Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77732
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor魏志平
dc.contributor.authorYan-Syun Chenen
dc.contributor.author陳彥勳zh_TW
dc.date.accessioned2021-07-10T22:18:32Z-
dc.date.available2021-07-10T22:18:32Z-
dc.date.copyright2017-08-30
dc.date.issued2017
dc.date.submitted2017-08-09
dc.identifier.citationU.S. Patent and Trademark Office. (2015). U.S. patent statistics chart–calendar years 1963–2015. Retrieved Dec 25, 2016, from http://www.uspto.gov/web/offices/ac/ido/oeip/taf/us_stat.htm
Yu, K. S. (2014). Patent invalidity search: A learning to rank approach. Unpublished Master Thesis, Department of Information Management, National Taiwan University, Taipei, Taiwan.
Foglia, P. (2007). Patentability search strategies and the reformed IPC: A patent office perspective. World Patent Information, 29(1), 33-53.
Wei, C.P., Yang, C.S., Yu, C.C., Lin, Y.K., & Chen, H.C. (2012). Searching for a needle in a haystack: A summary-based patent prior art retrieval technique. Working Paper, Department of Information Management, National Taiwan University, Taipei, Taiwan.
Yoon, J., Choi, S., & Kim, K. (2011). Invention property-function network analysis of patents: A case of silicon-based thin film solar cells. Scientometrics, 86(3), 687–703.
Yoon, J., & Kim, K. (2011). Identifying rapidly evolving technological trends for R&D planning using SAO-based semantic patent networks. Scientometrics, 88(1), 213-228.
Robertson, S.E., Walker, S., Jones, S., Hancock-Beaulieu, M.M., & Gatford, M. (1994). Okapi at TREC-3. In Proceedings of the Third Text Retrieval Conference (pp. 109-126). Gaithersburg, MD: NIST.
Iwayama, M., Fujii, A., Kando, N., & Marukawa, Y. (2003). An empirical study on retrieval models for different document genres: Patents and newspaper articles. In Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 251-258.
Lopez, P. & Romary, L. (2010). PATATRAS: Retrieval model combination and regression models for prior art search. Lecture Notes in Computer Science, 6241, 430-437.
Xue, X. & Croft, W.B. (2009). Automatic query generation for patent search. In Proceeding of the 18th ACM Conference on Information and Knowledge Management, 2037-2040.
Fujii, A. (2007). Enhancing patent retrieval by citation analysis. In Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 793-794.
Brin, S. & Page, L. (1998). The anatomy of a large-scale hypertextual web search engine. Computer Networks and ISDN Systems, 30(1-7), 107-117.
Takeuchi, H., Uramoto, N., & Takeda, K. (2004). Experiments on patent retrieval at NTCIR-4 workshop. In Proceedings of the Fourth NII Test Collection for IR Systems (NTCIR-4) Workshop. Tokyo, Japan: National Institute of Informatics.
Moehrle, M. G., Walter, L., Geritz, A., & Muller, S. (2005). Patent-based inventor profiles as a basis for human resource decisions in research and development. R&D Management, 35(5), 513-524.
Yoon, J., & Kim, K. (2011). Identifying rapidly evolving technological trends for R&D planning using SAO-based semantic patent networks. Scientometrics, 88(1), 213-228.
Yoon, J., Park, H., & Kim, K. (2013). Identifying technological competition trends for R&D planning using dynamic patent maps: SAO-based content analysis. Scientometrics, 94(1), 313-331.
Stanford. (2016). The Stanford Parser: A statistical parser. Retrieved Dec 25, 2016, from http://nlp.stanford.edu/software/lex-parser.shtml
Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of Machine Learning Research, 3(1), 993-1022.
Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. The annals of mathematical statistics, 22(1), 79-86.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77732-
dc.description.abstract專利數量從1997年開始迅速上升。因此,專利辦公室,如:美國專利局需要雇用更多的審查員、人力來處理這些大幅上升的專利申請案。而與此同時,也代表需要發展一個更有效率的專利前案檢索技術。而過往的研究,大多都是著重在詞袋模型,然而詞袋模型難以展現出專利中的一些特徵、關鍵概念、詞與詞之間的關係,因此,我們提出一個基於SAO結構的專利前案檢索技術,最後結果也顯示,我們提出的方法,比過去研究提出的技術,確實有更好的表現。zh_TW
dc.description.abstractThe number of patent applications increases rapidly from 1997. At the same time, the number of patent applications increases rapidly that makes patent offices, such as United States Patent and Trademark Office (USPTO), have to recruit more patent examiners for dealing with the ever-increasing number of patent applications. Hence, an effective patent prior art retrieval from a huge patent repository becomes essential. In this research, we review several existing patent prior art retrieval approaches. These approaches typically involve extracting textual content by information retrieval technique called bag-of-words. However, bag-of-words cannot reflect the structural relationships among components. In order to solve this problem, we propose an SAO-based approach to conduct patent prior art retrieval. SAO structures can represent explicit relations among components used in a patent, and are considered to represent key concepts of the patent. Overall, the proposed SAO-based approach outperforms our performance benchmarks.en
dc.description.provenanceMade available in DSpace on 2021-07-10T22:18:32Z (GMT). No. of bitstreams: 1
ntu-106-R04725024-1.pdf: 2111840 bytes, checksum: ee18c78f4441b64a907b464533a40a85 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
LIST OF FIGURES vii
LIST OF TABLES viii
Chapter 1 Introduction 1
1.1 Background 1
1.2 Research Motivation and Objectives 3
Chapter 2 Literature Review 8
2.1 Text-based Approach 8
2.1.1 Feature-Reduction-Based Approach 8
2.1.2 Summary-Based Approach 10
2.2 Hybrid Approach 11
2.2.1 Citation-Reranking Technique 11
2.2.2 Class-Reweighting Technique 12
2.3 SAO Structure and Applications 13
Chapter 3 Design of Our Proposed Technique 15
3.1 Text-based Similarity Calculation 17
3.2 SAO-based Method 18
3.2.1 SAO Extraction 18
3.2.2 SAO Selection 21
3.3 LDA 22
3.3.1 LDA Topic Modeling 22
3.4 Similarity Aggregation 23
Chapter 4 Evaluation Design and Results 25
4.1 Data Collection 25
4.2 Evaluation Criterion 26
4.3 Parameter Tuning Experiments and Results 27
4.4 Comparative Evaluation Results 31
4.5 Effects of Citation-Reranking 32
4.5.1 Parameter Tuning Experiences and Results 33
4.5.2 Evaluation Results 35
4.6 Effects of LDA topic modeling 37
Chapter 5 Conclusion and Future Work 39
References 41
Appendix 1 44
1.1 Parameter Tuning Experiences and Results 44
1.2 Comparative Evaluation Results 46
1.3 Effects of Citation-Reranking 47
1.4 Parameter Tuning Experiences and Results 48
1.5 Evaluation Results 50
1.6 Effects of LDA topic modeling 52
dc.language.isoen
dc.title利用SAO方法進行專利前案檢索zh_TW
dc.titleDevelopment of an SAO-based Approach to Supporting Patent Prior Art Retrievalen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳彥良,盧信銘
dc.subject.keyword專利前案檢索,基於SAO結構的專利前案檢索,SAO結構,LDA,專利探勘,專利檢索,zh_TW
dc.subject.keywordPrior Art Retrieval,SAO-based Prior Art Retrieval,SAO structure,LDA,Patent Mining,Patent Retrieval,en
dc.relation.page52
dc.identifier.doi10.6342/NTU201702830
dc.rights.note未授權
dc.date.accepted2017-08-09
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept資訊管理學研究所zh_TW
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-106-R04725024-1.pdf
  目前未授權公開取用
2.06 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved