請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77743
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 廖英志(Ying-Chih Liao) | |
dc.contributor.author | Chun-Yung Huang | en |
dc.contributor.author | 黃俊庸 | zh_TW |
dc.date.accessioned | 2021-07-10T22:19:12Z | - |
dc.date.available | 2021-07-10T22:19:12Z | - |
dc.date.copyright | 2017-08-29 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-08-04 | |
dc.identifier.citation | 1. Matsuhisa, N., et al., Printable elastic conductors with a high conductivity for electronic textile applications. Nature Communications, 2015. 6.
2. Vasquez Quintero, A.F., et al. Stretchable electronic platform for soft and smart contact lens applications. in MRS Spring meeting 2016. 2016. 3. Takei, K., et al., Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nature Materials, 2010. 9(10): p. 821-826. 4. Kim, D.H., et al., Epidermal Electronics. Science, 2011. 333(6044): p. 838-843. 5. Rogers, J.A., T. Someya, and Y.G. Huang, Materials and Mechanics for Stretchable Electronics. Science, 2010. 327(5973): p. 1603-1607. 6. Choi, T., et al., Stretchable, Transparent, and Stretch-Unresponsive Capacitive Touch Sensor Array with Selectively Patterned Silver Nanowires/Reduced Graphene Oxide Electrodes. ACS applied materials & interfaces, 2017. 9(21): p. 18022-18030. 7. Wang, C.Y., et al., Buckled, Stretchable Polypyrrole Electrodes for Battery Applications. Advanced Materials, 2011. 23(31): p. 3580. 8. So, J.H., et al., Reversibly Deformable and Mechanically Tunable Fluidic Antennas. Advanced Functional Materials, 2009. 19(22): p. 3632-3637. 9. Merilampi, S., et al., Analysis of electrically conductive silver ink on stretchable substrates under tensile load. Microelectronics Reliability, 2010. 50(12): p. 2001-2011. 10. McCoul, D., et al., Recent Advances in Stretchable and Transparent Electronic Materials. Advanced Electronic Materials, 2016. 2(5). 11. Yu, X.W., et al., Materials, Mechanics, and Patterning Techniques for Elastomer-Based Stretchable Conductors. Micromachines, 2017. 8(1). 12. Niu, X.Z., et al., Characterizing and patterning of PDMS-based conducting composites. Advanced Materials, 2007. 19(18): p. 2682. 13. Bandodkar, A.J., et al., All-Printed Stretchable Electrochemical Devices. Advanced Materials, 2015. 27(19): p. 3060-3065. 14. Mata, A., A.J. Fleischman, and S. Roy, Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems. Biomedical Microdevices, 2005. 7(4): p. 281-293. 15. Vohra, A., et al., Reinventing Butyl Rubber for Stretchable Electronics. Advanced Functional Materials, 2016. 26(29): p. 5222-5229. 16. Shin, M.K., et al., Elastomeric Conductive Composites Based on Carbon Nanotube Forests. Advanced Materials, 2010. 22(24): p. 2663. 17. Wu, Y.-P., et al., Modeling Young's modulus of rubber/clay nanocomposites using composite theories. Polymer testing, 2004. 23(8): p. 903-909. 18. Lacour, S.P., et al., Stretchable gold conductors on elastomeric substrates. Applied Physics Letters, 2003. 82(15): p. 2404-2406. 19. Bowden, N., et al., Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature, 1998. 393(6681): p. 146-149. 20. Tamai, T., Electrical-Properties of Conductive Elastomer as Electrical Contact Material. Ieee Transactions on Components Hybrids and Manufacturing Technology, 1982. 5(1): p. 56-61. 21. Kim, K., et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009. 457(7230): p. 706-710. 22. Sekitani, T., et al., A rubberlike stretchable active matrix using elastic conductors. Science, 2008. 321(5895): p. 1468-1472. 23. Sekitani, T., et al., Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nature Materials, 2009. 8(6): p. 494-499. 24. Chun, K.Y., et al., Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. Nature Nanotechnology, 2010. 5(12): p. 853-857. 25. Gong, S., et al., A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nature Communications, 2014. 5. 26. Ding, S., et al., One-Step Fabrication of Stretchable Copper Nanowire Conductors by a Fast Photonic Sintering Technique and Its Application in Wearable Devices. Acs Applied Materials & Interfaces, 2016. 8(9): p. 6190-6199. 27. Hu, W.L., et al., An elastomeric transparent composite electrode based on copper nanowires and polyurethane. Journal of Materials Chemistry C, 2014. 2(7): p. 1298-1305. 28. Huang, W., et al., Highly electrically conductive and stretchable copper nanowires-based composite for flexible and printable electronics. Composites science and technology, 2017. 146: p. 169-176. 29. Langley, D., et al., Flexible transparent conductive materials based on silver nanowire networks: a review. Nanotechnology, 2013. 24(45). 30. Huang, G.W., H.M. Xiao, and S.Y. Fu, Wearable Electronics of Silver-Nanowire/Poly(dimethylsiloxane) Nanocomposite for Smart Clothing. Scientific Reports, 2015. 5. 31. Xu, F. and Y. Zhu, Highly Conductive and Stretchable Silver Nanowire Conductors. Advanced Materials, 2012. 24(37): p. 5117-5122. 32. Lee, P., et al., Highly Stretchable and Highly Conductive Metal Electrode by Very Long Metal Nanowire Percolation Network. Advanced Materials, 2012. 24(25): p. 3326-3332. 33. Lee, J.Y., D. Shin, and J. Park, Fabrication of silver nanowire-based stretchable electrodes using spray coating. Thin Solid Films, 2016. 608: p. 34-43. 34. Liu, B.T. and H.L. Kuo, Graphene/silver nanowire sandwich structures for transparent conductive films. Carbon, 2013. 63: p. 390-396. 35. Chen, S.-P. and Y.-C. Liao, Highly stretchable and conductive silver nanowire thin films formed by soldering nanomesh junctions. PCCP. Physical chemistry chemical physics, 2014. 16(37): p. 19856. 36. Hu, Y.G., et al., Low cost and highly conductive elastic composites for flexible and printable electronics. Journal of Materials Chemistry C, 2016. 4(24): p. 5839-5848. 37. Amjadi, M., et al., Highly Stretchable and Sensitive Strain Sensor Based on Silver Nanowire-Elastomer Nanocomposite. Acs Nano, 2014. 8(5): p. 5154-5163. 38. Hu, W.L., et al., Elastomeric transparent capacitive sensors based on an interpenetrating composite of silver nanowires and polyurethane. Applied Physics Letters, 2013. 102(8). 39. Park, M., J. Park, and U. Jeong, Design of conductive composite elastomers for stretchable electronics. Nano Today, 2014. 9(2): p. 244-260. 40. Shante, V.K.S. and S. Kirkpatrick, Introduction to Percolation Theory. Advances in Physics, 1971. 20(85): p. 325. 41. Li, J. and J.K. Kim, Percolation threshold of conducting polymer composites containing 3D randomly distributed graphite nanoplatelets. Composites Science and Technology, 2007. 67(10): p. 2114-2120. 42. Li, J., et al., Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes. Advanced Functional Materials, 2007. 17(16): p. 3207-3215. 43. Pan, Z.H., et al., Durable Microstructured Surfaces: Combining Electrical Conductivity with Superoleophobicity. Acs Applied Materials & Interfaces, 2016. 8(3): p. 1795-1804. 44. Lin, K.L., J. Chae, and K. Jain, Design and Fabrication of Large-Area, Redundant, Stretchable Interconnect Meshes Using Excimer Laser Photoablation and In Situ Masking. Ieee Transactions on Advanced Packaging, 2010. 33(3): p. 592-601. 45. Gonzalez, M., et al., Design of metal interconnects for stretchable electronic circuits. Microelectronics Reliability, 2008. 48(6): p. 825-832. 46. Gray, D.S., J. Tien, and C.S. Chen, High-conductivity elastomeric electronics. Advanced Materials, 2004. 16(5): p. 393. 47. Zhang, Y.H., et al., Experimental and Theoretical Studies of Serpentine Microstructures Bonded To Prestrained Elastomers for Stretchable Electronics. Advanced Functional Materials, 2014. 24(14): p. 2028-2037. 48. Fan, J.A., et al., Fractal design concepts for stretchable electronics. Nature Communications, 2014. 5. 49. Lacour, S.P., et al., Design and performance of thin metal film interconnects for skin-like electronic circuits. Ieee Electron Device Letters, 2004. 25(4): p. 179-181. 50. Shin, U.H., et al., Elastomer-Infiltrated Vertically Aligned Carbon Nanotube Film-Based Wavy-Configured Stretchable Conductors. Acs Applied Materials & Interfaces, 2014. 6(15): p. 12909-12914. 51. Goodman, D.L. and G.R. Palmese, Curing and bonding of composites using electron beam processing. The Handbook of Polymer Blends and Composites, 2001. 52. Decker, C., UV-radiation curing chemistry. Pigment & Resin Technology, 2001. 30(5): p. 278-286. 53. Decker, C., Pigment & resin technology. Pigment & Resin Technology, 2005. 34(6): p. 311-311. 54. Sangermano, M., N. Razza, and J. Crivello, Cationic UV-Curing: Technology and Applications. Macromolecular materials and engineering, 2014. 299(7): p. 775-793. 55. Ligon-Auer, S.C., et al., Toughening of photo-curable polymer networks: a review. Polymer Chemistry, 2016. 7(2): p. 257-286. 56. Endruweit, A., M.S. Johnson, and A.C. Long, Curing of composite components by ultraviolet radiation: A review. Polymer Composites, 2006. 27(2): p. 119-128. 57. Boey, F., et al., Cationic UV cure kinetics for multifunctional epoxies. Journal of Applied Polymer Science, 2002. 86(2): p. 518-525. 58. Chandra, R., et al., Studies on the Kinetics of Photo-Initiated Radical Polymerization of Modified Epoxy-Resin. Polymer International, 1992. 29(3): p. 185-190. 59. Alvankarian, J. and B.Y. Majlis, Exploiting the Oxygen Inhibitory Effect on UV Curing in Microfabrication: A Modified Lithography Technique. Plos One, 2015. 10(3). 60. Du, Y.Y., et al., Pulsed irradiation for high-throughput curing applications. Progress in Organic Coatings, 2017. 104: p. 104-109. 61. Kloosterboer, J.G., et al., The Effects of Volume Relaxation and Thermal Mobilization of Trapped Radicals on the Final Conversion of Photopolymerized Diacrylates. Polymer Communications, 1984. 25(11): p. 322-325. 62. Wen, M., L.E. Scriven, and A.V. McCormick, Differential scanning calorimetry and cantilever deflection studies of polymerization kinetics and stress in ultraviolet curing of multifunctional (meth)acrylate coatings. Macromolecules, 2002. 35(1): p. 112-120. 63. Decker, C., D. Decker, and F. Morel, Light intensity and temperature effect in photoinitiated polymerization. Photopolymerization, 1997. 673: p. 63-80. 64. Perry, M. and G. Young, A Mathematical Model for Photopolymerization From a Stationary Laser Light Source. Macromolecular theory and simulations, 2005. 14(1): p. 26-39. 65. Jiguet, S., et al., Conductive SU8 photoresist for microfabrication. Advanced Functional Materials, 2005. 15(9): p. 1511-1516. 66. Zhai, D.D., et al., Water-based ultraviolet curable conductive inkjet ink containing silver nano-colloids for flexible electronics. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2013. 424: p. 1-9. 67. Li, F.C., et al., Facile, Low-Cost, UV-Curing Approach to Prepare Highly Conductive Composites for Flexible Electronics Applications. Journal of Electronic Materials, 2016. 45(7): p. 3603-3611. 68. Cui, H.-W., et al., Ultra-fast photonic curing of electrically conductive adhesives fabricated from vinyl ester resin and silver micro-flakes for printed electronics. RSC Advances, 2014. 4(31): p. 15914. 69. Cong, H.L. and T.R. Pan, Photopatternable conductive PDMS materials for microfabrication. Advanced Functional Materials, 2008. 18(13): p. 1912-1921. 70. Sangermano, M., et al., UV-Cured Acrylic Conductive Inks for Microelectronic Devices. Macromolecular Materials and Engineering, 2013. 298(6): p. 607-611. 71. Layani, M., I. Cooperstein, and S. Magdassi, UV crosslinkable emulsions with silver nanoparticles for inkjet printing of conductive 3D structures. Journal of Materials Chemistry C, 2013. 1(19): p. 3244-3249. 72. Choi, J.H., et al., Direct UV-imprint lithography using conductive nanofiller-dispersed UV-curable resin. Journal of Vacuum Science & Technology B, 2008. 26(4): p. 1390-1394. 73. Chen, G.X., et al., Morphology-controlled fabrication of nano Ag/poly (vinyl pyrrolidone) composites and their effect on electric conductive properties of UV ink. Materials Technology, 2016. 31: p. 17-22. 74. Urdaneta, M.G., R. Delille, and E. Smela, Stretchable electrodes with high conductivity and photo-patternability. Advanced Materials, 2007. 19(18): p. 2629. 75. Greer, J.R. and R.A. Street, Thermal cure effects on electrical performance of nanoparticle silver inks. Acta Materialia, 2007. 55(18): p. 6345-6349. 76. Yang, Y., et al., Facile fabrication of stretchable Ag nanowire/polyurethane electrodes using high intensity pulsed light. Nano Research, 2016. 9(2): p. 401-414. 77. Yang, C., C.P. Wong, and M.M.F. Yuen, Printed electrically conductive composites: conductive filler designs and surface engineering. Journal of Materials Chemistry C, 2013. 1(26): p. 4052-4069. 78. Ryu, K., et al., Electrical Property and Surface Morphology of Silver Nanoparticles After Thermal Sintering. Journal of Electronic Materials, 2016. 45(1): p. 312-321. 79. Mitra, D., et al., Intense Pulsed Light Sintering of an Inkjet Printed Silver Nanoparticle Ink Depending on the Spectral Absorption and Reflection of the Background. Journal of Imaging Science and Technology, 2016. 60(4). 80. Lee, D.J., et al., Pulsed light sintering characteristics of inkjet-printed nanosilver films on a polymer substrate. Journal of Micromechanics and Microengineering, 2011. 21(12). 81. Jiu, J., et al., Strongly adhesive and flexible transparent silver nanowire conductive films fabricated with a high-intensity pulsed light technique. Journal of Materials Chemistry, 2012. 22(44): p. 23561-23567. 82. Kim, D.H., et al., Highly Stretchable and Mechanically Stable Transparent Electrode Based on Composite of Silver Nanowires and Polyurethane-Urea. Acs Applied Materials & Interfaces, 2015. 7(28): p. 15214-15222. 83. Hu, M.J., et al., Flexible Transparent PES/Silver Nanowires/PET Sandwich-Structured Film for High-Efficiency Electromagnetic Interference Shielding. Langmuir, 2012. 28(18): p. 7101-7106. 84. Hu, M.J., et al., Rapid controllable high-concentration synthesis and mutual attachment of silver nanowires. Rsc Advances, 2012. 2(5): p. 2055-2060. 85. Liu, B.T. and S.X. Huang, Transparent conductive silver nanowire electrodes with high resistance to oxidation and thermal shock. Rsc Advances, 2014. 4(103): p. 59226-59232. 86. Fievet, F., et al., Homogeneous and Heterogeneous Nucleations in the Polyol Process for the Preparation of Micron and Sub-Micron Size Metal Particles. Solid State Ionics, 1989. 32-3: p. 198-205. 87. Im, S.H., et al., Large-scale synthesis of silver nanocubes: The role of HCl in promoting cube perfection and monodispersity. Angewandte Chemie-International Edition, 2005. 44(14): p. 2154-2157. 88. Tsuji, M., et al., Roles of Pt seeds and chloride anions in the preparation of silver nanorods and nanowires by microwave-polyol method. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2008. 316(1-3): p. 266-277. 89. Sun, Y.G., et al., Polyol synthesis of uniform silver nanowires: A plausible growth mechanism and the supporting evidence. Nano Letters, 2003. 3(7): p. 955-960. 90. Kunwong, D., Curing behavior of a UV-curable coating based on urethane acrylate oligomer: the influence of reactive monomers. Wārasān Songkhlā Nakharin, 2011. 33(2): p. 201. 91. Xiao, Y., et al., A highly stretchable bioelastomer prepared by UV curing of liquid-like poly(4-methyl-epsilon-caprolactone) precursors. Journal of Materials Chemistry B, 2017. 5(3): p. 595-603. 92. Liang, J.J., K. Tong, and Q.B. Pei, A Water-Based Silver-Nanowire Screen-Print Ink for the Fabrication of Stretchable Conductors and Wearable Thin-Film Transistors. Advanced Materials, 2016. 28(28): p. 5986. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77743 | - |
dc.description.abstract | 本論文提供一個簡單且迅速之拉伸性光固化導電墨水製備方法,並採用脈衝光技術在數秒之內同時完成燒結及固化程序。透過照射高能量且波段廣之脈衝光,一方面使墨水中之導電填充物產生局部性加熱進而燒結,同時間也使墨水中之光起始劑激發產生自由基而進行固化交聯反應。此同時燒結及固化之程序,不僅避免掉傳統上加熱燒結過程中對樹酯之損壞,也降低導電網絡建立時樹酯的阻隔。因此,相較於傳統上先固化再加熱燒結之製程,奈米銀粒子比例需超過40-50 wt%始具有導電性質,本研究中奈米銀粒子之導電閾值(Percolation threshold)為20 wt%,高長徑比(Aspect ratio)之奈米銀線僅需10 wt%就能建立導電網絡。此較低之導電閾值不僅節省昂貴之導電填充物的原料成本,也保有較完整之彈性體性質,而可進一步應用於拉伸式導電線路。其中,同時以微米銀片及奈米銀線做為導電填充物可以架構出更穩定的導電網絡結構,在銀的總添加比例僅為25wt%下之拉伸過程中,保持良好導電特性,在60%拉伸形變下之電阻變化為7倍,重複以20%形變拉伸1000次後,電阻僅為原本之5倍,展現出此製程應用於可拉伸電子元件之潛力。 | zh_TW |
dc.description.abstract | In this study, a simple and facile method is developed to prepare UV-curable conductive ink for stretchable conductors. To prevent long curing time at high temperatures, we introduced intense pulsed light (IPL) technology to simultaneously cure UV resins and sinter the silver nano-materials at room temperature. During the IPL illuminating, the intense pulsed light can heat the silver nano-materials locally and initialize the carbon double bond of the resin at the same time. This process can form a conductive pathway easily with half of percolation threshold compared to that of UV-heating process. The high aspect ratio of AgNWs makes its own low percolation threshold of only 10 wt%. Lower percolation threshold not only can save the amount of expensive conductive materials, but also retain the stretchability of elastomer. The combination (AgNWs/Ag flakes) as conductive fillers can maintain great electrical conductivity during the stretching process with only 25wt% loading of silver. The resistance ratio became only 7 times the original under 60% strain. After the composite was repeated with 20% deformation for 1000 times, the resistance of it was only 5 times the original. The fast curing and sintering process, low resistivity and good stretchability of the UV-curable ink show considerable potential for wearable printed electronics. | en |
dc.description.provenance | Made available in DSpace on 2021-07-10T22:19:12Z (GMT). No. of bitstreams: 1 ntu-106-R04524033-1.pdf: 4112901 bytes, checksum: 8a06df94ff664691c2b8fc8abbb5b297 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 口試委員審定書 1
誌謝 2 中文摘要 3 ABSTRACT 4 目錄 6 圖目錄 10 表目錄 14 第一章 緒論 15 1.1 前言 15 1.2 研究目的 16 1.3 論文架構 17 第二章 理論基礎與文獻回顧 18 2.1 可拉伸導電體 18 2.1.1 拉伸性材料的開發 19 2.1.2 元件製程結構的改良 25 2.2 光固化墨水 29 2.2.1 光固化樹酯之成分 29 2.2.2 光固化反應速率及轉化率 31 2.2.3 光固化導電墨水 33 2.3 脈衝光技術(Intense Pulsed Light, IPL) 36 2.3.1 脈衝光技術之簡介 36 2.3.2 利用脈衝光技術進行奈米銀線之燒結 37 第三章 實驗系統程序 39 3.1 實驗藥品與儀器分析 39 3.1.1 實驗藥品 39 3.1.2 實驗儀器 40 3.2 奈米銀線合成 40 3.3 光固化導電墨水之製備 43 3.4 光固化導電墨水之塗佈 47 3.5 脈衝光技術之固化及燒結程序 49 第四章 光固化導電墨水之分析 50 4.1 利用脈衝光技術分別進行材料之燒結及固化 50 4.1.1 光固化樹酯及導電填充物之光吸收波段 50 4.1.2 利用脈衝光技術進行純導電填充物之燒結 52 4.1.3 利用脈衝光技術進行光固化樹酯之固化 55 4.2 利用脈衝光技術同時進行(銀/樹酯)複合物之燒結及固化 58 4.2.1 脈衝光能量對不同導電填充物複合物電導率之影響 58 4.2.2 不同脈衝光照射次數對於複合物固化之影響 60 4.3 導電填充物之比例與導電閾值(Percolation threshold) 63 4.3.1 不同比例導電填充物對光固化導電墨水電導率之影響 63 4.3.2 不同燒結程序對於導電閾值(Percolation threshold)之影響 67 第五章 光固化導電墨水之拉伸性質分析 69 5.1 不同比例之導電填充物對拉伸形變下電阻變化之影響 69 5.1.1 不同比例之微米銀片對拉伸形變下電阻變化之影響 69 5.1.2 不同比例之奈米銀線對拉伸形變下電阻變化之影響 70 5.2 添加不同種類銀導電填充物對拉伸形變下電阻變化之影響 72 5.2.1 單一銀導電填充物對拉伸形變下電阻變化之影響 72 5.2.2 複合銀導電填充物對拉伸形變下電阻變化之影響 73 5.3 不同燒結程序對拉伸形變下電阻變化之影響 75 5.3.1 不同脈衝光照射次數對拉伸形變下電阻變化之影響 75 5.3.2 以紫外光固化前處理程序對拉伸形變下電阻變化之影響 76 5.4 不同導電填充物對於拉伸電阻遲滯現象之影響 78 5.4.1 單一銀導電填充物之拉伸電阻遲滯現象 78 5.4.2 不同比例之(微米銀片/奈米銀線/樹酯)複合物之拉伸電阻遲滯現象 80 5.5 重複拉伸循環下之電阻變化 82 5.6 可拉伸電子裝置 83 5.6.1 圖樣化拉伸導電線路 83 5.6.2 波形拉伸導電線路 85 第六章 結論與未來展望 86 參考資料 88 | |
dc.language.iso | zh-TW | |
dc.title | 拉伸性光固化導電墨水之製備 | zh_TW |
dc.title | UV-curable Conductive Ink for Stretchable Conductors | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳立仁(Li-Jen Chen),邱文英(Wen-Yen Chiu),蘇培珍(Pei-Chen Su) | |
dc.subject.keyword | 拉伸導電體,導電墨水,光固化墨水,導電閾值,奈米銀線, | zh_TW |
dc.subject.keyword | Stretchable conductors,UV-curable inks,Conductive inks,Percolation threshold,Silver nanowires, | en |
dc.relation.page | 94 | |
dc.identifier.doi | 10.6342/NTU201702609 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2017-08-04 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-R04524033-1.pdf 目前未授權公開取用 | 4.02 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。