Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77718
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor趙基揚(Chi-Yang Chao)
dc.contributor.authorCheng-Yen Luen
dc.contributor.author盧承彥zh_TW
dc.date.accessioned2021-07-10T22:17:44Z-
dc.date.available2021-07-10T22:17:44Z-
dc.date.copyright2020-10-20
dc.date.issued2020
dc.date.submitted2020-10-07
dc.identifier.citation[1] Zhou, L.; Zhang, K.; Hu, Z.; Tao, Z.; Mai, L.; Kang, Y.-M.; Chou, S.-L.; Chen, J., 'Recent Developments on and Prospects for Electrode Materials with Hierarchical Structures for Lithium-Ion Batteries'. Advanced Energy Materials 2018, 8 (6), 1701415.
[2] Dell, R. M., 'Batteries: fifty years of materials development'. Solid State Ionics 2000, 134 (1), 139-158.
[3] Tarascon, J.-M.; Armand, M., Issues and challenges facing rechargeable lithium batteries. In Materials for Sustainable Energy, 2011, 171-179.
[4] Whittingham, M. S., 'Electrical Energy Storage and Intercalation Chemistry'. Science 1976, 192 (4244), 1126.
[5] Murphy, D. W.; Di Salvo, F. J.; Carides, J. N.; Waszczak, J. V., 'Topochemical reactions of rutile related structures with lithium'. Materials Research Bulletin 1978, 13 (12), 1395-1402.
[6] Holzapfel, M.; Buqa, H.; Scheifele, W.; Novák, P.; Petrat, F.-M., 'A new type of nano-sized silicon/carbon composite electrode for reversible lithium insertion'. Chemical Communications 2005, (12), 1566-1568.
[7] Lazzari, M.; Scrosati, B. In A Cyclable Lithium Organic Electrolyte Cell Based on Two Intercalation Electrodes, 1980.
[8] Vashishta, P.; Mundy, J. N., Fast ion transport in solids: electrodes and electrolytes. Elsevier North Holland, Inc: United States, 1979.
[9] Kelly, I. E.; Owen, J. R.; Steele, B. C. H., 'Poly(ethylene oxide) electrolytes for operation at near room temperature'. Journal of Power Sources 1985, 14 (1), 13-21.
[10] Tarascon, J. M.; Gozdz, A. S.; Schmutz, C.; Shokoohi, F.; Warren, P. C., 'Performance of Bellcore's plastic rechargeable Li-ion batteries'. Solid State Ionics 1996, 86-88, 49-54.
[11] Xia, S.; Wu, X.; Zhang, Z.; Cui, Y.; Liu, W., 'Practical Challenges and Future Perspectives of All-Solid-State Lithium-Metal Batteries'. Chem 2019, 5 (4), 753-785.
[12] Yoo, H. D.; Markevich, E.; Salitra, G.; Sharon, D.; Aurbach, D., 'On the challenge of developing advanced technologies for electrochemical energy storage and conversion'. Materials Today 2014, 17 (3), 110-121.
[13] Yue, Y.; Juarez-Robles, D.; Chen, Y.; Ma, L.; Kuo, W. C. H.; Mukherjee, P.; Liang, H., 'Hierarchical Structured Cu/Ni/TiO2 Nanocomposites as Electrodes for Lithium-Ion Batteries'. ACS Applied Materials Interfaces 2017, 9 (34), 28695-28703.
[14] Liu, Y. M.; B, G. N.; Esbenshade, J. L.; Gewirth, A. A., 'Characterization of the Cathode Electrolyte Interface in Lithium Ion Batteries by Desorption Electrospray Ionization Mass Spectrometry'. Analytical chemistry 2016, 88 (14), 7171-7.
[15] Verma, P.; Maire, P.; Novák, P., 'A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries'. Electrochimica Acta 2010, 55 (22), 6332-6341.
[16] Li, F.-S.; Wu, Y.-S.; Chou, J.; Winter, M.; Wu, N.-L., 'A Mechanically Robust and Highly Ion-Conductive Polymer-Blend Coating for High-Power and Long-Life Lithium-Ion Battery Anodes'. 2015, 27 (1), 130-137.
[17] Placke, T.; Kloepsch, R.; Dühnen, S.; Winter, M., 'Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density'. Journal of Solid State Electrochemistry 2017, 21 (7), 1939-1964.
[18] Inaba, M.; Siroma, Z.; Funabiki, A.; Ogumi, Z.; Abe, T.; Mizutani, Y.; Asano, M., 'Electrochemical Scanning Tunneling Microscopy Observation of Highly Oriented Pyrolytic Graphite Surface Reactions in an Ethylene Carbonate-Based Electrolyte Solution'. Langmuir 1996, 12 (6), 1535-1540.
[19] Inaba, M.; Siroma, Z.; Ogumi, Z.; Abe, T.; Mizutani, Y.; Asano, M., 'Electrochemical STM Study on Surface Morphology Change of HOPG Basal Plane in an Organic Electrolyte Solution'. Chemistry Letters 1995, 24 (8), 661-662.
[20] Schroder, K.; Alvarado, J.; Yersak, T. A.; Li, J.; Dudney, N.; Webb, L. J.; Meng, Y. S.; Stevenson, K. J., 'The Effect of Fluoroethylene Carbonate as an Additive on the Solid Electrolyte Interphase on Silicon Lithium-Ion Electrodes'. Chemistry of Materials 2015, 27 (16), 5531-5542.
[21] Wang, A.; Kadam, S.; Li, H.; Shi, S.; Qi, Y., 'Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries'. npj Computational Materials 2018, 4 (1), 15.
[22] Edström, K.; Herstedt, M.; Abraham, D. P., 'A new look at the solid electrolyte interphase on graphite anodes in Li-ion batteries'. Journal of Power Sources 2006, 153 (2), 380-384.
[23] Doeff, M., Batteries: Overview of Battery Cathodes. 2012, 709-739.
[24] Allart, D.; Montaru, M.; Gualous, H., 'Model of Lithium Intercalation into Graphite by Potentiometric Analysis with Equilibrium and Entropy Change Curves of Graphite Electrode'. J. Electrochem. Soc. 2018, 165, A380-A387.
[25] Aurbach, D.; Zinigrad, E.; Cohen, Y.; Teller, H., 'A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions'. Solid State Ionics 2002, 148 (3), 405-416.
[26] Yan, J.; Zhang, J.; Su, Y.; Zhang, X.; Xia, B., 'A novel perspective on the formation of the solid electrolyte interphase on the graphite electrode for lithium-ion batteries'. Electrochimica Acta 2010, 55 (5), 1785-1794.
[27] Omichi, K.; Ramos-Sanchez, G.; Rao, R.; Pierce, N.; Chen, G.; Balbuena, P.; Rao, R., 'Origin of Excess Irreversible Capacity in Lithium-Ion Batteries Based on Carbon Nanostructures'. J. Electrochem. Soc. 2015, 162, 2106-2115.
[28] An, S. J.; Li, J.; Daniel, C.; Mohanty, D.; Nagpure, S.; Wood, D. L., 'The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling'. Carbon 2016, 105, 52-76.
[29] Loeffler, N.; Bresser, D.; Passerini, S.; Copley, M. J. J. M. T. R., 'Secondary Lithium-Ion Battery Anodes: From First Commercial Batteries to Recent Research Activities Addressing the challenges in rechargeable lithium-ion battery technologies'. 2015, 59, 34-44.
[30] Menkin, S.; Golodnitsky, D.; Peled, E., 'Artificial solid-electrolyte interphase (SEI) for improved cycleability and safety of lithium–ion cells for EV applications'. Electrochemistry Communications 2009, 11, 1789-1791.
[31] Komaba, S.; Yabuuchi, N.; Ozeki, T.; Okushi, K.; Yui, H.; Konno, K.; Katayama, Y.; Miura, T., 'Functional binders for reversible lithium intercalation into graphite in propylene carbonate and ionic liquid media'. Journal of Power Sources 2010, 195 (18), 6069-6074.
[32] Verma, P.; Novák, P., 'Formation of artificial solid electrolyte interphase by grafting for improving Li-ion intercalation and preventing exfoliation of graphite'. Carbon 2012, 50 (7), 2599-2614.
[33] Heng, S.; Shan, X.; Wang, W.; Wang, Y.; Zhu, G.; Qu, Q.; Zheng, H., 'Controllable solid electrolyte interphase precursor for stabilizing natural graphite anode in lithium ion batteries'. Carbon 2020, 159, 390-400.
[34] Yu, X.; Manthiram, A., 'Electrode-Electrolyte Interfaces in Lithium-based Batteries'. Energy Environmental Science 2018, 11.
[35] Sharma, R. A.; Seefurth, R. N. In Thermodynamic properties of the lithium-silicon system, 1977.
[36] Okamoto, H., 'The Li-Si (Lithium-Silicon) system'. Bulletin of Alloy Phase Diagrams 1990, 11 (3), 306-312.
[37] Boukamp, B. A., 'All-Solid Lithium Electrodes with Mixed-Conductor Matrix'. J. Electrochem. Soc. 1981, 128 (4), 725.
[38] Wen, C. J.; Huggins, R. A., 'Chemical diffusion in intermediate phases in the lithium-silicon system'. Journal of Solid State Chemistry 1981, 37 (3), 271-278.
[39] Wu, H.; Cui, Y., 'Designing nanostructured Si anodes for high energy lithium ion batteries'. Nano Today 2012, 7 (5), 414-429.
[40] Nitta, N.; Wu, F.; Lee, J. T.; Yushin, G., 'Li-ion battery materials: present and future'. Materials Today 2015, 18 (5), 252-264.
[41] Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J.-M., 'Nanostructured materials for advanced energy conversion and storage devices'. Nature Materials 2005, 4 (5), 366-377.
[42] Szczech, J. R.; Jin, S., 'Nanostructured silicon for high capacity lithium battery anodes'. Energy Environmental Science 2011, 4 (1), 56-72.
[43] Chan, C. K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y., 'High-performance lithium battery anodes using silicon nanowires'. Nature Nanotechnology 2008, 3 (1), 31-35.
[44] Liu, X. H.; Zhong, L.; Huang, S.; Mao, S. X.; Zhu, T.; Huang, J. Y., 'Size-Dependent Fracture of Silicon Nanoparticles During Lithiation'. ACS Nano 2012, 6 (2), 1522-1531.
[45] Liu, N.; Wu, H.; McDowell, M. T.; Yao, Y.; Wang, C.; Cui, Y., 'A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes'. Nano Letters 2012, 12 (6), 3315-3321.
[46] Wang, C.; Wu, H.; Chen, Z.; McDowell, M. T.; Cui, Y.; Bao, Z., 'Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries'. Nature chemistry 2013, 5 (12), 1042-1048.
[47] Li, Y.; Yan, K.; Lee, H.-W.; Lu, Z.; Liu, N.; Cui, Y., 'Erratum: Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes'. Nature Energy 2016, 1 (2), 16017.
[48] Hu, Y.-S.; Demir-Cakan, R.; Titirici, M.-M.; Müller, J.-O.; Schlögl, R.; Antonietti, M.; Maier, J., 'Superior Storage Performance of a Si@SiOx/C Nanocomposite as Anode Material for Lithium-Ion Batteries'. 2008, 47 (9), 1645-1649.
[49] Zhou, X.; Yin, Y.-X.; Wan, L.-J.; Guo, Y.-G., 'Self-Assembled Nanocomposite of Silicon Nanoparticles Encapsulated in Graphene through Electrostatic Attraction for Lithium-Ion Batteries'. 2012, 2 (9), 1086-1090.
[50] Yi, R.; Dai, F.; Gordin, M. L.; Chen, S.; Wang, D., 'Micro-sized Si-C Composite with Interconnected Nanoscale Building Blocks as High-Performance Anodes for Practical Application in Lithium-Ion Batteries'. 2013, 3 (3), 295-300.
[51] Na, R.; Minnici, K.; Zhang, G.; Lu, N.; González, M. A.; Wang, G.; Reichmanis, E., 'Electrically Conductive Shell-Protective Layer Capping on the Silicon Surface as the Anode Material for High-Performance Lithium-Ion Batteries'. ACS Applied Materials Interfaces 2019, 11 (43), 40034-40042.
[52] Dash, R.; Pannala, S., 'RETRACTED ARTICLE: Theoretical Limits of Energy Density in Silicon-Carbon Composite Anode Based Lithium Ion Batteries'. Scientific Reports 2016, 6 (1), 27449.
[53] Liu, W.-R.; Guo, Z.-Z.; Young, W.-S.; Shieh, D.-T.; Wu, H.-C.; Yang, M.-H.; Wu, N.-L., 'Effect of electrode structure on performance of Si anode in Li-ion batteries: Si particle size and conductive additive'. Journal of Power Sources 2005, 140 (1), 139-144.
[54] Holzapfel, M.; Buqa, H.; Krumeich, F.; Novák, P.; Petrat, F.-M.; Veit, C., 'Chemical Vapor Deposited Silicon∕Graphite Compound Material as Negative Electrode for Lithium-Ion Batteries'. 2005, 8 (10), A516-A520.
[55] Beattie, S. D.; Larcher, D.; Morcrette, M.; Simon, B.; Tarascon, J.-M., 'Si Electrodes for Li-Ion Batteries—A New Way to Look at an Old Problem'. 2008, 155 (2), A158-A163.
[56] Larcher, D.; Beattie, S.; Morcrette, M.; Edström, K.; Jumas, J.-C.; Tarascon, J.-M., 'Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries'. Journal of Materials Chemistry 2007, 17 (36), 3759-3772.
[57] Goethel, P. J.; Yang, R. T., 'Mechanism of graphite hydrogenation catalyzed by nickel'. Journal of Catalysis 1987, 108 (2), 356-363.
[58] Kim, N.; Chae, S.; Ma, J.; Ko, M.; Cho, J., 'Fast-charging high-energy lithium-ion batteries via implantation of amorphous silicon nanolayer in edge-plane activated graphite anodes'. Nature Communications 2017, 8 (1), 812.
[59] Wang, G. X.; Yao, J.; Liu, H. K., 'Characterization of Nanocrystalline Si-MCMB Composite Anode Materials'. 2004, 7 (8), 250-253.
[60] Wang, Z.; Mao, Z.; Lai, L.; Okubo, M.; Song, Y.; Zhou, Y.; Liu, X.; Huang, W., 'Sub-micron silicon/pyrolyzed carbon@natural graphite self-assembly composite anode material for lithium-ion batteries'. Chemical Engineering Journal 2017, 313, 187-196.
[61] Kim, M. K.; Shin, W. H.; Jeong, H. M., 'Protective carbon-coated silicon nanoparticles with graphene buffer layers for high performance anodes in lithium-ion batteries'. Applied Surface Science 467-468, 2019, 926-931.
[62] Li, F.-S.; Wu, Y.-S.; Chou, J.; Wu, N.-L., 'A dimensionally stable and fast-discharging graphite–silicon composite Li-ion battery anode enabled by electrostatically self-assembled multifunctional polymer-blend coating'. Chemical communications (Cambridge, England) 2015, 51.
[63] Munao, D.; van Erven, J. W. M.; Valvo, M.; Garcia-Tamayo, E.; Kelder, E. M., 'Role of the binder on the failure mechanism of Si nano-composite electrodes for Li-ion batteries'. Journal of Power Sources 2011, 196, 6695-6702.
[64] Zhao, X. Y.; Yim, C. H.; Du, N. Y.; Abu-Lebdeh, Y., 'Crosslinked Chitosan Networks as Binders for Silicon/Graphite Composite Electrodes in Li-Ion Batteries'. J. Electrochem. Soc. 2018, 165 (5), A1110-A1121.
[65] Wu, Z.-H.; Yang, J.-Y.; Yu, B.; Shi, B.-M.; Zhao, C.-R.; Yu, Z.-L. J. R. M., 'Self-healing alginate–carboxymethyl chitosan porous scaffold as an effective binder for silicon anodes in lithium-ion batteries'. 2019, 38 (9), 832-839.
[66] Yue, L.; Zhang, L.; Zhong, H., 'Carboxymethyl chitosan: A new water soluble binder for Si anode of Li-ion batteries'. Journal of Power Sources 2014, 247, 327-331.
[67] Lee, S. H.; Lee, J. H.; Nam, D. H.; Cho, M.; Kim, J.; Chanthad, C.; Lee, Y., 'Epoxidized Natural Rubber/Chitosan Network Binder for Silicon Anode in Lithium-Ion Battery'. ACS Applied Materials Interfaces 2018, 10 (19), 16449-16457.
[68] Chen, C.; Lee, S. H.; Cho, M.; Kim, J.; Lee, Y., 'Cross-Linked Chitosan as an Efficient Binder for Si Anode of Li-ion Batteries'. ACS Applied Materials Interfaces 2016, 8 (4), 2658-2665.
[69] Cao, P.-F.; Yang, G.; Li, B.; Zhang, Y.; Zhao, S.; Zhang, S.; Erwin, A.; Zhang, Z.; Sokolov, A. P.; Nanda, J.; Saito, T., 'Rational Design of a Multifunctional Binder for High-Capacity Silicon-Based Anodes'. ACS Energy Letters 2019, 4 (5), 1171-1180.
[70] Kiuchi, H.; Kai, W.; Inoue, Y., 'Preparation and characterization of poly(ethylene glycol) crosslinked chitosan films'. 2008, 107 (6), 3823-3830.
[71] Armand, M., 'Polymer solid electrolytes - an overview'. Solid State Ionics 1983, 9-10, 745-754.
[72] Long, L.; Wang, S.; Xiao, M.; Meng, Y., 'Polymer electrolytes for lithium polymer batteries'. Journal of Materials Chemistry A 2016, 4 (26), 10038-10069.
[73] Manthiram, A.; Yu, X.; Wang, S., 'Lithium battery chemistries enabled by solid-state electrolytes'. Nature Reviews Materials 2017, 2 (4), 16103.
[74] Jiang, Y.; Yan, X.; Ma, Z.; Mei, P.; Xiao, W.; You, Q.; Zhang, Y., 'Development of the PEO Based Solid Polymer Electrolytes for All-Solid State Lithium Ion Batteries'. Polymers (Basel) 2018, 10 (11), 1237.
[75] Polu, A. R.; Rhee, H.-W., 'Nanocomposite solid polymer electrolytes based on poly(ethylene oxide)/POSS-PEG (n=13.3) hybrid nanoparticles for lithium ion batteries'. Journal of Industrial and Engineering Chemistry 2015, 31, 323-329.
[76] Shim, J.; Kim, L.; Kim, H. J.; Jeong, D.; Lee, J. H.; Lee, J.-C., 'All-solid-state lithium metal battery with solid polymer electrolytes based on polysiloxane crosslinked by modified natural gallic acid'. Polymer 2017, 122, 222-231.
[77] Xiang, Y.; Yang, M.; Guo, Z.; Cui, Z., 'Alternatively chitosan sulfate blending membrane as methanol-blocking polymer electrolyte membrane for direct methanol fuel cell'. Journal of Membrane Science 2009, 337 (1), 318-323.
[78] Xu, C.; Lindgren, F.; Philippe, B.; Gorgoi, M.; Björefors, F.; Edström, K.; Gustafsson, T., 'Improved Performance of the Silicon Anode for Li-Ion Batteries: Understanding the Surface Modification Mechanism of Fluoroethylene Carbonate as an Effective Electrolyte Additive'. Chemistry of Materials 2015, 27 (7), 2591-2599.
[79] Yoon, D.-h.; Marinaro, M.; Axmann, P.; Wohlfahrt-Mehrens, M., 'Communication—Quantitative Analysis of Consumption of Fluoroethylene Carbonate Additives on Silicon Alloy Anodes'. J. Electrochem. Soc. 2018, 165 (11), A2467-A2469.
[80] Zhang, S. S.; Xu, K.; Jow, T. R., 'EIS study on the formation of solid electrolyte interface in Li-ion battery'. Electrochimica Acta 2006, 51 (8), 1636-1640.
[81] Nakamura, H.; Komatsu, H.; Yoshio, M., 'Suppression of electrochemical decomposition of propylene carbonate at a graphite anode in lithium-ion cells'. Journal of Power Sources 1996, 62 (2), 219-222.
[82] Liu, K.-L.; Chao, C.-H.; Lee, H.-C.; Tsao, C.-S.; Fang, J.; Wu, N.-L.; Chao, C.-Y., 'A novel non-porous separator based on single-ion conducting triblock copolymer for stable lithium electrodeposition'. Journal of Power Sources 2019, 419, 58-64.
[83] Lee, S. J.; Kim, H. J.; Hwang, T. H.; Choi, S.; Park, S. H.; Deniz, E.; Jung, D. S.; Choi, J. W., 'Delicate Structural Control of Si–SiOx–C Composite via High-Speed Spray Pyrolysis for Li-Ion Battery Anodes'. Nano Letters 2017, 17 (3), 1870-1876.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77718-
dc.description.abstract本研究中,我們採用交聯磺酸化幾丁聚醣 (X-SCS)來作為鋰離子電池 (LIBs)的矽/碳複合材料電極(Si@G)活性顆粒表面上的保護塗層。此保護塗層兼具熱穩定和化學穩定性,能有效的傳導鋰離子並防止活性顆粒和液態電解液直接接觸。因而,在長時間充放電循環下可以抑制矽顆粒從Si@G表面剝離和不好的SEI生成,從而提高循環穩定性。
X-SCS是由磺酸化幾丁聚醣 (SCS)伴隨著不同磺酸化程度(DS)以及特定交聯劑(CA)含量組成。戊二醛(GA)作為第一部分的交聯劑,形成堅固且穩定的XGA-SCS保護層來抑制矽顆粒的掉落,盡而使得容量保持率提升。在經過0.5 C 室溫300次充放電循環下,Si@G披覆XGA-SCS負極可以表現出70%容量保持率,跟純Si@G電極只有30%容量保持率相比有明顯的差異性。相同條件之下,XGA-SCS 披覆的Si@G電極體積膨脹的變異性僅僅只有30%遠小於純Si@G的130%。值得注意的是XGA-SCS表面改質同時提升電極在高充放電速率的性能,並且隨著SCS的DS增加效果更加明顯。對於Si@G披覆XGA-SCS保護層的電極,5 C放電條件下擁有83%的容量保持率遠高於純Si@G的50%容量保持率.
第二部分中,我們將用低分子量的PEO進行雙邊官能基化後當作交聯劑,為了提升交聯的磺酸化幾丁聚醣(X-SCS)保護層的可伸縮性與柔軟度來容忍矽更多的體積變異性從而進一步改善電池循環後的保護層穩定性。XPEO-SCS保護層表現出最佳的循環穩定性,在0.5 C 室溫下充放電循環300次後擁有80%容量保持率和在5 C的測試條件下可以達到95%容量保持率的卓越表現。簡而言之,採用具有適當含量的X-SCS塗層可以有效改善電化學性能並抑制Si@G複合電極的體積膨脹以獲得更好的LIB效能。
zh_TW
dc.description.abstractIn this study, we employed crosslinking sulfonated chitosan (denoted as X-SCS) to serve as protective coating on the active materials of silicon/graphite composite (Si@G) anode for lithium ion batteries (LIBs). The protective coating is thermally and chemically stable, and which would allow effective lithium ion transport as well as prevent direct contact between the active particles and the liquid electrolyte. As a consequence, detachment of Si from Si@G and undesirable SEI thickening could be suppressed after long term cycling, leading to improved cycling stability.
X-SCS is comprised of sulfonated chitosan (SCS) with various degree of sulfonation (DS) and crosslinking agents (CA) in designated amounts. In the first part, glutaraldehyde (GA) is employed as CA, and the resulting XGA-SCS coating is rigid and robust to effective suppress the detachment of Si, thus to promote the capacity retention. A 70% capacity retention after 300 cycles at 0.5 C and room temperature is achieved for XGA-SCS coated Si@G anode, while only a 30% capacity retention is obtained for the pristine Si@G. The volumetric expansion is merely 30% for the XGA-SCS coated Si@G, much smaller than a value of 130% for the pristine Si@G. Notably, high C-rate performance is simultaneously improved, and the enhancement is more pronouncedly with increasing DS of SCS. A 83% capacity retention at 5C with respect to the discharge capacity at 0.1C is achieved for the XGA-SCS coated Si@G, much higher than 50% for the reference Si@G.
In the second part, low molecular weight bi-end functionalized PEO with epoxide terminals is served as CA, in order to soften the X-SCS coating to accommodate more volume change of Si, thus to further improve the coating integrity after cycling. The resulting XPEO-SCS coating exhibits the best cycling stability with 80% capacity retention after 300 cycles at 0.5 C and superior C-rate performance with 95% capacity retention at 5 C. In brief, employing X-SCS coating with suitable composition could be a feasible approach to effectively improve electrochemical performance and suppress vigorously volume expansion of Si@G composite electrode for better LIBs.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T22:17:44Z (GMT). No. of bitstreams: 1
U0001-2809202000180200.pdf: 9358114 bytes, checksum: a5556027c70c1a5283c04a1cb36e5232 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
摘要 iii
Abstract iv
Table of Contents vi
List of Figures ix
List of Tables xix
Chapter 1 Introduction 1
1.1 Background 1
1.2 Objectives and Research Scopes 3
Chapter 2 Theory and Literature Review 5
2.1 Feature of Rechargeable Lithium-ion Batteries 5
2.1.1 Historical Developments of Lithium-ion Batteries Research 5
2.1.2 Basic Concepts of Lithium-ion Batteries 8
2.1.3 Solid Electrolyte Interphase (SEI) 12
2.2 Introduction to Graphite Anode Materials 15
2.2.1 Graphite Anode Materials 15
2.2.2 Electrochemical Properties of Graphite Anode Materials 19
2.2.3 Artificial SEI (A-SEI) 21
2.3 Introduction to Silicon (Si) Anode Materials 28
2.3.1 Nanostructured Si Anode Materials 32
2.3.2 Solid Electrolyte Interphase (SEI) Formation on Si Anodes 36
2.3.3 Surface Modification on Si Anodes 40
2.4 Introduction of Si@G Composite Materials 46
2.4.1 Si@G Composites 47
2.5 The Application of Chitosan in Anode Materials 56
2.5.1 Crosslinking Mechanism of Chitosan 59
2.6 The Application of PEO in Lithium-ion Batteries 65
Chapter 3 Experimental 68
3.1 Materials and Chemicals 68
3.2 Instruments 71
3.3 Synthesis of Anode Materials 72
3.3.1 Synthesis of Sulfonated Chitosan 72
3.3.2 Preparation of Crosslinked Sulfonated Chitosan Membrane 73
3.3.3 X-SCS Coating on Natural Graphite and Si@G with Different Crosslinker 74
3.4 Material Characterization and Analysis 75
3.4.1 The Characterization for SCS Degree of Sulfonation 75
3.4.2 Thermal Properties Analysis 75
3.4.3 Mechanical Properties 76
3.4.4 Electron Microscopy 76
3.4.5 Dissolution Test 77
3.5 Electrochemical Characterizations 78
3.5.1 Preparation of Electrodes and cells 78
3.5.2 Fabrication of CR2032 Coin Cell 79
3.5.3 Cell Cycling Charge/Discharge Test 80
3.5.4 Electrochemical Impedance Spectroscopy 81
Chapter 4 Results and Discussion 82
4.1 Identification of Coating Materials 82
4.2 Preparation of X-SCS Membrane 84
4.3 Thermal Properties of XGA-SCS and XPEO-SCS 86
4.4 Mechanical Properties of XGA-SCS and XPEO-SCS 89
4.5 Different Degree of Sulfonation of XGA-SCS Coating on Active Materials 91
4.5.1 XGA-SCS Coating on Natural Graphite (NG) 91
4.5.2 XGA-SCS Coating on Si@G 98
4.6 Different Crosslinker Amounts of XPEO-SCS Coating on Active Materials 111
4.6.1 XPEO-SCS Coating on Natural Graphite (NG) 111
4.6.2 XPEO-SCS Coating on Si@G 117
4.7 Result Comparison of GA and PEO Crosslinker in Battery Performance 130
Chapter 5 Conclusions 133
Chapter 6 Future Work 136
REFERENCE 137
Appendix 145
dc.language.isoen
dc.subject矽/碳負極zh_TW
dc.subject磺酸化幾丁聚醣zh_TW
dc.subject鋰離子電池zh_TW
dc.subject循環穩定性zh_TW
dc.subject保護層zh_TW
dc.subjectC-rate 穩定性zh_TW
dc.subjectC-rate stabilityen
dc.subjectcycling stabilityen
dc.subjectsulfonated chitosanen
dc.subjectsilicon-carbon anode (Si@G)en
dc.subjectprotective coatingen
dc.subjectLithium-ion batteries (LIB)en
dc.title以交聯磺酸化幾丁聚醣進行鋰離子電池矽碳負極活性顆粒之表面改質以提升穩定性與快速充放電表現zh_TW
dc.titleSurface Modification of Active Particles of Si@G Anode of Lithium-Ion Batteries with Crosslinked Sulfonated Chitosan to Improve Cycling Stability and C-rate Performanceen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.oralexamcommittee吳乃立(Nae-Lih Wu),方家振(Chia-Chen Fang),胡芝瑋(Chih-Wei Hu)
dc.subject.keyword鋰離子電池,保護層,矽/碳負極,磺酸化幾丁聚醣,循環穩定性,C-rate 穩定性,zh_TW
dc.subject.keywordLithium-ion batteries (LIB),protective coating,silicon-carbon anode (Si@G),sulfonated chitosan,cycling stability,C-rate stability,en
dc.relation.page148
dc.identifier.doi10.6342/NTU202004231
dc.rights.note未授權
dc.date.accepted2020-10-07
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
U0001-2809202000180200.pdf
  未授權公開取用
9.14 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved