請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77666完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡永傑(WING-KIT CHOI) | |
| dc.contributor.author | Yi-Cheng Wu | en |
| dc.contributor.author | 吳翊丞 | zh_TW |
| dc.date.accessioned | 2021-07-10T22:14:39Z | - |
| dc.date.available | 2021-07-10T22:14:39Z | - |
| dc.date.copyright | 2017-09-14 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-09-04 | |
| dc.identifier.citation | [1] H. Kitzerow and C. Bahr, Chirality in liquid crystals: Springer Science & Business Media, 2001.
[2] H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, 'Polymer-stabilized blue phases,' Nature materials, vol. 1, pp. 64-68, 2002. [3] J. Yan, H.-C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, et al., 'Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,' Applied Physics Letters, vol. 96, p. 071105, 2010. [4] S. Gauza, X. Zhu, W. Piecek, R. Dabrowski, and S.-T. Wu, 'Fast switching liquid crystals for color-sequential LCDs,' Journal of Display Technology, vol. 3, pp. 250-252, 2007. [5] J.-H. Lee, X. Zhu, and S.-T. Wu, 'Novel color-sequential transflective liquid crystal displays,' Journal of Display Technology, vol. 3, pp. 2-8, 2007. [6] M. Oh‐e and K. Kondo, 'Electro‐optical characteristics and switching behavior of the in‐plane switching mode,' Applied physics letters, vol. 67, pp. 3895-3897, 1995. [7] M. Oh‐e and K. Kondo, 'Response mechanism of nematic liquid crystals using the in‐plane switching mode,' Applied physics letters, vol. 69, pp. 623-625, 1996. [8] S. Lee, S. Lee, and H. Kim, 'Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,' Applied physics letters, vol. 73, pp. 2881-2883, 1998. [9] S. H. Hong, I. C. Park, H. Y. Kim, and S. H. Lee, 'Electro-optic characteristic of fringe-field switching mode depending on rubbing direction,' Japanese Journal of Applied Physics, vol. 39, p. L527, 2000. [10] C.-L. Ting and W.-F. Huang, 'Multi-domain vertical alignment liquid crystal display and driving method thereof,' ed: Google Patents, 2005. [11] S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G.-D. Lee, et al., 'Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,' Applied physics letters, vol. 90, p. 261910, 2007. [12] Y.-J. Lee, Y.-K. Kim, S. I. Jo, J. S. Gwag, C.-J. Yu, and J.-H. Kim, 'Surface-controlled patterned vertical alignment mode with reactive mesogen,' Optics express, vol. 17, pp. 10298-10303, 2009. [13] P. J. Bos and K. R. Koehler/beran, 'The pi-cell: a fast liquid-crystal optical-switching device,' Molecular Crystals and Liquid Crystals, vol. 113, pp. 329-339, 1984. [14] T. Miyashita, P. J. Vetter, Y. Yamaguchi, and T. Uchida, 'Wide‐viewing‐angle display mode for active‐matrix LCDs using a bend‐alignment liquid‐crystal cell,' Journal of the Society for Information Display, vol. 3, pp. 29-34, 1995. [15] A. Chandani, T. Hagiwara, Y.-i. Suzuki, Y. Ouchi, H. Takezoe, and A. Fukuda, 'Tristable switching in surface stabilized ferroelectric liquid crystals with a large spontaneous polarization,' Japanese Journal of Applied Physics, vol. 27, p. L729, 1988. [16] T. Ikeda, T. Sasaki, and K. Ichimura, 'Photochemical switching of polarization in ferroelectric liquid-crystal films,' 1993. [17] Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S.-T. Wu, 'Electro-optics of polymer-stabilized blue phase liquid crystal displays,' Applied Physics Letters, vol. 94, p. 101104, 2009. [18] K.-M. Chen, S. Gauza, H. Xianyu, and S.-T. Wu, 'Submillisecond gray-level response time of a polymer-stabilized blue-phase liquid crystal,' Journal of display technology, vol. 6, pp. 49-51, 2010. [19] M. Kim, M. S. Kim, B. G. Kang, M.-K. Kim, S. Yoon, S. H. Lee, et al., 'Wall-shaped electrodes for reducing the operation voltage of polymer-stabilized blue phase liquid crystal displays,' Journal of Physics D: Applied Physics, vol. 42, p. 235502, 2009. [20] Z. Yanli, 'Optimization of Blue Phase Liquid Crystal Display Electrode Stucture,' Hebei University of Technology, 2014. [21] Y. Sun, Y. Zhao, Y. Li, P. Li, P. Li, and H. Ma, 'Optimisation of in-plane-switching blue- phase liquid crystal display,' Liquid Crystals, vol. 41, pp. 717-720, 2014. [22] L. Roa, H.-C. Cheng, and S.-T. Wu, 'Low voltage blue-phase LCDs with double-penetrating fringe fields,' Journal of Display Technology, vol. 6, pp. 287-289, 2010. [23] K.-M. Chen, S. Gauza, H. Xianyu, and S.-T. Wu, 'Hysteresis effects in blue-phase liquid crystals,' Journal of Display Technology, vol. 6, pp. 318-322, 2010. [24] H. C. Jau, P. H. Liao, H. W. Li, H. K. Hsu, C. H. Chen, C. C. Wang, et al., 'Improvement of electro - optical properties of PSBP LCD using a double - sided IPS electrode,' Journal of the Society for Information Display, vol. 20, pp. 351-353, 2012. [25] M. Jiao, Y. Li, and S.-T. Wu, 'Low voltage and high transmittance blue-phase liquid crystal displays with corrugated electrodes,' Applied Physics Letters, vol. 96, p. 011102, 2010. [26] J. P. Cui, Q. H. Wang, and F. Zhou, 'Transflective blue - phase liquid - crystal display with corrugated electrode structure,' Journal of the Society for Information Display, vol. 19, pp. 709-712, 2011. [27] L. Rao, Z. Ge, S. T. Wu, and S.H. Lee, 'Low voltage blue-phase liquid crystal displays,' Applied Physics Letters, vol. 95, 2009. [28] S. Yoon, M. Kim, M. Su Kim, B. Gyun Kang, M.-K. Kim, A. Kumar Srivastava, et al., 'Optimisation of electrode structure to improve the electro-optic characteristics of liquid crystal display based on the Kerr effect,' Liquid Crystals, vol. 37, pp. 201-208, 2010. [29] Z. Ge, M. Jiao, R. Lu, T. X. Wu, S.-T. Wu, W.-Y. Li, et al., 'Wide-view and broadband circular polarizers for transflective liquid crystal displays,' Journal of Display Technology, vol. 4, pp. 129-138, 2008. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77666 | - |
| dc.description.abstract | 現今人們大多是藉由視覺作為接收資訊的媒介,因此在資訊的提供上,顯示器扮演相當重要的角色。其中液晶顯示器 (LCD) 是目前廣受大眾使用的顯示器。在LCD面板技術發展純熟的世代,人們更進一步發展高幀頻顯示器提升其響應時間,儘管傳統LCD有著許多優點,但其反應時間較慢,畫面可能出現動態模糊、殘影等。而近幾年發展出的藍相液晶顯示器 (BPLCD) 則能滿足對響應時間的要求,除此之外,其優點還包括高對比度、廣視角、製程簡單,因此是目前廣受業界及學術界研究的重要題材之一。其中也包含一些缺點,如操作電壓高、穿透率低,所以需要利用克爾常數高的藍向液晶分子或是凸起物等新型電極結構來解決。
本研究提出單邊三維電極結構,目的是減少二維結構在y方向的穿透率無效區(dead-zone),提升藍相液晶顯示器的穿透率表現。以IPS結構原理為基礎,首先以平面形電極作為基礎結構,再設計三種凸起物電極結構來降低操作電壓或提升光穿透率。本論文以2009年吳詩聰教授的研究團隊所提出的梯形結構做為第一種凸起物電極,但因為梯形頂端的電場為垂直分量,無法使藍相液晶分子產生雙折射性,導致梯形頂端會形成穿透率無效區,因此我們為了提升穿透率參考同樣為吳詩聰教授在2010年提出的三角形電極結構,利用三角形頂部的尖角降低電極上方的穿透率無效區,增加顯示器整體的穿透率,但此結構的邊界斜率比梯形低,能提供的水平電場強度不如梯形,造成操作電壓值也會跟著提高。於是我們再提出於梯形頂端加上一層與本體電極電性相反的平面形電極,使梯形頂端的電場產生水平分量,降低穿透率無效區,藉此達到高穿透率、低操作電壓的特性。 本研究藉由改變不同的電極寬度、電極間距,個別分析四種電極形狀在二維結構及三維結構之電壓-穿透率 (V-T) 特性,最後將兩者進行比較。由模擬結果中發現,不論是哪種形狀中,二維結構的最佳穿透率及操作電壓表現都比三維結構來的好,我們發現這是因為三維電極結構中存在著中央穿透率無效區,由於這個中央穿透率無效區的影響,縱使三維電極結構能改善y方向的穿透率,但仍無法超越傳統二維結構。但我們發現當電極寬度越寬,或是電極間距越窄時,能夠有效降低中央穿透率無效區的比例,使得三維結構在寬度較寬或是間距較窄的電極尺寸下,確實能夠擁有比二維結構優良的穿透率表現。並且在三維結構中優化後的梯形搭配頂部平面電極的穿透率65.16%及操作電壓(14.3 V),我們設計此新型電極結構使其在三維電極結構中更加往高穿透率、低操作電壓的藍相液晶顯示器邁進。 | zh_TW |
| dc.description.abstract | Nowadays, most people receive information by vision, therefore the display plays an important interface to provide these information. One of widely used display is liquid crystal display (LCD). In the LCD panel technology development of generation, people further develop high frame rate display to enhance its response time. Although the traditional LCD has many advantages, but the response time is too long, the image may appear motion blur, defect and so on. In resent years, people developed blue-phase liquid crystal display (BPLCD) which has fast response time. In addition, its advantages include high contrast, wide viewing angle, simple process, so it is widely accepted by the industry and academia. But BPLCD also contains some shortcomings, such as high operating voltage, low transmittance, so we need to introduce high Kerr constant of BPLCs or new electrode structure like protrusion to solve these problems.
We propose a single-sided three-dimensional electrode structure to reduce the y-direction dead zone of the two-dimensional structure then enhance the transmittance of BPLCDs. Based on the IPS structure, the planar electrode is used as the fundamental structure, and design three kinds of protrusion electrode structures to reduce the operating voltage and enhance the transmittance. The first protrusion electrode is trapezoid structure proposed by the group of Professor Shin-Tson Wu in 2009. But the electric field on the top of trapezoid is vertical field that can not make blue phase liquid crystal molecules produce birefringence, resulting in dead zone on the top of trapezoid. So we further refers to triangle electrode structure also proposed by the group of Professor Shin-Tson Wu in 2010. The sharp corners at the top of the triangle can reduce the dead zone, increasing the overall transmittance of the display. But its slope of the boundary is lower than that of the trapezoid so the horizontal field intensity would not strong as trapezoid, the operation voltage would be increased. So we propose adding a flat electrode on the top of trapezoid electrode with the opposite polarity of the body electrode, in order to produce a horizontal field, reducing the dead zone, thereby achieving high transmittance and low operating voltage characteristics. Changing the electrode width and the electrode spacing, then analyze the voltage-transmittance (V-T) characteristics of two-dimensional structure and the three-dimensional structure, compare two of them finally. We found that the optimal transmittance and operating voltage of two-dimensional structure are better than those of three-dimensional structure in any shape of electrode due to the center dead zone in three-dimensional electrode structure that degrades its transmittance. However, when the electrode width wider, or the electrode spacing is narrower, it is possible to effectively reduce the proportion of the center dead zone so that the transmittance of three-dimensional structure would be higher than two-dimensional structure. After optimizing, the transmittance and operating voltage of the 3D Trapezoid with top flat electrode structure are 65.16% and 14.3 V better than 3D Triangle electrode which are 64.87% and 17 V, respectively. This new electrode structure would allow for higher transmittance and low operating voltage for BPLCDs applications. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T22:14:39Z (GMT). No. of bitstreams: 1 ntu-106-R04941020-1.pdf: 7594153 bytes, checksum: 7a901b27444bfe65cb5505d1d388b2df (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iv 目錄 vi 圖目錄 x 表目錄 xix 第1章 簡介 1 1.1 液晶介紹 1 1.2 液晶分類 2 1.2.1 向列型(Nematic)液晶 2 1.2.2 層列型(Smectic)液晶 3 1.2.3 膽固醇型(Cholesteric)液晶 3 1.3 液晶的特性 4 1.3.1 秩序參數(order parameter)4 1.3.2 雙折射性 (birefringence , )5 1.3.3 介電異向性(dielectric anisotropy , )7 1.3.4 連續彈性體理論(elastic continuum theory)8 1.4 藍相液晶 9 1.4.1 藍相液晶的發現 9 1.4.2 藍相液晶的特性 10 1.4.3 高分子穩定型藍相液晶 10 1.4.4 藍相液晶的克爾效應 11 1.5 液晶模擬軟體TechWiz LCD 3D簡介 13 第2章 液晶顯示器 15 2.1 液晶顯示器介紹 15 2.2 液晶顯示器的結構與類型 16 2.2.1 液晶顯示器的技術發展 16 2.2.2 反射式液晶顯示器 16 2.2.3 穿透式液晶顯示器 17 2.2.4 半穿透半反射式液晶顯示器 18 2.2.5 平面驅動型(In-plan Switch, IPS)液晶顯示器 19 2.2.6 邊緣場效應驅動型(Fringe field Switching, FFS)液晶顯示器 20 2.3 液晶顯示器的重要參數 21 2.3.1 對比度(Contrast Ratio, CR) 21 2.3.2 解析度(Image Resolution) 22 2.3.3 灰階(Gray scale) 22 2.3.4 光使用效率 22 2.3.5 視角與色差 23 2.3.6 響應時間 23 2.4 藍相液晶顯示器 23 2.4.1 IPS型藍相液晶顯示器 23 2.4.2 VFS型藍相液晶顯示器 25 2.4.3 藍相液晶顯示器的優缺點及解決方法 26 第3章 TechWiz 3D 模擬軟體與電極結構的設計 28 3.1 TechWiz 3D LCD軟體模擬 28 3.1.1 Material DB 28 3.1.2 Mesh Generation 29 3.1.3 LC Analysis 30 3.1.4 Optical Analysis 30 3.2 二維平面驅動型藍相液晶(2D IPS-BPLCs)32 3.2.1 二維平面形電極(2D Flat electrode) 32 3.2.2 二維梯形電極(2D Trapezoid electrode) 33 3.2.3 二維三角形電極(2D Triangle electrode) 34 3.2.4 二維梯形與頂部平面電極(2D Trapezoid with top flat electrode) 35 3.3 三維平面驅動型藍相液晶(3D IPS-BPLCs)37 3.3.1 三維平面形電極(3D Flat electrode) 38 3.3.2 三維梯形電極(3D Trapezoid electrode) 39 3.3.3 三維三角形電極(3D Triangle electrode) 40 3.3.4 三維梯形與頂部平面電極(3D Trapezoid with top flat electrode) 41 3.4 線性極化光與圓極化光 42 第4章 模擬結果與討論 44 4.1 不同電極寬度W之穿透率與電壓 44 4.1.1 不同W下的平面形電極(Flat electrode) 44 4.1.2 不同W下的梯形電極(Trapezoid electrode) 53 4.1.3 不同W下的三角形電極(Triangle electrode) 63 4.1.4 不同W下的梯形與頂部平面電極 (Trapezoid with top flat electrode) 73 4.2 不同電極間距G之穿透率與電壓 87 4.2.1 不同G下的平面形電極(Flat electrode) 87 4.2.2 不同G下的梯形電極(Trapezoid electrode) 99 4.2.3 不同G下的三角形電極(Triangle electrode) 109 4.2.4 不同G下的梯形與頂部平面電極 (Trapezoid with top flat electrode) 119 第5章 結論與未來目標 128 Reference 130 附錄一 三維凸起物電極在不同W下之穿透率與電壓 134 附錄二 三維平面形電極在不同G下之穿透率與電壓 140 附錄三 不同2R之下的三維圓錐形電極 142 附錄四 關於梯形搭配頂部平面電極之實際製程 147 | |
| dc.language.iso | zh-TW | |
| dc.subject | 凸起物 | zh_TW |
| dc.subject | 藍相液晶 | zh_TW |
| dc.subject | 平面驅動型液晶顯示器 | zh_TW |
| dc.subject | 快速響應時間 | zh_TW |
| dc.subject | 三維電極結構 | zh_TW |
| dc.subject | Three-dimensional electrode | en |
| dc.subject | In-plane switching | en |
| dc.subject | Blue phase liquid crystal | en |
| dc.subject | Fast response time | en |
| dc.subject | Protrusion | en |
| dc.title | 藍相液晶顯示器之三維電極結構模擬設計 | zh_TW |
| dc.title | Simulation in Design of Three-Dimensional(3D)Electrode of Blue Phase LCDs | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林晃巖(HOANG-YAN LIN),黃定洧(DING-WEI HUANG) | |
| dc.subject.keyword | 藍相液晶,凸起物,三維電極結構,快速響應時間,平面驅動型液晶顯示器, | zh_TW |
| dc.subject.keyword | Blue phase liquid crystal,Protrusion,Three-dimensional electrode,Fast response time,In-plane switching, | en |
| dc.relation.page | 147 | |
| dc.identifier.doi | 10.6342/NTU201703262 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2017-09-04 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-R04941020-1.pdf 未授權公開取用 | 7.42 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
