Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77671
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor張耀乾(Yao-Chien Chang)
dc.contributor.authorChen-En Chenen
dc.contributor.author陳承恩zh_TW
dc.date.accessioned2021-07-10T22:14:57Z-
dc.date.available2021-07-10T22:14:57Z-
dc.date.copyright2017-09-04
dc.date.issued2017
dc.date.submitted2017-08-19
dc.identifier.citation行政院農業委員會. 2017a. 農產品批發市場交易行情站交易價量統計. 12 Apr. 2017. <http://amis.afa.gov.tw/menu/FlowerMenuChart.aspx>
行政院農業委員會. 2017b. 農業統計資料查詢系統. 12 Apr. 2017. <http://agrstat.coa.gov.tw/sdweb/public/inquiry/InquireAdvance.aspx>
李哖. 1975. 切花之採收後生理. 中國園藝. 21:211-221.
李嘉慧、李哖. 1991. 台灣蝴蝶蘭根和葉的形態與解剖的特性. 中國園藝37:237-248.
林雨森. 1988. 蝴蝶蘭切花採收後生理與老化. 國立臺灣大學園藝研究所碩士論文.臺北.
林韋利. 2006. 乙烯及1-Methylcyclopropene對蝴蝶蘭花朵壽命之影響. 國立臺灣大學園藝研究所碩士論文. 臺北.
翁一司. 2013. 腎藥蘭切花栽培管理要領. 高雄區農業專訊 85:6-7.
翁一司. 2016. 萬代蘭切花分級標準與採後處理作業流程之建立. 高雄區農業改良場年報 44-45.
陳福旗. 2013. 蘭花技術服務團及蝴蝶蘭改進歷程. 提升臺灣花卉國際競爭力研討會專刊.台灣園藝學會編印 91-98
莊畫婷. 2010. 千代蘭之切花產業現況. 高雄區農業專訊 73:22-23
何統作、徐善慧 2010. 人類內皮細胞在不同濃度奈米金/銀-聚胺酯複合材料上之行為評估. 中興大學化學工程學系所學位論文. 臺中.
許明麗、孫曉艷、文江祁. 2000. 水楊酸對水分脅迫下小麥幼苗葉片膜損傷的保護作用. 植物生理學通訊 35:29-32.
楊颺. 2014. 萬代蘭的產業介紹. 臺南場農業專訊 90:1-5.
廖御靜、陳洵一、黃三元、唐品琦. 2011. 奈米微粒對動物生理之影響. 農林學報60:171-180.
蔡依真、翁崧夏、謝文棟. 2015. 茶皂素在植物保護方面之應用. 花蓮區農業專訊 91:10-12.
聶磊、葉敏儀、林靜慧、黃筱嬋、馮欣俊. 2009. 白藜蘆醇和硝普鈉對月季切花的保鮮效應. 廣州城市職業學院報 3:44-50.
纙希妲、莊慧文. 2015. 應用奈米銀於延長水仙百合切花之瓶插壽命. 化學 73:187-192.
Akamine, E.K. 1963. Ethylene production in fading Vanda orchid blossoms. Science 140:1217-1218.
Akamine, E.K. 1976. Postharvest handling of tropical ornamental cut crops in Hawaii. Hortscience 11:125-126.
Al-Talib, K.H., and J.G. Torrey. 1961. Sclereid distribution in the leaves of Pseudotsuga under natural and experimental conditions. Amer. J. Bot. 48:71-79.
Burg, S.P., and M.J. Dijkman. 1967. Ethylene and auxin participation in pollen induced fading of Vanda orchid blossoms. Plant Physiol. 42:1648.
Balqis, A. R., D. Indradewa, and S. Trisnowati, 2014. The effects of slope and frequency of stem cutting in the water to the vase life of cut orchid Vanda douglas . Vegetalika 2:12-24.
Blankenship, S.M. and J.M. Dole. 2003. 1-Methylcyclopropene: A review. Postharvest Biol. Technol. 28:1-25.
Carpenter, W.J. and H.P. Rasmussen. 1974. The role of flower and leaves in cut flower water uptake. Scientia Hort. 2:293-298.
Carrillo-López, L.M., A. Morgado-González, and A. Morgado-González. 2016. Biosynthesized silver nanoparticles used in preservative solutions for Chrysanthemum cv. puma. J. Nanomaterials 10:1-10.
Chuang, Y.C. and Y.C.A. Chang 2013. The role of soluble sugars in vase solutions during the vase life of Eustoma grandiflorum. HortScience 48:222-226.
Curtis, A. and A. Wilkinson. 2001. Nantotechniques and approaches in biotechnology. Trends in Biotechnology 19:97-101.
Debnath, N.G., S.P. Vij, and R.P. Medhi. 2014. Post-harvest physiology and technology in orchids. J. Hort. 1:102-110.
Desai, R., R. Patel, and A. Mankad. 2012. Petal senescence in cut Tagetes erecta L. flowers: Role of phenolics. Intl. J. Sci. Environ. Technol. 1:485-490.
de Vos, M., V.R. van Oosten, R.M. van Poecke, J.A.van Pelt, M.J. Pozo, M. Mueller, and C.M. Pieterse. 2005. Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Molecular Plant-microbe Interactions, 18:923-937.
Farber, B.F, and A.G.Wolff. 1993. Salicylic acid prevents the adherence of bacteria and yeast to silastic catheters. J. Biomedical Materials Res. 27: 599-602.
Farokhzad, A.R., A. Khalighi, Y. Mostofi, and R. Naderi. 2008. Effect of some chemical treatments on quality and vase life of lisianthus (Eustoma grandiflora) cut flowers. Acta Hort. 768:479-486.
Farzad, M., R. Griesbach, and M.R. Weiss. 2002. Floral color change in Viola cornuta L. (Violaceae): a model system to study regulation of anthocyanin production. plant Sci. 162:225-231.
Feys, B.J., C.E. Benedetti, C.N. Penfold, and J.G. Turner. 1994. Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell 6:751-759.
Gagner, J.E., M.D. Lopez, J.S. Dordick, and R.W. Siegel. 2011. Effect of gold nanoparticle morphology on adsorbed protein structure and function. Biomaterials. 32:7241-7252.
Gautam, S., and P.K. Singh. 2009. Salicylic acid-induced salinity tolerance in corn grown under NaCl stress. Acta Physiol. Plant. 31:1185.
Goh, C.J., A.H. Halevy, R. Engel, and A.M. Kofranek. 1985. Ethylene evolution and sensitivity in cut orchid flowers. Scientia Hort. 26:57-67.
Gardiner, L. M., J.A. Hawkins, and D.L. Roberts. 2005. Species delimitation in Vanda sect. Cristatae Lindl. (Orchidaceae): a morphometric approach. Selbyana:347-353.
Glick, A., S. Philosoph-Hadas, A. Vainstein, A. Meir, Y. Tadmor, and S. Meir. 2007. Methyl jasmonate enhances color and carotenoid content of yellow-pigmented cut rose flowers. Acta Hort. 755:243.
Halevy, A.H. and S. Mayak. 1981. Senescence and postharvest physiology of cut flowers. Part 2. Hort. Rev. 3:59-143.
Hassan, U., and R. Bashir, 2014. Electrical cell counting process characterization in a microfluidic impedance cytometer. Biomedical microdevices 16:697-704.
Hayat, S., B. Ali, and A. Ahmad. 2007. In salicylic acid: A plant hormone. Springer, Rotterdam, The Netherlands.
Howe, G.A. 2004. Jasmonates. Plant hormones - biosynthesis, signal transduction. Kluwer Acad. Publ. 1:610-634
Hussein, H.H.A. 1994. Varietal responses of cut flowers to different antimicrobial agents of bacterial contamination and keeping quality. Acta Hort. 368:106-116.
Hyakumachi, M., A. Priyatmojo, M. Kubota, and H. Fukui. 2005. New anastomosis groups, AG-T and AG-U, of binucleate Rhizoctonia spp. causing root and stem rot of cut-flower and miniature roses. Phytopathology 95:784-792.
Ichimura, K., and T. Hisamatsu. 1999. Effects of continuous treatment with sucrose on the vase life, soluble carbohydrate concentrations, and ethylene production of cut snapdragon flowers. J. Jpn. Soc. Hort. Sci. 68:61-66.
Ichimura, K., K. Kojima, and R. Goto. 1999. Effects of temperature, 8-hydroxyquinoline sulphate and sucrose on the vase life of cut rose flowers. Postharvest Biol. Technol. 15:33-40.
Ichimura, K., T. Fujiwara, Y. Yamauchi, H. Horie, and K. Kohata. 2015. Effects of tea-seed saponins on the vase life, hydraulic conductance and transpiration of cut rose flowers. Jpn. Agri. Research Quarterly 39:115-119.
Jiang, W., B.Y. Kim, J.T. Rutka, and W.C. Chan. 2008. Nanoparticle-mediated cellular response is size-dependent. Nature Nanotechnology 3:145-150.
Jitareerat, P., K. Obsuwan, N. Sattayawong, and A. Uthairatanakij, 2009. August responses of Mokara ‘Nora Pink’ inflorescences to biocide in vase solution. Southeast Asia Symposium on Quality and Safety of Fresh and Fresh-Cut Produce 875:531-538
Kazemi, M., E. Hadavi, and J. Hekmati. 2011. Role of salicylic acid in decreases of membrane senescence in cut carnation flowers. Amer. J. Plant Physiol. 6:106-112.
Katsuhara, M. 1997. Apoptosis-like cell death in barley roots under salt stress. Plant cell Phys. 38:1091-1093.
Khosravi, L., N. Rood, A. Danyaei, and M. Babarabie. 2016. The effect of non-harmful compounds environmentally (Eucalyptus and Rosa damascena essences) on vase life and some physiological characteristics of Gerbera cut flowers. J. Chem. Health Risks 6:153-160.
Khoodoo, M.H.R., F. Sahin, and Y.J. Fakim. 2005. Sensitive detection of Xanthomonas axonopodis pv. dieffenbachiae on Anthurium andreanum by immunocapture-PCR (IC-PCR) using primers designed from sequence characterized amplified regions (SCAR) of the blight pathogen. European J. Plant Pathol. 112:379-390.
Kumar, V. and S.K. Yadav. 2009. Plant‐mediated synthesis of silver and gold nanoparticles and their applicationano silver J. Chem. Tech. Biotechnol. 84:151-157.
Kuiper, D., S. Ribot, and H.S. Reenen. 1995. The effect of sucrose on the flower bud opening of ‘Madelon’ cut roses. Scientia Hort. 60:325-336.
Lee, Y.H., S.M. Wong, W.K. Tan, and C.J. Goh.1996. Breeding vandaceous orchids for commercial cut-flowers in Singapore: an overview. Euphytica 89:235-241.
Lekawatana, S. 2010. Thai orchid: current situation. Taiwan Intl. Orchid Symp. Tainan, Taiwan.
Li, M. H., G.Q. Zhang, S.R. Lan, and Z.J. Liu. 2016. A molecular phylogeny of Chinese orchids. J. Systematics Evolution 4:349-362
Mattiuz, C. F. M., B. H. Mattiuz, T.D.J.D. Rodrigues, J.D. Pietro, R.N. Martins, and S.D.F. Grossi. 2012. Longevity of Oncidium varicosum (Orchidaceae) inflorescences treated with 1-methylciclopropene. Ciência Rural, 42:987-992.
Meir, S., S. Droby, H. Davidson, S. Alsevia, L. Cohen, B. Horev, and S. Philosoph-Hadas. 1998. Suppression of Botrytis rot in cut rose flowers by postharvest application of methyl jasmonate. Postharvest Biol. Technol. 13:235-243.
Meir, S., S. Droby, B. Kochanek, S. Salim, and S. Philosoph-Hadas. 2005. Use of methyl jasmonate for suppression of Botrytis rot in various cultivars of cut rose flowers. Acta Hort. 669:91-98
Obsuwan, K., and A. Uthairatanakij. 2007. The responses of different cut inflorescence of orchid hybrids to various 1-MCP concentrations. Acta Hort. 755:465-470
Panyala, N.R., E.M. Pena-Mendez, and J. Havel. 2009. Gold and nano-gold in medicine: overview, toxicology and perspectives. J. Appl. Biomed. 7:75-91.
Perez, A.G., C. Sanz, R. Olias, and J.M. Olias. 1997. Effect of methyl jasmonate on in vitro strawberry ripening. J. Agr. Food Chem. 45:3733-3737.
Phillips, R.D., G.R. Brown, K.W. Dixon, C. Hayes, C.C. Linde, and R. Peakall. 2017. Evolutionary relationships among pollinators and repeated pollinator sharing in sexually deceptive orchids. J. Evolutionary Biol. 13125:1-18
Porembski, S. 2007. Tropical inselbergs: habitat types, adaptive strategies and diversity patterns. Brazilian J. Bot. 30: 579-586.
Pridgeon, A. M., 1987. The velamen and exodermis of orchid roots, p.139-192. In: J. Ariditti (ed.). Orchid Biology: Reviews and Perspectives, Vol. IV. Cornell Univ. press, Ithaca, New York.
Raffeiner, B., M. Serek, and T. Winkelmann. 2009. Agrobacterium tumefaciens-mediated transformation of Oncidium and Odontoglossum orchid species with the ethylene receptor mutant gene etr1-1. Plant Cell. 98: 125-134.
Rajasekharreddy, P., P.U. Rani, and B. Sreedhar. 2010. Qualitative assessment of silver and gold nanoparticle synthesis in various plants: a photobiological approach. J. Nanoparticle Res. 12:1711-1721.
Reid, M.S. and A.M. Kofranek. 1980. Postharvest physiology of cut flowers. Chronica Hort. 20:25-27
Reid, M. S., J.L. Paul, M.B. Farhoomand, A.M. Kofranek, and G.L. Staby, 1980. Pulse treatments with the silver thiosulfate complex extend the vase life of cut carnations. J. Amer. Soc. Hort. Sci. 105:25-27.
Reid, M.S., L.L. Dodge and R. Valle. 1999. 1-MCP, a breakthrough in ethylene protection. Flora Culture International.11:36-40.
Redman, P.B., J.M. Dole, N.O. Maness, and J.A. Anderson. 2002. Postharvest handling of nine specialty cut flower species. Scientia Hort. 92:293-303.
Robertson, R.P., D.J. Baylink, J.J. Marini, and H.W. Adkison. 1975. Elevated prostaglandins and suppressed parathyroid hormone associated with hypercalcemia and renal cell carcinoma. J. Clinical Endocrinology Metabolism. 41:164-167.
Schiestl, F.P., M. Ayasse, H.F. Paulus, C. Lofstedt, B.S. Hansson, F. Ibarra, and W. Francke. 1999. Orchid pollination by sexual swindle. Nature 399:421–422.
Schiestl, F.P., R. Peakall, J.G. Mant, F. Ibarra, C. Schulz, S. Franke, and W. Francke. 2003. The chemistry of sexual deception in an orchid-wasp pollination system. Science 302:437–438.
Seidenfaden, G. and J.J. Wood. 1992. The orchids of peninsular Malaysia and Singapore. Olsen and Olsen, Fredensborg, Denmark.
Sezonov, G., D. Joseleau-Petit, and R. D'Ari. 2007. Escherichia coli physiology in Luria-Bertani broth. J. Bacteriology 189:8746-8749.
Shirasu, K., H. Nakajima, V.K. Rajasekhar, R.A. Dixon, and C. Lamb. 1997. Salicylic acid potentiates an agonist-dependent gain control that amplines pathogen signals in the activation of defense mechanisms. Plant Cell. 4:1123-1130
Spinarova, S., L. Hendriks, F. Steinbacher, O. Schmid, and B. Hauser. 2007. Cavitation and transpiration profiles of cut roses under water stress. Europ. J. Hort. Sci. 72:113-118.
Stoltz, L.P. 1956. The keeping quality of cut flowers with special emphasis on ‘Better Time’ roses. M. S. Thesis. Ohio State Univ. Columbus, OH.
Sisler, E.C., E. Dupille and M. Serek. 1996. Effect of 1-methylcyclopropene and methylenecy-clopropene on ethylene binding and ethylene action on cut carnations. Plant Growth Regulat. 18: 79-86.
Syu, Y. Y., J.H. Hung, J.C. Chen, and H.W. Chuang. 2014. Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiology and Biochemistry, 83:57-64.
Tanaka, N., and T. Hvitved-Jacobsen. 1998. Transformations of wastewater organic matter in sewers under changing aerobic/anaerobic conditions. Water Sci. Technol. 37:105-113.
Thammasiri, K. 2016. Thai orchid genetic resources and their improvement. Horticulturae. 2:9.
Thwala, M., P. K. Wahome, T. O. Oseni, and M. T. Masarirambi. 2013. Effects of floral preservatives on the vase life of orchid (Epidendrum radicans L.) cut flowers. J. Hort. Sci. Ornamental Plants 5:22-29.
Uthaichay, N., S. Ketsa, and W. G. van Doorn. 2007. 1-MCP pretreatment prevents bud and flower abscission in Dendrobium orchids. Postharvest Biol. Tech. 43:374-380.
van Doorn, W. G. 1997. Water relations of cut flowers. Hort. Rev. 18:1-68.
van Doorn, W. G., F. G. Çelikel, C. Pak, and H. Harkema. 2013. Delay of Iris flower senescence by cytokinins and jasmonates. Physiol. Plant. 148:105-120.
van Loon, L.C., and E.A. van Strien, 1999. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol. Mol. Plant Pathol. 55:85-97.
Waithaka, K., L.L. Dodge, and M.S. Reid. 2001. Carbohydrate traffic during opening of gladiolus florets. Acta Hort. 543:217-226.
Wee, S.H. 1971. Maturation period of pods and time taken for plant to flower. Malayan Orchid Rev. 10:42-46.
Wong, S.C., 1974. A study of photosynthesis and photorespiration in some thin-leaved orchid species. M.Sc. Diss. Dept. Bot. Nanyang Univ. Singapore.
Winter, J., M. Ilbert, P.C.F. Graf, D. Özcelik, and U. Jakob. 2008. Bleach activates a redox-regulated chaperone by oxidative protein unfoldinano gold. Cell 135:691-701.
Yang, W., C. Shen, Q. Ji, H. An, and J. Wang. 2009. Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA. Nanotechnology. 20:102.
Zamski, E., F. Starkman, and N. Zieslin. 1991. Mechanical strength and anatomicalstructure of the peduncles of rose (Rosa × hybrida) flowers. Israel J. Bot. 40:1-6.
Zieslin, N. and R. Ben-Zaken. 1991. Peroxidases and phenyalanine ammonia-lyase in rose peduncles. J. Plant Physiol. Biochem. 29:147-151
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77671-
dc.description.abstract本研究採用萬代蘭‘巨輪紫’ (Vanda Pachara Delight)為主要試驗材料,探討蔗糖、殺菌劑、免疫反應誘導藥劑、1-methylcyclopropene (1-MCP)、奈米金及奈米銀對切花保鮮之效益。研究方法為調查不同處理下之瓶插壽命、花梗基部褐化程度、最上位花萎凋及瓶插液吸收能力,嘗試改善產業現有萬代蘭切花保鮮之處理方式。本研究另解剖萬代蘭,觀察各部位構造及基部褐化後之花梗構造。
瓶插液單獨添加2%蔗糖或搭配593 µM 8-HQC均可顯著增長萬代蘭切花瓶插壽命8-10日、延後花梗基部褐化6-8日、使最上位花延後7-10日萎凋及延緩瓶插液產生混濁5-10日。
瓶插處理2900 µM水楊酸加2%蔗糖比單獨處理2%蔗糖多延長瓶插壽命7-10日,且能有效提高切花的瓶插液吸收能力;但造成花梗基部於4日內產生褐化。水楊酸處理下褐化花梗木質化次生細胞壁數量較對照組多。故此花梗基部褐化現象應屬藥劑誘導之免疫反應。短時間(12-48小時)處理2900-5800 µM水楊酸即可延長切花3.6-7.2日瓶插壽命、減緩上位花萎凋及增加瓶插液吸收能力。噴施725 µM 水楊酸於萬代蘭花朵,亦可延長瓶插壽命4.6日,且花梗基部不會產生提早褐化之現象。於蔗糖瓶插液中添加同為誘發植物免疫反應藥劑之茶皂素180 µM,其切花瓶插壽命較2900 µM水楊酸處理多2.1日;但切花瓶插前期(花朵萎凋率達40%之前)瓶插品質以水楊酸處理較佳。以2%蔗糖加2900 µM水楊酸為瓶插液處理Vanda Pachara Delight切花,瓶插壽命較200× 可麗鮮(Chrysal Professional 2)處理多3.0日。以2%蔗糖加2900 µM水楊酸處理Vanda Siriporn Pink切花,瓶插壽命較200× 可麗鮮處理多1.9日。以2%蔗糖加2900 µM水楊酸處理Vanda Pachara Delight切花及Vanda Siriporn Pink切花皆能顯著提升瓶插前期之花朵品質。
萬代蘭切花遭遇2 µL·L-1乙烯逆境會造成下位花朵提早萎凋,瓶插壽命較對照組提早5.3日結束。相對於下位花,上位花對乙烯較不敏感。以0.025、0.05或0.2 µL·L-1 1-MCP前處理2小時,可降低萬代蘭切花瓶插前期之花朵萎凋率。萬代蘭切花噴施處理60、180、540、2700 nM奈米金、瓶插處理180 nM奈米金或同時瓶插180 nM奈米金及噴施540 nM奈米金,可分別較對照組延長瓶插壽命3.6、4.6、6.2、5.3、5.1或6.3日。萬代蘭切花噴施80或240 ppm奈米銀,相較於對照組,可延長切花瓶插壽命4.3-5.8或4.0-5.0日。
本研究中,瓶插液單獨添加2%蔗糖可延長萬代蘭瓶插壽命70%,處理成本最低。540 nM奈米金噴施處理可延長瓶插壽命66%;80 ppm 奈米銀噴施處理延長瓶插壽命59%,兩者雖成本較高,但施用方式最簡便。以0.025 µL·L-1 1-MCP前處理2小時,可減少萬代蘭切花遭受乙烯逆境所受之傷害。本研究中,以2%蔗糖+ 2900 µM水楊酸處理效果最佳,相較於對照組,雖會造成花梗基部提早褐化,但具延長切花瓶插壽命85%-127%之能力。
zh_TW
dc.description.abstractVanda orchids have become an important crop in Taiwan, which are exported to Japan as cut flowers. In this study, cut flowers were treated with sucrose, antibacterials, immune response-induced chemicals, 1-methylcyclopropene (1-MCP), nano gold, or nano silver. The flowering quality, including vase life, days to spike base browing, days to top flower wilting, and vase solution uptake capacity were investigated. The purposes of this study were to observe senescence phenemenon of cut Vanda and to improve the postharvest handling methods of the cut flowers. This study also observed the structures of different organ parts and various base-browned spikes of Vanda by dissection.
Treatment of 2% sucrose or 2% sucrose + 593 µM 8-HQC both extended vase life for 8-10 days, delayed spike base browing for 6-8 days, prolonged top flower life for 7-10 days, slowed vase solution became turbid for 5-10 days, and increased vase solution uptake capacity of Vanda cut flowers.
With 2% sucrose + 2900 µM salicylic acid, the vase life of cut flowers was extended for 7-10 days, longer than that of with 2% sucrose alone, vase solution uptake was increased, but it also led to spike base browing within 4 days. Sections of browned spike base showed that there were more lignified secondary walls than control. This browing reaction seems to be a chemical-induced plant immune response.
A short-term (12-48 h) treatment of 2900-5800 µM salicylic acid to Vanda cut flower increased vase life, days to top flower wilting, and vase solution uptake. Spraying 725 µM salicylic acid to Vanda cut flowers extended vase life for 4.6 days without spike base browing. Treatment with tea-seed saponins at 180 µM further extended vase life for 2.1 days, compared with that of 2900 µM salicylic acid treatment. But 2900 µM salicylic acid treatment still had better flowering quality in early vase time (flower wilting rate below 40%). Treatment of 2% sucrose + 2900 µM salicylic acid extended vase life for 3 days, compared with that of 200× Chrysal Professional 2 in Vanda Pachara Delight. Applying 2% sucrose + 2900 µM salicylic acid extended vase life for 1.9 days in Vanda Siriporn Pink, longer than that of 200× Chrysal Professional 2. Adding 2% sucrose + 2900 µM salicylic acid in vase significantly increased cut flower quality in the early vase time in both Vanda Pachara Delight and Vanda Siriporn Pink.
Flowers at the lower positions of Vanda Pachara Delight were more sensitivie to ethylene than those at the upper positions. Wilting of lower-position flowers was induced by 2 µL·L-1 ethylene, of which vase life were reduceed by 5.3 days. Data showed that pretreated Vanda Pachara Delight with 0.025, 0.05, or 0.2 µL·L-1 1-MCP for 2 hours delayed wilting of flowers at lower positions.
Flowers treated with nano gold by spray at concentrations of 60, 180, 540, or 2700 nM, or with 180 nM nano gold in vase, or with 180 nM nano gold in vase and 540 nM nano gold by spray extended vase life for 3.6, 4.6, 6.2, 5.3, 5.1, or 6.3 days, respectively, compared with the controls. Among them, sprayed with 540 nM nano gold had the best result. Flower sprayed with nano silver at concentrations of 80 or 240 ppm extended vase life for 4.3-5.7 or 4.0-5.0 days, respectively.
In this study, treated Vanda cut flowers with 2% sucrose in vase extended vase life for 70%; this treatment had the lowest cost. Spraying 540 nM nano gold or 80 ppm nano silver to Vanda cut flowers extended vase life for 66% or 59%, respectively. Although the costs of nano particles are higher, they are easier to apply. Fumigated with 0.025 µL·L-1 1-MCP for 2 h was effective in inhibiting ethylene-induced wilting in Vanda cut flowers. The most effective treatment in this research was 2% sucrose + 2900 µM salicylic acid in vase. Altough it caused earlier spike base browing, it extended the vase life of Vanda cut flowers by 85%-127%, compare with the controls.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T22:14:57Z (GMT). No. of bitstreams: 1
ntu-106-R04628126-1.pdf: 5807809 bytes, checksum: 1b66da675cbeba2f1a8e68ff80ca0fb3 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents目錄
摘要 I
Abstract III
目錄 VI
表目錄 VIII
圖目錄 X
第一章 前言 1
第二章 前人研究 3
第一節 萬代蘭屬之分類及其栽培 3
第二節 影響切花壽命之因子 4
第三節 常見蘭花切花保鮮之方法 5
第四節 二次代謝物對切花保鮮之影響 6
第五節 奈米金屬微粒對切花保鮮之影響 9
第三章 材料與方法 11
第一節 植物材料 11
第二節 試驗場地 12
第三節 一般調查項目 12
第四節 試驗藥品及濃度對照表 13
第五節 材料瓶插處理 14
第六節 試驗設計 14
第七節 切片材料與方法 26
第八節 統計分析 27
第四章 結果 28
第一節 蔗糖對萬代蘭切花瓶插壽命之影響 28
第二節 抑菌類藥劑類對萬代蘭切花瓶插壽命之影響 29
第三節 誘發免疫反應類藥劑對萬代蘭切花瓶插壽命之影響 32
第四節 乙烯與1-MCP前處理對萬代蘭切花花朵萎凋之影響 35
第五節 奈米金屬微粒對萬代蘭切花保鮮之影響 37
第六節 解剖觀察萬代蘭各部位形態 39
第七節 解剖觀察萬代蘭切花瓶插後花梗構造之變化 41
第五章 討論 43
第一節 蔗糖對萬代蘭切花瓶插壽命之影響 43
第二節 抑菌類藥劑類對萬代蘭切花瓶插壽命之影響 45
第三節 誘發免疫反應類藥劑對萬代蘭切花瓶插壽命之影響 46
第四節 乙烯與1-MCP前處理對萬代蘭切花花朵萎凋之影響 48
第五節 奈米金屬微粒對萬代蘭切花保鮮之研發利用 49
第六節 解剖觀察萬代蘭各部位形態 51
第七節 解剖觀察一般褐化及水楊酸造成褐化之花梗構造 52
第六章 結論 54
第七章 參考文獻 55
 
表目錄
表 1. 蔗糖及抑菌劑593 µM 8-HQC之添加對萬代蘭 Vanda Pachara Delight切花瓶插壽命、花梗基部褐化日及最上位花萎凋日之影響。 65
表 2. 蔗糖及抑菌劑593 µM 8-HQC之添加對萬代蘭 Vanda Pachara Delight之切花瓶插壽命、花梗基部褐化日、最上位花萎凋日及瓶插液濁度之影響。 66
表 3. 蔗糖及不同抑菌劑之添加對萬代蘭 Vanda Pachara Delight切花瓶插壽命、花梗基部褐化日及最上位花萎凋日之影響。 67
表 4. 蔗糖及不同抑菌劑之搭配使用對萬代蘭 Vanda Pachara Delight切花瓶插壽命、花梗基部褐化日及最上位花萎凋日之影響。 68
表 5. 蔗糖及抑菌劑effective chlorine添加對萬代蘭 Vanda Pachara Delight切花瓶插壽命及花梗基部褐化日之影響。 69
表 6. 水楊酸處理時間對萬代蘭 Vanda Pachara Delight切花瓶插壽命、花梗基部褐化日及最上位花萎凋日之影響。 70
表 7. 以噴施方式施用不同濃度水楊酸或以瓶插方式施用2900 µM水楊酸對萬代蘭Vanda Pachara Delight之切花瓶插壽命及花梗基部褐化日及之影響。 71
表 8. 以瓶插方式施用不同種免疫反應藥劑(2900 µM水楊酸、20 及 180 µM茶皂素、100及500 µM茉莉酸甲酯、100及500 µM茉莉酸)對萬代蘭Vanda Pachara Delight切花瓶插壽命及花梗基部褐化日之影響。 72
表 9. 以瓶插方式分別施用2% 蔗糖、稀釋200倍之Chrysal Professional 2或2% 蔗糖加2900 µM水楊酸,對萬代蘭切花巨輪紫(Vanda Pachara Delight)與巨輪粉(Vanda Siriporn Pink)切花瓶插壽命及花梗基部褐化日之影響。 73
表 10. 萬代蘭Vanda Pachara Delight切花經短時間(2小時)前處理不同濃度1-methylcyclopropene (1-MCP)後,再以2 µL·L−1乙烯燻蒸12小時,對切花瓶插壽命及花梗基部褐化日之影響。 74
表 11. 萬代蘭Vanda Pachara Delight切花經短時間(2小時)前處理不同濃度1-methylcyclopropene (1-MCP)後,再以2 µL·L−1乙烯燻蒸12小時,對切花瓶插壽命及花梗基部褐化日之影響。 75
表 12. 以噴施方式施用20、60、80、180、540 nM濃度之奈米金、噴施方式施用Chrysal Clear及以10% sucrose + 593 µM 8-HQC瓶插搭配180 nM奈米金噴施,對萬代蘭Vanda Pachara Delight切花瓶插壽命、花梗基部褐化日及最上位花萎凋日之影響。 76
表 13. 以噴施或瓶插方式施用540、2700 nM奈米金或80、240 ppm奈米銀,對萬代蘭Vanda Pachara Delight切花瓶插壽命及花梗基部褐化日之影響。 77
表 14. 以噴施方式、瓶插方式或同時施用奈米金或奈米銀對萬代蘭Vanda Pachara Delight切花瓶插壽命及花梗基部褐化日之影響。 78
 
圖目錄
圖 1. 蔗糖及抑菌劑593 µM 8-HQC之添加對萬代蘭Vanda Pachara Delight 切花瓶插液吸收量之影響。 79
圖 2. 蔗糖及抑菌劑593 µM 8-HQC之添加對萬代蘭Vanda Pachara Delight 切花瓶插液吸收量之影響。 80
圖 3. 蔗糖及抑菌劑593 µM 8-HQC之添加對萬代蘭 Vanda Pachara Delight花朵觀賞品質之影響。(I:瓶插第2日; II:瓶插第14日; A:蒸餾水; B: 2%蔗糖; C: 2%蔗糖及593 µM 8-HQC; D: 5%蔗糖及593 µM 8-HQC.) 81
圖 4. 蔗糖及不同抑菌劑(593 µM 8-HQC、845、1690、3380 µM有效氯及1450、2900、5800 µM 水楊酸)添加,對萬代蘭 Vanda Pachara Delight切花瓶插液吸收量之影響。 82
圖 5. 蔗糖及抑菌劑(有效氯及水楊酸)之添加對萬代蘭 Vanda Pachara Delight 切花瓶插液中細菌累積量之影響。 83
圖 6. 蔗糖及不同抑菌劑(8-HQC、有效氯及水楊酸)搭配使用,對萬代蘭Vanda Pachara Delight切花瓶插液吸收量之影響。 84
圖 7. 水楊酸處理時間對萬代蘭 Vanda Pachara Delight切花瓶插液吸收量之影響 85
圖 8. 水楊酸對萬代蘭切花花梗基部褐化之影響。A-C為瓶插第2日,D-F為瓶插第6日。A和D之處理為2% sucrose,B和E為2% sucrose + 2900 µM salicylic acid,C和F為2% sucrose + 5800 µM salicylic acid。 86
圖 9. 以噴施方式施用不同濃度水楊酸或以瓶插方式施用2900 µM水楊酸對萬代蘭 Vanda Pachara Delight瓶插液吸收量之影響。 87
圖 10. 水楊酸對萬代蘭切花花梗基部褐化之影響。A為試驗五2%蔗糖瓶插第6日,B-C為試驗五2%蔗糖加2900 µM水楊酸瓶插第6日。D-E為試驗六2%蔗糖加2900 µM水楊酸瓶插第2日。 88
圖 11. 以瓶插方式施用不同種免疫反應藥劑(2900 µM水楊酸、20 及 180 µM茶皂素、100及500 µM茉莉酸甲酯、100及500 µM茉莉酸)對萬代蘭Vanda Pachara Delight切花花朵萎凋率之影響。 89
圖 12. 以瓶插方式施用不同種免疫反應藥劑(2900 µM水楊酸、20 及 180 µM茶皂素、100及500 µM茉莉酸甲酯、100及500 µM茉莉酸)對萬代蘭Vanda Pachara Delight瓶插液吸收量之影響。 90
圖 13. 以瓶插方式分別施用2%蔗糖、稀釋200倍之Chrysal Professional 2或2%蔗糖加2900 µM水楊酸對萬代蘭巨輪紫(Vanda Pachara Delight)切花之花朵萎凋率影響。 91
圖 14. 以瓶插方式分別施用2%蔗糖、稀釋200倍之Chrysal Professional 2或2%蔗糖加2900 µM水楊酸對萬代蘭巨輪粉(Vanda Siriporn Pink)切花之花朵萎凋率影響。 92
圖 15. 以瓶插方式分別施用2% 蔗糖、稀釋200倍之Chrysal Professional 2或2% 蔗糖加2900 µM水楊酸對萬代蘭巨輪紫(Vanda Pachara Delight)切花瓶插液吸收能力之影響。 93
圖 16. 以瓶插方式分別施用2% 蔗糖、稀釋200倍之Chrysal Professional 2或2% 蔗糖加2900 µM水楊酸對萬代蘭巨輪粉(Vanda Siriporn Pink)切花瓶插液吸收能力之影響。 94
圖 17. 前處理不同濃度1-methylcyclopropene (1-MCP) 2小時後,處理2 µL∙L−1乙烯12小時,對萬代蘭Vanda Pachara Delight切花花朵萎凋率之影響。 95
圖 18. 萬代蘭Vanda Pachara Delight切花經短時間(2小時)前處理不同濃度1-methylcyclopropene (1-MCP)後,再以2 µL·L−1乙烯燻蒸12小時後,對切花瓶插液吸收量之影響。 96
圖 19.前處理不同濃度1-methylcyclopropene (1-MCP) 2小時後,處理2 µL∙L−1乙烯12小時,對萬代蘭Vanda Pachara Delight切花花朵萎凋率之影響。 97
圖 20. 萬代蘭Vanda Pachara Delight切花經短時間(2小時)前處理不同濃度1-methylcyclopropene (1-MCP),再以2 µL·L−1乙烯燻蒸12小時後,對切花瓶插液吸收量之影響。 98
圖 21. 燻蒸處理對瓶插萬代蘭 Vanda Pachara Delight瓶插第26日之花朵觀賞品質之影響。(A:對照組; B: 0 µL·L−1 1-MCP for 2 h and then exposed to 2 µL·L−1 ethylene for 12 h; C: 0.025 µL·L−1 1-MCP for 2 h and then exposed to 2 µL·L−1 ethylene for 12 h; D: 0.8 µL·L−1 1-MCP for 2 h and then exposed to 2 µL·L−1 ethylene for 12 h). 99
圖 22. 以噴施方式施用20、60、80、180、540 nM濃度之奈米金、噴施方式施用Chrysal Clear及以10% sucrose + 593 µM 8-HQC瓶插搭配180 nM奈米金噴施,對萬代蘭Vanda Pachara Delight切花瓶插液吸收能力之影響。 100
圖 23. 以噴施方式施用20、180及540 nM之奈米金萬代蘭切花,處理後第14日之瓶插狀態。 101
圖 24. 以噴施或瓶插方式施用540、2700 nM奈米金或80、240 ppm奈米銀,對萬代蘭Vanda Pachara Delight切花花朵萎凋率之影響。 102
圖 25. 以噴施或瓶插方式施用540、2700 nM奈米金或80、240 ppm奈米銀,對萬代蘭Vanda Pachara Delight切花瓶插液吸收之影響。 103
圖 26. 以噴施方式施用540、2700 nM奈米金,或240 ppm奈米銀之萬代蘭Vanda Pachara Delight切花,處理後第13日之瓶插狀態。 104
圖 27. 以噴施方式施用540、2700 nM奈米金或80、240 ppm奈米銀,和以瓶插方式施用180 nM奈米金或80 ppm奈米銀,對萬代蘭Vanda Pachara Delight切花花朵萎凋率之影響。 105
圖 28. 以噴施方式、瓶插方式或同時施用奈米金或奈米銀對萬代蘭Vanda Pachara Delight切花瓶插液吸收能力及相對鮮重變化之影響。 106
圖 29. 萬代蘭花Vanda Somsri × Vanda Travoredbon花柄以上2 cm 之右翼瓣橫切面(40×) (A);翼瓣中央輸導組織(圖B為圖A箭頭處放大) (200×) (B);唇瓣前端橫切面(距離花柄2 cm處) (40×) (C);唇瓣上側V字交界處(100×) (D);唇瓣尾端下側橫切面(距離唇瓣末端2 cm處) (40×) (E);唇瓣尾端上側橫切面(紅箭頭處為圓錐狀突出) (40×) (F)。vt為維管束輸導組織。比例尺均為300 µm。 107
圖 30. 萬代蘭Vanda Somsri × Vanda Travoredbon花柄橫切面(以0.5% safranin O + 0.1% fast green染色) (40×) (A);花柄橫切面(箭頭處為角質層) (0.5% safranin O染色) (100×) (B)。vt為維管束輸導組織。比例尺均為300 µm。 108
圖 31. 萬代蘭Vanda Somsri × Vanda Travoredbon葉片徒手縱切面(40×) (A);葉片外層結構(100×) (B);葉片內部結構(100×) (C)。sc為石細胞;st為氣孔;ch為葉綠體;ep為表皮;vb為維管束。黑箭頭處為上表皮;藍箭頭處為下表皮。比例尺均為300 µm。 109
圖 32. 以解離法觀察萬代蘭Vanda Somsri × Vanda Travoredbon葉片細胞與纖維(400×) (A);分離後之葉片細胞與纖維(400×) (B);葉片纖維(400×) (C);葉片細胞(400×) (D)。比例尺均為50 µm。 110
圖 33. 萬代蘭Vanda Somsri × Vanda Travoredbon花梗橫切面(40×) (A);花梗橫切面(以0.5% safranin O + 0.1% fast green染色) (40×) (B)。ch為葉綠體。比例尺均為300 µm。 111
圖 34. 萬代蘭Vanda Somsri × Vanda Travoredbon花梗橫切面(外側) (以0.5% safranin O + 0.1% fast green染色) (100×) (A);花梗縱切面(100×) (B);花梗橫切面(內側) (100×) (C);花梗維管束橫切面(200×) (D)。cb為氣室;co為皮層;ep為表皮;tr為管胞;vb為維管束;pi為髓;pf為韌皮部纖維;p為韌皮部;x為木質部。比例尺均為300 µm。 112
圖 35. 萬代蘭Vanda Somsri × Vanda Travoredbon根橫切面(40×) (A);根橫切面(以0.5% safranin O + 0.1% fast green染色) (40×) (B)。ch為葉綠體;ve為根被; exd為外皮。比例尺均為300 µm。 113
圖 36. 萬代蘭Vanda Somsri × Vanda Travoredbon根橫切面(外側) (以0.5% safranin O + 0.1% fast green染色) (100×) (A);根橫切面(內側) (100×) (B)。ep為表皮;vs為方形根被細胞;vc為圓錐形根被細胞;exd為外皮;vt為維管組織;cc為厚角細胞;edd為內皮;st為中柱。比例尺均為300 µm。 114
圖 37. 以解剖顯微鏡觀察萬代蘭Vanda Pachara Delight之健康花梗橫切面(20×) (A);蒸餾水瓶插第九天之花梗(20×) (B);蒸餾水瓶插第九天之花梗(40×) (C);2900 µM 水楊酸瓶插第九天之花梗(20×) (D);2900 µM 水楊酸瓶插第九天之花梗(40×) (E)。箭頭處為皮層與外皮層交界處。比例尺均為500 µm。 115
圖 38. 萬代蘭Vanda Pachara Delight之健康花梗橫切面(80×) (A);健康花梗(以0.5% safranin O染色) (200×) (B);蒸餾水瓶插第九天之花梗(80×) (C);蒸餾水瓶插第九天之花梗(以0.5% safranin O染色) (200×) (D);2900 µM 水楊酸瓶插第九天之花梗(80×) (E);2900 µM 水楊酸瓶插第九天之花梗(以0.5% safranin O染色) (200×) (F)。ch為葉綠體;ca為空腔;pf為韌皮部纖維;p為韌皮部;x為木質部。箭頭處為層積物堆積處。白色比例尺為300 µm;黑色比例尺為50 µm。 116
dc.language.isozh-TW
dc.subject奈米金zh_TW
dc.subject萬代蘭zh_TW
dc.subject採後處理zh_TW
dc.subject奈米銀zh_TW
dc.subject切花保鮮劑zh_TW
dc.subject瓶插液zh_TW
dc.subjectsilver nanoparticleen
dc.subjectVandaen
dc.subjectpostharvesten
dc.subjectpreservativeen
dc.subjectvase solutionen
dc.subjectgold nanoparticleen
dc.title保鮮劑對萬代蘭切花瓶插壽命之影響zh_TW
dc.titleEffects of Preservatives on Vase Life of Vanda Cut Flowersen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳俊達(Jyun-Da Wu),郭純德(Chun-Teh Kuo)
dc.subject.keyword萬代蘭,採後處理,切花保鮮劑,瓶插液,奈米金,奈米銀,zh_TW
dc.subject.keywordVanda,postharvest,preservative,vase solution,gold nanoparticle,silver nanoparticle,en
dc.relation.page116
dc.identifier.doi10.6342/NTU201703219
dc.rights.note未授權
dc.date.accepted2017-08-20
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝暨景觀學系zh_TW
Appears in Collections:園藝暨景觀學系

Files in This Item:
File SizeFormat 
ntu-106-R04628126-1.pdf
  Restricted Access
5.67 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved