Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77757
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃信富(Hsin-Fu Huang)
dc.contributor.authorJia-Wei Linen
dc.contributor.author林家維zh_TW
dc.date.accessioned2021-07-10T22:20:01Z-
dc.date.available2021-07-10T22:20:01Z-
dc.date.copyright2017-08-29
dc.date.issued2017
dc.date.submitted2017-07-31
dc.identifier.citation[1] Starner, T., 1996, 'Human-powered wearable computing,' IBM Systems Journal, 35(3.4), pp. 618-629.
[2] Priya, S., and Inman, D. J., 2009, Energy Harvesting Technologies, Springer, New York, NY.
[3] Brand, O., Fedder, G. K., Hierold, C., Korvink, J. G., Tabata, O., Briand, D., Yeatman, E., and Roundy, S., 2015, Micro Energy Harvesting, John Wiley & Sons, San Francisco, CA.
[4] Kymissis, J., Kendall, C., Paradiso, J., and Gershenfeld, N., 'Parasitic power harvesting in shoes,' Proceedings of the Wearable Computers, 1998. Digest of Papers. Second International Symposium on, IEEE, pp. 132-139.
[5] Shenck, N. S., and Paradiso, J. A., 2001, 'Energy scavenging with shoe-mounted piezoelectrics,' IEEE Micro, 21(3), pp. 30-42.
[6] Howells, C. A., 2009, 'Piezoelectric energy harvesting,' Energy Conversion and Management, 50(7), pp. 1847-1850.
[7] Meninger, S., Mur-Miranda, J. O., Amirtharajah, R., Chandrakasan, A., and Lang, J. H., 2001, 'Vibration-to-electric energy conversion,' IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 9(1), pp. 64-76.
[8] Tashiro, R., Kabei, N., Katayama, K., Tsuboi, E., and Tsuchiya, K., 2002, 'Development of an electrostatic generator for a cardiac pacemaker that harnesses the ventricular wall motion,' Journal of Artificial Organs, 5(4), pp. 239-245.
[9] Erturk, A., Le, C. P., Halvorsen, E., Søråsen, O., and Yeatman, E. M., 2012, 'Microscale electrostatic energy harvester using internal impacts,' Journal of Intelligent Material Systems and Structures, 23(13), pp. 1409-1421.
[10] Holmes, A. S., Hong, G., and Pullen, K. R., 2005, 'Axial-flux permanent magnet machines for micropower generation,' Journal of Microelectromechanical Systems, 14(1), pp. 54-62.
[11] Beeby, S. P., Torah, R., Tudor, M., Glynne-Jones, P., O'donnell, T., Saha, C., and Roy, S., 2007, 'A micro electromagnetic generator for vibration energy harvesting,' Journal of Micromechanics and Microengineering, 17(7), pp. 1257-1265.
[12] Yang, B., Lee, C., Xiang, W., Xie, J., He, J. H., Kotlanka, R. K., Low, S. P., and Feng, H., 2009, 'Electromagnetic energy harvesting from vibrations of multiple frequencies,' Journal of Micromechanics and Microengineering, 19(3), 035001.
[13] Beeby, S. P., Tudor, M. J., and White, N., 2006, 'Energy harvesting vibration sources for microsystems applications,' Measurement Science and Technology, 17(12), pp. R175-R195.
[14] Roundy, S., Wright, P. K., and Rabaey, J., 2003, 'A study of low level vibrations as a power source for wireless sensor nodes,' Computer Communications, 26(11), pp. 1131-1144.
[15] Williams, C., and Yates, R. B., 1996, 'Analysis of a micro-electric generator for microsystems,' Sensors and Actuators A: Physical, 52(1-3), pp. 8-11.
[16] Yang, J., Lu, F., Kostiuk, L. W., and Kwok, D. Y., 2003, 'Electrokinetic microchannel battery by means of electrokinetic and microfluidic phenomena,' Journal of Micromechanics and Microengineering, 13(6), pp. 963-970.
[17] Chang, C.-L., 2016, 'Electrokinetic pressure-driven flows and streaming potential effects of electroheological liquids,' Master Thesis, Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan.
[18] Hunter, R. J., 1981, Zeta Potential in Colloid Science : Principles and Applications, Academic Press, New York, NY.
[19] Li, D., 2004, Electrokinetics in Microfluidics, Academic Press, New York, NY.
[20] Lyklema, J., 1995, Fundamentals of Interface and Colloid Science Vol. II: Solid-Liquid Interfaces, Academic Press, New York, NY.
[21] Probstein, R. F., 1994, Physicochemical Hydrodynamics : An Introduction, John Wiley & Sons, New York, NY.
[22] Quincke, G., 1859, 'Ueber eine neue art elektrischer ströme,' Annalen der Physik, 183(5), pp. 1-47.
[23] Morrison Jr, F., and Osterle, J., 1965, 'Electrokinetic energy conversion in ultrafine capillaries,' The Journal of Chemical Physics, 43(6), pp. 2111-2115.
[24] Osterle, J., 1964, 'Electrokinetic energy conversion,' Journal of Applied Mechanics, 31(161), pp. 1-4.
[25] Rice, C., and Whitehead, R., 1965, 'Electrokinetic flow in a narrow cylindrical capillary,' The Journal of Physical Chemistry, 69(11), pp. 4017-4024.
[26] Huang, H.-F., and Yang, P.-W., 2017, 'Electrokinetic streaming power generation using squeezing liquid flows in slit channels with wall slip,' Colloids and Surfaces A: Physicochemical and Engineering Aspects, 514, pp. 192-208.
[27] Li, C., Liu, K., Liu, H., Yang, B., and Hu, X., 2017, 'Capillary driven electrokinetic generator for environmental energy harvesting,' Materials Research Bulletin, 90, pp. 81-86.
[28] Panchapakesan, R., and Oh, K. W., 'Streaming Potential Measurement in Live Plants for Energy Harvesting Applications,' Proceedings of the ASME 2009 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, pp. 341-342.
[29] Liu, K., Ding, T., Mo, X., Chen, Q., Yang, P., Li, J., Xie, W., Zhou, Y., and Zhou, J., 2016, 'Flexible microfluidics nanogenerator based on the electrokinetic conversion,' Nano Energy, 30, pp. 684-690.
[30] Burgreen, D., and Nakache, F., 1964, 'Electrokinetic flow in ultrafine capillary slits,' The Journal of Physical Chemistry, 68(5), pp. 1084-1091.
[31] Burgreen, D., and Nakache, F., 1965, 'Efficiency of pumping and power generation in ultrafine electrokinetic systems,' Journal of Applied Mechanics, 32(3), pp. 675-679.
[32] Daiguji, H., Yang, P., Szeri, A. J., and Majumdar, A., 2004, 'Electrochemomechanical energy conversion in nanofluidic channels,' Nano Letters, 4(12), pp. 2315-2321.
[33] Daiguji, H., Oka, Y., Adachi, T., and Shirono, K., 2006, 'Theoretical study on the efficiency of nanofluidic batteries,' Electrochemistry Communications, 8(11), pp. 1796-1800.
[34] Van der Heyden, F. H., Bonthuis, D. J., Stein, D., Meyer, C., and Dekker, C., 2006, 'Electrokinetic energy conversion efficiency in nanofluidic channels,' Nano Letters, 6(10), pp. 2232-2237.
[35] Lu, M.-C., Satyanarayana, S., Karnik, R., Majumdar, A., and Wang, C.-C., 2006, 'A mechanical-electrokinetic battery using a nano-porous membrane,' Journal of Micromechanics and Microengineering, 16(4), pp. 667-675.
[36] Pennathur, S., Eijkel, J., and van den Berg, A., 2007, 'Energy conversion in microsystems: is there a role for micro/nanofluidics?,' Lab on a Chip, 7(10), pp. 1234-1237.
[37] Wang, M., and Kang, Q., 2010, 'Electrochemomechanical energy conversion efficiency in silica nanochannels,' Microfluidics and Nanofluidics, 9(2-3), pp. 181-190.
[38] Xuan, X., and Li, D., 2006, 'Thermodynamic analysis of electrokinetic energy conversion,' Journal of Power Sources, 156(2), pp. 677-684.
[39] Davidson, C., and Xuan, X., 2008, 'Effects of Stern layer conductance on electrokinetic energy conversion in nanofluidic channels,' Electrophoresis, 29(5), pp. 1125-1130.
[40] Chein, R., Liao, C., and Chen, H., 2009, 'Electrokinetic energy conversion efficiency analysis using nanoscale finite-length surface-charged capillaries,' Journal of Power Sources, 187(2), pp. 461-470.
[41] Yang, J., and Kwok, D. Y., 2003, 'Microfluid flow in circular microchannel with electrokinetic effect and Navier's slip condition,' Langmuir, 19(4), pp. 1047-1053.
[42] Davidson, C., and Xuan, X., 2008, 'Electrokinetic energy conversion in slip nanochannels,' Journal of Power Sources, 179(1), pp. 297-300.
[43] Ren, Y., and Stein, D., 2008, 'Slip-enhanced electrokinetic energy conversion in nanofluidic channels,' Nanotechnology, 19(19), 195707.
[44] Zhao, C., and Yang, C., 2011, 'On the competition between streaming potential effect and hydrodynamic slip effect in pressure-driven microchannel flows,' Colloids and Surfaces A: Physicochemical and Engineering Aspects, 386(1), pp. 191-194.
[45] Yan, Y., Sheng, Q., Wang, C., Xue, J., and Chang, H.-C., 2013, 'Energy conversion efficiency of nanofluidic batteries: hydrodynamic slip and access resistance,' The Journal of Physical Chemistry C, 117(16), pp. 8050-8061.
[46] Yang, J., Lu, F., Kostiuk, L. W., and Kwok, D. Y., 'Electrokinetic power generation via streaming potentials in microchannels: a mobile-ion-drain method to increase streaming potentials,' Proceedings of the MEMS, NANO and Smart Systems, 2004. ICMENS 2004. Proceedings. 2004 International Conference on, IEEE, pp. 675-679.
[47] Yang, J., Lu, F., Kostiuk, L. W., and Kwok, D. Y., 2005, 'Electrokinetic power generation by means of streaming potentials: a mobile-ion-drain method to increase the streaming potentials,' Journal of Nanoscience and Nanotechnology, 5(4), pp. 648-652.
[48] Liu, M., and Yang, J., 2009, 'Electrokinetic effect of the endothelial glycocalyx layer on two-phase blood flow in small blood vessels,' Microvascular Research, 78(1), pp. 14-19.
[49] Frank, E. H., and Grodzinsky, A. J., 1987, 'Cartilage electromechanics—I. Electrokinetic transduction and the effects of electrolyte pH and ionic strength,' Journal of Biomechanics, 20(6), pp. 615-627.
[50] Frank, E. H., and Grodzinsky, A. J., 1987, 'Cartilage electromechanics—II. A continuum model of cartilage electrokinetics and correlation with experiments,' Journal of Biomechanics, 20(6), pp. 629-639.
[51] McLachlan, N. W., 1955, Bessel Functions for Engineers, Clarendon Press Oxford.
[52] Lyklema, J., 1991, Fundamentals of Interface and Colloid Science Vol. I: Fundamentals, Academic Press, New York, NY.
[53] Leider, P. J., and Bird, R. B., 1974, 'Squeezing flow between parallel disks. I. Theoretical analysis,' Industrial & Engineering Chemistry Fundamentals, 13(4), pp. 336-341.
[54] Lu, F., Mansouri, A., How, T. Y., Kostiuk, L. W., and Kwok, D. Y., 'Electrokinetic Generation Efficiency With Finite External Loads,' Proceedings of the ASME 3rd International Conference on Microchannels and Minichannels, American Society of Mechanical Engineers, pp. 529-534.
[55] Morgan, H., and Green, N. G., 2003, AC Electrokinetics, Research Studies Press, Baldock, Herts.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77757-
dc.description.abstract生物體內具有許多因受到應力而發生形變之彈性組織,彈性組織內部的流體將因彈性組織發生形變因受到擠壓而開始流動。本研究主要目的是分析彈性組織受到應力進而發生形變時,內部流體因彈性組織變形而誘導出之電動力效應(electrokinetic effect)的能量轉換效能。由於內部流體因彈性組織發生形變而產生流動,傳統壓力驅動流(pressure-driven flow)並無法詳盡描述內部流體流動之情況,因此吾人透過質量守恆定律將此流場以擠壓流(squeeze flow)之形式進行描述。並利用以上之模型求解出圓管型電動力擠壓流之解析解,包括速度場、生成電流、軸向電位分佈以及能量轉換效率等。參數分析部分則討論當流道幾何以及外部電阻發生改變時,並於固定壁面收縮速度或施予固定壁面作用力之情況下,探討機械能轉換為電能時,能量轉換效能所發生之變化。除此之外,增加流道並聯數量與加入線性納維滑移條件(linear Navier slip condition)可分別有效提升總電流與能量轉換效率。由最終之結果顯示,增加滑移長度可有效使得能量轉換效率提升,而最大轉換效率可達約 30 % ,且最大轉換效率相近於平板型電動力擠壓流之能
量轉換效率。
zh_TW
dc.description.abstractMany elastic biological tissues undergo deformation due to an external stress. Hence, flow will be induced by deformation of the tissues. In this thesis, we aim to analyze and investigate the performance of mechanical to electrical electrokinetic energy conversion. Because the flow is induced by deformation of the tissues, the pressure-driven flow cannot describe the flow entirely. Therefore, we introduce the mass conservation law into our analysis to construct a model for squeeze flow. Under this model and some assumptions, we can obtain the analytical expressions, including velocity field, total current, streaming potentials, and efficiency. Parametric analyses are conducted to investigate the variation in the electrokinetic energy conversion performance with respect to variation in the channel radius or channel length. In addition, increasing the number of channels and applying the linear Navier slip condition will enhance the strength of total current and improve the energy conversion efficiency, respectively. The results show that maximum efficiency goes above 30% while employing infinite slip lengths and that the efficiency of the circular cylindrical geometries is close to that of planar geometries.en
dc.description.provenanceMade available in DSpace on 2021-07-10T22:20:01Z (GMT). No. of bitstreams: 1
ntu-106-R04522122-1.pdf: 6300903 bytes, checksum: a627901c696518aada5cf10d5d2ab5ec (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員審定書............................................................................................................ I
摘要............................................................................................................................... II
Abstract ........................................................................................................................ III
誌謝.............................................................................................................................. IV
總目錄.......................................................................................................................... VI
圖目錄....................................................................................................................... VIII
表目錄....................................................................................................................... XIII
符號表....................................................................................................................... XIV
第一章 緒論................................................................................................................ 1
1.1 引言................................................................................................................. 1
1.2 文獻回顧......................................................................................................... 2
1.3 動機................................................................................................................. 4
第二章 理論模型與分析............................................................................................ 5
2.1 電雙層與流動電位......................................................................................... 8
2.1.1 電雙層結構.......................................................................................... 8
2.1.2 流動電位............................................................................................ 11
2.2 流場分析....................................................................................................... 15
2.3 壓擠流........................................................................................................... 19
2.4 電流守恆....................................................................................................... 20
2.5 效率分析....................................................................................................... 22
第三章 結果與討論.................................................................................................. 28
3.1 徑向電位分佈............................................................................................... 30
3.2 流場速度與壓力分佈................................................................................... 31
3.3 總電流........................................................................................................... 43
3.4 流動電位分佈............................................................................................... 58
3.5 能量轉換效率............................................................................................... 63
3.6 功率探討....................................................................................................... 75
第四章 結論與展望.................................................................................................. 80
4.1 結論............................................................................................................... 80
4.2 展望............................................................................................................... 80
參考文獻...................................................................................................................... 82
dc.language.isozh-TW
dc.subject流動電位zh_TW
dc.subject壓力驅動流zh_TW
dc.subject線性納維滑移條件zh_TW
dc.subject電動力效應zh_TW
dc.subject能量轉換zh_TW
dc.subject擠壓流zh_TW
dc.subject圓管型zh_TW
dc.subjectstreaming potentialen
dc.subjectcylindrical tube geometriesen
dc.subjectenergy conversionen
dc.subjectelectrokinetic phenomenaen
dc.subjectlinear Navier slip conditionen
dc.subjectpressure-driven flowen
dc.subjectsqueeze flowen
dc.title圓管型電動力擠壓流之分析zh_TW
dc.titleAnalysis on Electrokinetic Squeeze Liquid Flows in Circular Cylindrical Geometriesen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee尤瓊琦(Chung-Chyi Yu),施因澤(Yin-Tzer Shih)
dc.subject.keyword圓管型,能量轉換,電動力效應,線性納維滑移條件,壓力驅動流,擠壓流,流動電位,zh_TW
dc.subject.keywordcylindrical tube geometries,energy conversion,electrokinetic phenomena,linear Navier slip condition,pressure-driven flow,squeeze flow,streaming potential,en
dc.relation.page87
dc.identifier.doi10.6342/NTU201701910
dc.rights.note未授權
dc.date.accepted2017-08-01
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-106-R04522122-1.pdf
  未授權公開取用
6.15 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved