請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77683
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 盧彥文(Yen-Wen Lu) | |
dc.contributor.author | Shun-Cyuan You | en |
dc.contributor.author | 尤舜泉 | zh_TW |
dc.date.accessioned | 2021-07-10T22:15:42Z | - |
dc.date.available | 2021-07-10T22:15:42Z | - |
dc.date.copyright | 2017-08-31 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-08-17 | |
dc.identifier.citation | Adiga, S. P., C. Jin, L. A. Curtiss, N. A. Monteiro‐Riviere and R. J. Narayan (2009). 'Nanoporous membranes for medical and biological applications.' Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 1(5): 568-581.
Anker, P., H. Mulcahy, X. Q. Chen and M. Stroun (1999). 'Detection of circulating tumour DNA in the blood (plasma/serum) of cancer patients.' Cancer Metastasis Rev 18(1): 65-73. Baskurt, O. K., D. Gelmont and H. J. Meiselman (1998). 'Red blood cell deformability in sepsis.' American journal of respiratory and critical care medicine 157(2): 421-427. Bodey, G. P., M. Buckley, Y. S. Sathe and E. J. Freireich (1966). 'Quantitative relationships between circulating leukocytes and infection in patients with acute leukemia.' Ann Intern Med 64(2): 328-340. Carlson, R. H., C. Gabel, S. Chan and R. H. Austin (1998). 'Activation and sorting of human white blood cells.' Biomedical microdevices 1(1): 39-47. Castillo, T. N., M. A. Pouliot, H. J. Kim and J. L. Dragoo (2011). 'Comparison of growth factor and platelet concentration from commercial platelet-rich plasma separation systems.' The American journal of sports medicine 39(2): 266-271. Fresenius Medical Care. (2006). 'Advanced renal education program- Extracorporeal Modalities.' Retrieved 7 August, 2015, from http://advancedrenaleducation.com/content/extracorporeal-modalities. Haemonetics Corporation. (2011). 'MCS®+ 9000 Mobile Platelet Collection System.' Retrieved 7 August, 2015, from http://www.haemonetics.com/en/products/devices/blood-and-plasma-center-devices/mcs-9000. Hester, J. (2001). 'Apheresis: the first 30 years.' Transfusion and Apheresis Science 24(2): 155-156. Hoek, E. M. V. and V. V. Tarabara (2013). Encyclopedia of Membrane Science and Technology, Wiley Online Library. Ikizler, T. A. and G. Schulman (2005). 'Hemodialysis: techniques and prescription.' American journal of kidney diseases 46(5): 976-981. Kridel, H. A. (2017). 'Blood Smear Preparation.' Majekodunmi, S. O. (2015). 'A review on centrifugation in the pharmaceutical industry.' American Journal of Biomedical Engineering 5(2): 67-78. Malchesky, P. S. (2001). 'Membrane processes for plasma separation and plasma fractionation: guiding principles for clinical use.' Therapeutic Apheresis and Dialysis 5(4): 270-282. Malchesky, P. S., A. P. Koo, C. I. Skibinski, A. T. Hadsell and L. A. Rybicki (2010). 'Apheresis technologies and clinical applications: the 2007 International Apheresis Registry.' Ther Apher Dial 14(1): 52-73. Miller, D. J., S. Kasemset, L. Wang, D. R. Paul and B. D. Freeman (2014). 'Constant flux crossflow filtration evaluation of surface-modified fouling-resistant membranes.' Journal of Membrane Science 452: 171-183. Miller, D. J., D. R. Paul and B. D. Freeman (2013). 'A crossflow filtration system for constant permeate flux membrane fouling characterization.' Review of Scientific Instruments 84(3): 035003. Miltenyi Biotec. (2015). 'MACS® Technology - for all your cell isolation needs.' Retrieved 7 August, 2015, from http://www.miltenyibiotec.com/en/products-and-services/macs-cell-separation/macs-technology.aspx. Mulder, J. (2012). Basic principles of membrane technology, Springer Science & Business Media. Namdee, K., M. Carrasco-Teja, M. B. Fish, P. Charoenphol and O. Eniola-Adefeso (2015). 'Effect of variation in hemorheology between human and animal blood on the binding efficacy of vascular-targeted carriers.' Sci Rep 5: 11631. Olson, J. C. (2009). Design and modeling of a portable hemodialysis system, Georgia Institute of Technology. Ostadfar, A., A. H. Rawicz and M. Gitimoghaddam (2013). 'Application of backwashing to increase permeate flux in bioparticle separation.' J. Med. Biol. Eng. 33: 478. Plumb, D. C. (2005). Plumb's veterinary drug handbook, PharmaVet. Rabindranath, K. S., G. F. Strippoli, P. Roderick, S. A. Wallace, A. M. MacLeod and C. Daly (2005). 'Comparison of hemodialysis, hemofiltration, and acetate-free biofiltration for ESRD: systematic review.' American journal of kidney diseases 45(3): 437-447. Raymond, M., E. Smith and J. Liesegang (1996). 'The physical properties of blood–forensic considerations.' Science & Justice 36(3): 153-160. Rock, G., P. Tittley and N. McCombie (1986). 'Plasma collection using an automated membrane device.' Transfusion 26(3): 269-271. Solomon, A. and J. L. Fahey (1963). 'Plasmapheresis therapy in macroglobulinemia.' Annals of Internal Medicine 58(5): 789-800. Sueoka, A. (1997). 'Present status of apheresis technologies: Part 2. Membrane plasma fractionator.' Therapeutic Apheresis and Dialysis 1(2): 135-146. T-Bİotechnology. (2014). 'How to use T-LAB PRP Kit?' Retrieved 7 August, 2015, from http://tlabprpkit.com/t-lab-prp-kit/how-to-use/. The American National Red Cross. (2015). 'Blood Components.' Retrieved 25 July, 2015, from http://www.redcrossblood.org/learn-about-blood/blood-components. The American National Red Cross. (2015). 'Blood Components.' Retrieved 25 July, 2015, from http://www.redcrossblood.org/learn-about-blood/blood-components. Tomlinson, M. J., S. Tomlinson, X. B. Yang and J. Kirkham (2013). 'Cell separation: Terminology and practical considerations.' Journal of tissue engineering 4: 2041731412472690. Tuhy, A. R., E. K. Anderson and G. N. Jovanovic (2012). 'Urea separation in flat-plate microchannel hemodialyzer; experiment and modeling.' Biomedical Microdevices 14(3): 595-602. Wu, Y., M. S. Kanna, C. Liu, Y. Zhou and C. K. Chan (2016). 'Generation of Autologous Platelet-Rich Plasma by the Ultrasonic Standing Waves.' IEEE Transactions on Biomedical Engineering 63(8): 1642-1652. Yue, Q. F., B. Xiong, W. X. Chen and X. Y. Liu (2014). 'Comparative study of the efficacy of Wright-Giemsa stain and Liu's stain in the detection of Auer rods in acute promyelocytic leukemia.' Acta Histochem 116(6): 1113-1116. 台灣血液基金會. (2015). '白血球濃厚液.' Retrieved 25 December, 2016, from http://www.blood.org.tw/internet/main/docDetail.aspx?uid=6446&pid=6381&doc. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77683 | - |
dc.description.abstract | 全血進行血液單採分離後取得之血品稱為成分血,分離後之成分血可以對應至不同需求應用在醫療中,減少血液資源的浪費。白血球濃厚液是其中一種血品,可以應用於免疫治療,目前其主要製備方法為離心法。
使用離心法製備白血球濃厚液時,因白血球數量遠少於紅血球,離心分層後依然不易取出白血球,因此本論文將建立以薄膜橫流過濾(cross-flow filtration)與血液透析過濾法(Hemodiafiltration)為基礎之血球過濾模型,將全血分離,進行白血球的濃縮。使用與人血相近之豬血進行研究以建立過濾器之白血球濃縮模型;其中豬血的紅血球大小約為5.8μm,白血球大小約為8~16μm,考慮血球為彈性體,選用平均孔徑4.5μm之PET濾膜;比照透析器之模型,利用兩流向相反之血液流與生理食鹽水流,使其在過濾膜兩側產生體積流量差,進行過濾作用。由於PET薄膜的孔徑的篩選性,直徑較小之紅血球,將穿過薄膜而減少數量,而直徑較大之白血球則因無法穿過薄膜,而讓cross-flow的橫流帶回血液中或吸附在薄膜上。持續這個過程,全血就會逐漸濃縮成白血球濃縮血品。最後在利用薄膜逆洗(backwash filtration)的方法,將吸附在薄膜上之血球回沖回血液中,提高血球之回收率。 本研究建立之過濾模型,藉由透過控制蠕動幫浦之流量,讓薄膜穿越量為(0.4、0.6 ml/min)的情形下,進行1小時之過濾,使紅、白血球之回收率差異到達5.7%,產生白血球濃縮之效果,並透過薄膜逆洗的過程,將吸附在薄膜之血球回沖,使白血球之回收率達79.3%。 | zh_TW |
dc.description.abstract | Whole blood can be separated by using apheresis methods into blood products for different indications. One of the blood products is white blood cell concentrates (WBC concentrates), which are important in immunotherapy.
The conventional approach is to use syringes to obtain the WBC concentrates from the buffy coat - the thin layer between plasma and red blood cells (RBCs) after the centrifugation methods. It is a manual process and difficult to the WBC concentrates with high purity. To automate the WBC concentrate preparation procedures, a prototype system, which employs dialyzer and membrane filtration to directly separate the blood cells based on the size, is proposed. A filtration membrane with the pore size at 4.5 μm in average is used. Porcine blood, whose RBCs are 5.8 μm and white blood cells (WBCs) are 8~12 μm in diameter, are tested. The flow rates of the blood and dialysate are controlled for a systematic study to evaluate the perforamnce of the prototype. The system with the permeate flux at 0.4 and 0.6 ml/min is found to be able to concentrate the WBCs. In addition, to enhance the performance since the membrane is found to trap blood cells during the filtration, backflow filtration is tested. The permeat flux is controlled to have a counter current flux to backwash the membrane. The recovery rate of the WBC is enahnce to 79.3%, with a reverse permeate flow rate at 2.5 ml/min. Keywords: WBC concentration, leukapheresis, blood separation, membrane filtration, cross-flow filtration. | en |
dc.description.provenance | Made available in DSpace on 2021-07-10T22:15:42Z (GMT). No. of bitstreams: 1 ntu-106-R04631009-1.pdf: 3948398 bytes, checksum: 1286466e2e341e5edad9360f82740c06 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | Table of Contents
誌謝 i 中文摘要 ii Abstract iii List of Tables xvi Chapter 1 Introduction 1 1.1 Motivation 1 1.2 A history of apheresis blood 3 1.3 White blood cell concentrates 4 1.4 Overall structure of thesis 5 Chapter 2 Literature Review 6 2.1 The properties of blood cells 6 2.2 Centrifugation 7 2.2.1 Centrifugation and sedimentation 10 2.3 Magnetic activated cell sorting (MACS) 15 2.4 Membrane filtration 16 2.5 Hemodialysis modalities 18 Chapter 3 Material and Methods 23 3.1 Blood smear examination 23 3.2 Separation principle 26 3.2.1 Filtration model 27 3.2.2 Membranes 28 3.3 Experimental setup 30 3.4 Experiment process (protocol) 34 3.4.1 Filtration 34 3.4.2 Backwash 37 3.5 Result quantification 38 3.6 Recovery rate analysis 39 Chapter 4 Results and Discussion 41 4.1 Permeate flux and separation efficiency 41 4.1.1 Volume flow rate of feed flow 41 4.1.2 Filtration result 42 4.2 SEM images 45 4.2.1 Anticoagulant(EDTA) in dialysate 49 4.3 Membrane backwash 50 4.4 Periodical backwash process 53 4.5 Membrane thickness 57 Chapter 5 Conclusions 59 5.1 Conclusions 59 5.2 Future work 60 5.3 Future prospect 61 References 63 Appendix A:電顯樣本製作 67 Appendix B:口試 Q&A 69 | |
dc.language.iso | en | |
dc.title | 利用過濾法進行白血球濃縮單採原型之開發 | zh_TW |
dc.title | A Novel Leukapheresis Prototype Development
Based on Membrane Filtration | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 楊馥菱(Fu-Ling Yang),黃振康(Chen-Kang Huang),張惠雯(Hui-Wen Chang) | |
dc.subject.keyword | 白血球濃縮,白血球單採,血球分離,薄膜過濾,cross-flow, | zh_TW |
dc.subject.keyword | WBC concentration,leukapheresis,membrane filtration,cross-flow, | en |
dc.relation.page | 71 | |
dc.identifier.doi | 10.6342/NTU201703838 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2017-08-18 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
顯示於系所單位: | 生物機電工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-R04631009-1.pdf 目前未授權公開取用 | 3.86 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。