成與濾波 98 7.3.3 脈波生成驗證與增強訓練結果 101 第8章 結論與未來展望 104 8.1 結論 104 8.2 未來展望 105 參考文獻 106 | |
| dc.language.iso | zh-TW | |
| dc.subject | 脈搏診斷 | zh_TW |
| dc.subject | 生成對抗網路 | zh_TW |
| dc.subject | 分類器 | zh_TW |
| dc.subject | 數據增強技術 | zh_TW |
| dc.subject | 深度學習模型 | zh_TW |
| dc.subject | 基線偏移移除 | zh_TW |
| dc.subject | pulse taking | en |
| dc.subject | baseline wander | en |
| dc.subject | GAN | en |
| dc.subject | classifier | en |
| dc.subject | data augmentation | en |
| dc.subject | deep learning | en |
| dc.title | 利用深度學習與數據增強技術提升脈搏分類準確度 | zh_TW |
| dc.title | Using Deep Learning and Data Augmentation to Enhance Pulse Pattern Classification | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蕭浩明(Hao-Ming Hsiao),江宏仁(Hong-Ren Jiang) | |
| dc.subject.keyword | 脈搏診斷,基線偏移移除,深度學習模型,數據增強技術,分類器,生成對抗網路, | zh_TW |
| dc.subject.keyword | pulse taking,baseline wander,deep learning,data augmentation,classifier,GAN, | en |
| dc.relation.page | 108 | |
| dc.identifier.doi | 10.6342/NTU202003748 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-20 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-08-19 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1708202014380900.pdf 未授權公開取用 | 4.31 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
