請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77758
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 廖英志(Ying-Chih Liao) | |
dc.contributor.author | Kuan-Ming Huang | en |
dc.contributor.author | 黃冠銘 | zh_TW |
dc.date.accessioned | 2021-07-10T22:20:04Z | - |
dc.date.available | 2021-07-10T22:20:04Z | - |
dc.date.copyright | 2017-08-30 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-07-31 | |
dc.identifier.citation | 1. Kahn, B.E., Patterning processes for flexible electronics. Proceedings of the IEEE, 2015. 103(4): p. 497-517.
2. Subramanian, V., et al. Printed electronics for low-cost electronic systems: Technology status and application development. in Solid-State Device Research Conference, 2008. ESSDERC 2008. 38th European. 2008. IEEE. 3. Perelaer, J., et al., Printed electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials. Journal of Materials Chemistry, 2010. 20(39): p. 8446-8453. 4. Duineveld, P.C., The stability of ink-jet printed lines of liquid with zero receding contact angle on a homogeneous substrate. Journal of Fluid Mechanics, 2003. 477: p. 175-200. 5. Kao, Z.-K., et al., Low temperature synthesis of conductive silver tracks with polymer addition. Journal of the Taiwan Institute of chemical engineers, 2012. 43(6): p. 965-970. 6. Huang, K.-M., et al., Stability Analysis of Printed Liquid Elbows. Langmuir, 2016. 7. Yunker, P.J., et al., Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature, 2011. 476(7360): p. 308-311. 8. Lessing, J., et al., Inkjet Printing of Conductive Inks with High Lateral Resolution on Omniphobic “RF Paper” for Paper‐Based Electronics and MEMS. Advanced Materials, 2014. 26(27): p. 4677-4682. 9. Wang, Y., et al., Paper-Based Inkjet-Printed Flexible Electronic Circuits. ACS Applied Materials & Interfaces, 2016. 8(39): p. 26112-26118. 10. Polsen, E.S., A.G. Stevens, and A.J. Hart, Laser printing of nanoparticle toner enables digital control of micropatterned carbon nanotube growth. ACS applied materials & interfaces, 2013. 5(9): p. 3656-3662. 11. Stadler, V., et al., Combinatorial synthesis of peptide arrays with a laser printer. Angewandte Chemie International Edition, 2008. 47(37): p. 7132-7135. 12. Ngo, C.-V. and D.-M. Chun, Laser Printing of Superhydrophobic Patterns from Mixtures of Hydrophobic Silica Nanoparticles and Toner Powder. Scientific Reports, 2016. 6. 13. http://lacdintern.blogspot.tw/2011/03/improve-look-of-your-resume-part-3.html. 14. Jones, J.B., Investigation of laser printing for 3D printing and additive manufacturing. 2013, University of Warwick. 15. Chen, S.-P., et al., Silver conductive features on flexible substrates from a thermally accelerated chain reaction at low sintering temperatures. ACS applied materials & interfaces, 2012. 4(12): p. 7064-7068. 16. Park, B.K., et al., Direct writing of copper conductive patterns by ink-jet printing. Thin Solid Films, 2007. 515(19): p. 7706-7711. 17. Liao, Y.-C. and Z.-K. Kao, Direct writing patterns for electroless plated copper thin film on plastic substrates. ACS applied materials & interfaces, 2012. 4(10): p. 5109-5113. 18. Magdassi, S., M. Grouchko, and A. Kamyshny, Copper nanoparticles for printed electronics: routes towards achieving oxidation stability. Materials, 2010. 3(9): p. 4626-4638. 19. Karthik, P. and S.P. Singh, Copper conductive inks: synthesis and utilization in flexible electronics. RSC Advances, 2015. 5(79): p. 63985-64030. 20. Kim, I., et al., Synthesis of oxidation-resistant core–shell copper nanoparticles. Rsc Advances, 2013. 3(35): p. 15169-15177. 21. Adner, D., et al., Copper (II) ethylene glycol carboxylates as precursors for inkjet printing of conductive copper patterns. Thin Solid Films, 2014. 565: p. 143-148. 22. German, R.M., Sintering theory and practice. Solar-Terrestrial Physics (Solnechno-zemnaya fizika), 1996: p. 568. 23. Wu, C.-J., et al., Reduction-assisted sintering of micron-sized copper powders at low temperature by ethanol vapor. RSC Advances, 2015. 5(66): p. 53275-53279. 24. Bui, H.T., et al., The effect of sintering temperature on the mechanical properties of a Cu/CNT nanocomposite prepared via a powder metallurgy method. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2011. 2(1): p. 015006. 25. Sun, J. and S. Simon, The melting behavior of aluminum nanoparticles. Thermochimica Acta, 2007. 463(1): p. 32-40. 26. Magdassi, S., et al., Triggering the sintering of silver nanoparticles at room temperature. ACS nano, 2010. 4(4): p. 1943-1948. 27. Frenken, J.W. and J. Van der Veen, Observation of surface melting. Physical review letters, 1985. 54(2): p. 134. 28. Wu, C.-J., Y.-J. Sheng, and H.-K. Tsao, Copper conductive lines on flexible substrates fabricated at room temperature. Journal of Materials Chemistry C, 2016. 4(15): p. 3274-3280. 29. Yong, Y., et al., The mechanism of alkylamine-stabilized copper fine particles towards improving the electrical conductivity of copper films at low sintering temperature. Journal of Materials Chemistry C, 2015. 3(23): p. 5890-5895. 30. Ko, S.H. and C.P. Grigoropoulos, Unconventional, laser based OLED material direct patterning and transfer methods. 2011: INTECH Open Access Publisher. 31. Yonezawa, T., N. Nishida, and A. Hyono, One-pot preparation of antioxidized copper fine particles with a unique structure by chemical reduction at room temperature. Chemistry letters, 2010. 39(6): p. 548-549. 32. Sugiyama, T., et al., Low-temperature sintering of metallacyclic stabilized copper nanoparticles and adhesion enhancement of conductive copper film to a polyimide substrate. Journal of Materials Science: Materials in Electronics, 2016. 27(7): p. 7540-7547. 33. Granata, G., et al., Study of the synthesis of copper nanoparticles: the role of capping and kinetic towards control of particle size and stability. Journal of Nanoparticle Research, 2016. 18(5): p. 1-12. 34. Matsubara, M., T. Yonezawa, and H. Tsukamoto, Effect of Glass Transition Temperature of Stabilizing Polymer of Air-Stable Gelatin-Stabilized Copper Fine Particles during Redox Two-Step Low-Temperature Sintering Process. Bulletin of the Chemical Society of Japan, 2015. 88(12): p. 1755-1759. 35. Lee, Y., et al., Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics. Nanotechnology, 2008. 19(41): p. 415604. 36. Yang, C., C.P. Wong, and M.M. Yuen, Printed electrically conductive composites: conductive filler designs and surface engineering. Journal of Materials Chemistry C, 2013. 1(26): p. 4052-4069. 37. Li, W., et al., Self-reducible copper inks composed of copper–amino complexes and preset submicron copper seeds for thick conductive patterns on a flexible substrate. Journal of Materials Chemistry C, 2016. 4(37): p. 8802-8809. 38. Kim, S.J., et al., Effect of copper concentration in printable copper inks on film fabrication. Thin Solid Films, 2012. 520(7): p. 2731-2734. 39. Shin, D.-H., et al., A self-reducible and alcohol-soluble copper-based metal–organic decomposition ink for printed electronics. ACS applied materials & interfaces, 2014. 6(5): p. 3312-3319. 40. Rosen, Y., M. Grouchko, and S. Magdassi, Printing a Self‐Reducing Copper Precursor on 2D and 3D Objects to Yield Copper Patterns with 50% Copper's Bulk Conductivity. Advanced Materials Interfaces, 2015. 2(3). 41. Choi, Y.-H. and S.-H. Hong, Effect of the Amine Concentration on Phase Evolution and Densification in Printed Films Using Cu (II) Complex Ink. Langmuir, 2015. 31(29): p. 8101-8110. 42. Yabuki, A. and S. Tanaka, Electrically conductive copper film prepared at low temperature by thermal decomposition of copper amine complexes with various amines. Materials Research Bulletin, 2012. 47(12): p. 4107-4111. 43. Yabuki, A., N. Arriffin, and M. Yanase, Low-temperature synthesis of copper conductive film by thermal decomposition of copper–amine complexes. Thin Solid Films, 2011. 519(19): p. 6530-6533. 44. Farraj, Y., M. Grouchko, and S. Magdassi, Self-reduction of a copper complex MOD ink for inkjet printing conductive patterns on plastics. Chemical Communications, 2015. 51(9): p. 1587-1590. 45. Yonezawa, T., et al., Low temperature sintering process of copper fine particles under nitrogen gas flow with Cu 2+-alkanolamine metallacycle compounds for electrically conductive layer formation. RSC advances, 2016. 6(15): p. 12048-12052. 46. Paquet, C., et al., Pyridine–copper (ii) formates for the generation of high conductivity copper films at low temperatures. Chemical Communications, 2016. 52(12): p. 2605-2608. 47. Yong, Y., et al., Use of decomposable polymer-coated submicron Cu particles with effective additive for production of highly conductive Cu films at low sintering temperature. Journal of Materials Chemistry C, 2017. 48. Huang, K.-M., et al., Stabilization of the thermal decomposition process of self-reducible copper ion ink for direct printed conductive patterns. RSC Advances, 2017. 7(40): p. 25095-25100. 49. Kajita, M., et al., Development of a curable conductive copper paste in air. Transactions of The Japan Institute of Electronics Packaging, 2015. 8(1): p. 151-155. 50. Cho, S., et al., Self-reducible copper ion complex ink for air sinterable conductive electrodes. Journal of Materials Chemistry C, 2016. 4(45): p. 10740-10746. 51. Farraj, Y., et al., Plasma-Induced Decomposition of Copper Complex Ink for the Formation of Highly Conductive Copper Tracks on Heat-Sensitive Substrates. ACS Applied Materials & Interfaces, 2017. 52. Niittynen, J., et al., Comparison of laser and intense pulsed light sintering (IPL) for inkjet-printed copper nanoparticle layers. Scientific reports, 2015. 5: p. 8832. 53. Min, H., et al., Fabrication of 10µm-scale conductive Cu patterns by selective laser sintering of Cu complex ink. Optics & Laser Technology, 2017. 88: p. 128-133. 54. Xu, X., et al., Formation of conductive copper lines by femtosecond laser irradiation of copper nitride film on plastic substrates. Materials Research Bulletin, 2015. 65: p. 68-72. 55. Kim, H.-S., et al., Intense pulsed light sintering of copper nanoink for printed electronics. Applied Physics A: Materials Science & Processing, 2009. 97(4): p. 791-798. 56. Hwang, Y.-T., et al., Intensive Plasmonic Flash Light Sintering of Copper Nanoinks Using a Band-Pass Light Filter for Highly Electrically Conductive Electrodes in Printed Electronics. ACS applied materials & interfaces, 2016. 8(13): p. 8591-8599. 57. Yim, C., A. Sandwell, and S.S. Park, Hybrid Copper–Silver Conductive Tracks for Enhanced Oxidation Resistance under Flash Light Sintering. ACS applied materials & interfaces, 2016. 8(34): p. 22369-22373. 58. Draper, G.L., Conductive inks and films via intense pulsed light. 2016. 59. Albrecht, A., et al., Inkjet printing and photonic sintering of silver and copper oxide nanoparticles for ultra-low-cost conductive patterns. Journal of Materials Chemistry C, 2016. 4(16): p. 3546-3554. 60. Zhong, Z., et al., Roll-to-roll-compatible, flexible, transparent electrodes based on self-nanoembedded Cu nanowires using intense pulsed light irradiation. Nanoscale, 2016. 8(16): p. 8995-9003. 61. Jun, S., B.K. Ju, and J.W. Kim, Ultra‐Facile Fabrication of Stretchable and Transparent Capacitive Sensor Employing Photo‐Assisted Patterning of Silver Nanowire Networks. Advanced Materials Technologies, 2016. 1(6). 62. Wu, X., et al., Printed highly conductive Cu films with strong adhesion enabled by low-energy photonic sintering on low-Tg flexible plastic substrate. Nanotechnology, 2016. 28(3): p. 035203. 63. Chung, W.-H., et al., Electrical wire explosion process of copper/silver hybrid nano-particle ink and its sintering via flash white light to achieve high electrical conductivity. Nanotechnology, 2016. 27(20): p. 205704. 64. Joo, S.-J., et al., A highly reliable copper nanowire/nanoparticle ink pattern with high conductivity on flexible substrate prepared via a flash light-sintering technique. ACS applied materials & interfaces, 2015. 7(10): p. 5674-5684. 65. Hwang, H.-J., K.-H. Oh, and H.-S. Kim, All-photonic drying and sintering process via flash white light combined with deep-UV and near-infrared irradiation for highly conductive copper nano-ink. Scientific reports, 2016. 6. 66. Ryu, C.-H., S.-J. Joo, and H.-S. Kim, Two-step flash light sintering of copper nanoparticle ink to remove substrate warping. Applied Surface Science, 2016. 384: p. 182-191. 67. Jeon, E.-B., et al., Two-step flash light sintering process for enhanced adhesion between copper complex ion/silane ink and a flexible substrate. Thin Solid Films, 2016. 603: p. 382-390. 68. Araki, T., et al., Cu salt ink formulation for printed electronics using photonic sintering. Langmuir, 2013. 29(35): p. 11192-11197. 69. Draper, G.L., et al., Fabrication of elemental copper by intense pulsed light processing of a copper nitrate hydroxide ink. ACS applied materials & interfaces, 2015. 7(30): p. 16478-16485. 70. Wang, B.-Y., et al., Cu ion ink for a flexible substrate and highly conductive patterning by intensive pulsed light sintering. ACS applied materials & interfaces, 2013. 5(10): p. 4113-4119. 71. Paquet, C., et al., Photosintering and electrical performance of CuO nanoparticle inks. Organic Electronics, 2014. 15(8): p. 1836-1842. 72. Kang, H., E. Sowade, and R.R. Baumann, Direct intense pulsed light sintering of inkjet-printed copper oxide layers within six milliseconds. ACS applied materials & interfaces, 2014. 6(3): p. 1682-1687. 73. 廖伯軒, 雷射印表機列印原理與耗材之製作. 2005. 74. Ataeefard, M., Production of black toner through emulsion aggregation of magnetite, carbon black, and styrene-acrylic co-polymer: Investigation on the effect of variation in components. Journal of Composite Materials, 2015. 49(13): p. 1553-1561. 75. http://www.canon.com/technology/approach/history/print_tech.html. 76. Pai, D.M. and B.E. Springett, Physics of electrophotography. Reviews of Modern Physics, 1993. 65(1): p. 163. 77. Baur, R. and H.-T. Macholdt, Charge control agents and triboelectrically-adjusted pigments in electrophotographic toner. Journal of electrostatics, 1997. 40: p. 621-626. 78. Bazrafshan, Z., M. Ataeefard, and F. Nourmohammadian, Physicochemical colourants effects on polymeric composites printing toner. Pigment & Resin Technology, 2014. 43(5): p. 245-250. 79. Hasegawa, J., N. Yanagida, and M. Tamura, Toner prepared by the direct polymerization method in comparison with the pulverization method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999. 153(1): p. 215-220. 80. Li, K., et al., Review of toner-based printing technologies and fundamentals of toner charging mechanism. Journal of Imaging Science and Technology, 2010. 54(5): p. 50201-1-50201-5. 81. Seaver, A.E. Tribocharging and the finite thickness interface. in Proceedings of the 2012 Electrostatics Joint Conference, Cambridge, ON, Canada. 2012. 82. Rupprecht, L., Conductive polymers and plastics: in industrial applications. 1999: William Andrew. 83. Ireland, P.M., Dynamic particle-surface tribocharging: The role of shape and contact mode. Journal of Electrostatics, 2012. 70(6): p. 524-531. 84. Taylor, D., D. Owen, and J. Elias, An instrument for measuring static dissipation from materials. Journal of electrostatics, 1987. 19(1): p. 53-64. 85. Veregin, R.P., et al., Toner and developer compositions with a specific resistivity. 2011, Google Patents. 86. Baur, R. and H.-T. Macholdt, Charge control agents for triboelectric (friction) charging. Journal of Electrostatics, 1993. 30: p. 213-222. 87. Tsuruhara, T. and K. Sukata, Positively-chargeable charge control agent and toner for developing electrostatic images. 1999, Google Patents. 88. Birkett, K. and P. Gregory, Metal complex dyes as charge control agents. Dyes and pigments, 1986. 7(5): p. 341-350. 89. Shimada, A., M. Saito, and Y. Sano. Property of Toner Layer on Developing Roller for Mono-Component Developing System. in NIP & Digital Fabrication Conference. 2005. Society for Imaging Science and Technology. 90. Jones, J., et al., Laser Printing Circuit Boards and Electronics. Journal of Imaging Science and Technology, 2012. 56(4): p. 40503-1-40503-11. 91. AL-Rubaiey, H., Toner Transfer and Fusing in Electrophotography. Graphic Arts in Finland, 2010. 39: p. 1. 92. Huang, G.-W., et al., Rapid Laser Printing of Paper-Based Multilayer Circuits. ACS nano, 2016. 10(9): p. 8895-8903. 93. Gupta, R., et al., Solution processed large area fabrication of Ag patterns as electrodes for flexible heaters, electrochromics and organic solar cells. Journal of Materials Chemistry A, 2014. 2(28): p. 10930-10937. 94. Abdelgawad, M. and A.R. Wheeler, Rapid prototyping in copper substrates for digital microfluidics. Advanced Materials, 2007. 19(1): p. 133-137. 95. Hu, M., et al., SU-8-Induced Strong Bonding of Polymer Ligands to Flexible Substrates via in Situ Cross-Linked Reaction for Improved Surface Metallization and Fast Fabrication of High-Quality Flexible Circuits. ACS applied materials & interfaces, 2016. 8(7): p. 4280-4286. 96. Ahn, J., et al., Extremely Robust and Patternable Electrodes for Copy-Paper-Based Electronics. ACS Applied Materials & Interfaces, 2016. 8(29): p. 19031-19037. 97. Zhang, T., et al., A laser printing based approach for printed electronics. Applied Physics Letters, 2016. 108(10): p. 103501. 98. Jin, X., et al., Material design and process development of electrostatically patterning silver capsuled composite particle for preparing conductive tracks on flexible substrate. Composites Part B: Engineering, 2016. 105: p. 111-115. 99. Büttner, D., et al. Pre-Treatment of Silver Particles as a Basis for Functional Toner. in NIP & Digital Fabrication Conference. 2011. Society for Imaging Science and Technology. 100. Jones, J., et al., Printed circuit boards by selective deposition and processing. nanoscale, 2011. 22: p. 23. 101. Yates, M.Z., et al., Process for preparing polymer particles containing metallic flakes. 2011, Google Patents. 102. Nair, M., X. Yang, and J.S. Sedita, Toner containing metallic flakes and method of forming metallic image. 2013, Google Patents. 103. Tyagi, D., et al., Preparing color toner images with metallic effect. 2016, Google Patents. 104. Tyagi, D., L. Granica, and K. Lofftus. Novel Electrophotographic Toners for Providing Metallic Effects. in NIP & Digital Fabrication Conference. 2013. Society for Imaging Science and Technology. 105. 江睿軒, 以冷凍乾燥法製備雷射印表機之導電碳粉. 2015, 江睿軒. 106. 許喬鈞, 以奈米碳管製備導電碳粉. 2014, 許喬鈞. 107. http://sds.brother.co.jp/sdsapp/searchresult?lang=en&prod=pri. 108. http://www.simulationexams.com/tutorials/aplus/essentials/printers-and-scanners.htm. 109. Park, S.-H., W.-H. Chung, and H.-S. Kim, Temperature changes of copper nanoparticle ink during flash light sintering. Journal of Materials Processing Technology, 2014. 214(11): p. 2730-2738. 110. Ryu, J., H.-S. Kim, and H.T. Hahn, Reactive sintering of copper nanoparticles using intense pulsed light for printed electronics. Journal of Electronic Materials, 2011. 40(1): p. 42-50. 111. Paglia, F., et al., Photonic sintering of copper through the controlled reduction of printed CuO nanocrystals. ACS applied materials & interfaces, 2015. 7(45): p. 25473-25478. 112. Ota, T., et al., Control of percolation curve by filler particle shape in Cu-SBR composites. Journal of Materials Science Letters, 1997. 16(13): p. 1182-1183. 113. Joo, S.-J., H.-J. Hwang, and H.-S. Kim, Highly conductive copper nano/microparticles ink via flash light sintering for printed electronics. Nanotechnology, 2014. 25(26): p. 265601. 114. Tobjörk, D. and R. Österbacka, Paper electronics. Advanced Materials, 2011. 23(17): p. 1935-1961. 115. Hwang, H.-J., W.-H. Chung, and H.-S. Kim, In situ monitoring of flash-light sintering of copper nanoparticle ink for printed electronics. Nanotechnology, 2012. 23(48): p. 485205. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77758 | - |
dc.description.abstract | 雷射印表機已被廣泛應用在日常生活中各式文件檔案的列印,它可以提供高列印速率與良好的解析度。其核心技術為靜電複印術,利用施加電場偏壓的方式可以將帶有靜電荷的粉末快速排列並形成圖樣。此印刷技術有著快速、高解析度與全乾式等優點,然而卻鮮少被應用在印刷電子中。在本研究中,我們對靜電複印技術原理作探討,並嘗試利用此技術
導電物質圖樣化,達到製備導電圖案的目的。為了使導電金屬物質能相容於印刷過程,我們以高分子對銅粒子作表面修飾,藉由選用適合的銅粒子並調整高分子種類與含量以提升粉末在印表機元件之間的轉移效率並增進印刷圖案品質,並配合後續光燒結的方式將高分子移除以形成導電通路,在最佳情形下,所印製之圖案的片電阻值為0.25 Ω/□。利用此技術我們在PET、PI與紙等軟性基版上以全乾式的印刷方式快速、大面積的製備出各式高導電度的圖案,展現此技術未來應用在印刷電子的潛力。 | zh_TW |
dc.description.abstract | Laser printer has been widely used to print various documents in our daily life. It can print pattern not only with high printing speed but also high resolution. The core technology used in laser printing is electrostatic printing technology. It has great advantages of fast speed, high resolution, and dry printing process; however, it is rarely used in printed electronics. In this study, we aim to understand the electrostatic printing process and try to apply commercial laser printer to print conductive material to fabricate conductive patterns. In order to make conductive metal material compatible with electrostatic printing process, the conductive copper powders are modified with polymer. The printed patterns is then treated by subsequent photo sintering process to remove polymer and form conductive pathways. Under optimum conditions, the sheet resistance of the printed conductive film is 0.25 Ω/□. Using this technique, we successfully fabricate various conductive patterns on flexible substrate such as PET, PI, and paper by a dry printing process, demonstrating the potential of this technique to apply to printed electronics. | en |
dc.description.provenance | Made available in DSpace on 2021-07-10T22:20:04Z (GMT). No. of bitstreams: 1 ntu-106-R04524058-1.pdf: 4338721 bytes, checksum: 438b866d5bf42f9f5a43365f4fe1426c (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 口試委員審定書.............................................................................................................. #
誌謝................................................................................................................................... i 中文摘要.......................................................................................................................... ii ABSTRACT .................................................................................................................... iii 目錄................................................................................................................................. iv 圖目錄............................................................................................................................. vi 表目錄............................................................................................................................. ix 第一章 緒論.......................................................................................................... 1 1.1 研究背景與動機................................................................................................. 1 1.2 研究目的............................................................................................................. 2 1.3 論文架構............................................................................................................. 2 第二章 文獻回顧 ........................................................................................................ 3 2.1 印刷技術............................................................................................................. 3 2.1.1 印刷方法........................................................................................ 3 2.2.2 金屬導電材料................................................................................ 7 2.2 銅薄膜製備......................................................................................................... 9 2.2.1 燒結原理........................................................................................ 9 2.2.2 銅導電原料...................................................................................11 2.2.3 脈衝光燒結.................................................................................. 14 2.3 靜電複印技術.................................................................................................. 20 2.3.1 雷射印表機基本運作原理.......................................................... 20 2.3.2 碳粉特徵與組成.......................................................................... 25 v 2.3.3 摩擦起電...................................................................................... 28 2.3.4 碳粉轉移效率.............................................................................. 30 2.4 利用靜電複印技術製備導電圖案.................................................................. 32 第三章 實驗系統程序 .............................................................................................. 36 3.1 實驗藥品與儀器介紹...................................................................................... 36 3.1.1 實驗藥品...................................................................................... 36 3.1.2 實驗儀器...................................................................................... 37 3.1.3 雷射印表機.................................................................................. 38 3.2 實驗流程.......................................................................................................... 39 3.2.1 銅粉表面改質.............................................................................. 39 3.2.2 以熱壓方法製備粉末薄膜.......................................................... 41 3.2.2 以雷射印表機印刷粉末.............................................................. 42 3.2.3 印刷品質評估.............................................................................. 42 3.2.4 脈衝光燒結.................................................................................. 44 第四章 雷射印表機印刷導電圖案 .......................................................................... 45 4.1 粉末導電性分析.............................................................................................. 45 4.2 碳粉修飾銅粉之印刷品質分析...................................................................... 52 4.3 PVP 修飾銅粉之印刷品質分析 ...................................................................... 54 4.4 燒結結果.......................................................................................................... 60 4.5 使用片狀銅粉作為導電材料.......................................................................... 65 第五章 結論與未來展望 .......................................................................................... 73 參考資料........................................................................................................................ 74 附錄................................................................................................................................ 82 | |
dc.language.iso | zh-TW | |
dc.title | 利用乾式靜電複印技術製備導電圖案 | zh_TW |
dc.title | Preparation of Conductive Patterns by Dry Electrophotographic Technique | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳立仁(Li-Jen Chen),邱文英(Wen-Yen Chiu),蘇培珍(Pei-Chen Su) | |
dc.subject.keyword | 靜電複印術,電子顯影術,雷射印刷,導電圖案,光燒結, | zh_TW |
dc.subject.keyword | electrostatic printing,electrophotography,laser printing,conductive pattern,photo sintering, | en |
dc.relation.page | 84 | |
dc.identifier.doi | 10.6342/NTU201702232 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2017-07-31 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-R04524058-1.pdf 目前未授權公開取用 | 4.24 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。