請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77654完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 薛人愷 | |
| dc.contributor.author | Cheng-han Lee | en |
| dc.contributor.author | 李承翰 | zh_TW |
| dc.date.accessioned | 2021-07-10T22:13:57Z | - |
| dc.date.available | 2021-07-10T22:13:57Z | - |
| dc.date.copyright | 2018-06-19 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-06-11 | |
| dc.identifier.citation | 1. K. Ueno, M. Suzuki, A. Matsumoto, K. Motoyama, T. Tonegawa, N. Ito, K. Arita, Y. Tsuchiya, T. Wake, A. Kubo, K. Sugai, N. Oda, H. Miyamoto, S. Satio, A high reliability copper dual-damascene interconnection with direct-contact via structure, 2000 IEDM Tech. Digest IEEE (2000), p. 265.
2. M.H. Tsai, W.J. Tsai, S.L. Shue, C.H. Yu, M.S. Liang, Reliability of dual damascene Cu metallization, Proceedings of the 2000 International Interconnect Technology Conference, IEEE (2000), p. 214. 3. C. Ryu, K.W. Kwon, A.L.S. Loke, H. Lee, T. Nogami, V.M. Dubin, R.A. Kavari, G.W. Ray, S.S. Wong, Microstructure and reliability of copper interconnects, IEEE Trans. Electron Devices 46 (1999), p. 1113. 4. M.H. Tsai, R. Augur, V. Blaschke, R.H. Havemann, E.F. Ogawa, P.S. Ho, W.K. Yeh, S.L. Shue, C.H Yu, M.S. Liang, Electromigration reliability of dual damascene Cu/CVD SiOC interconnects, Proceedings of the 2001 International Interconnect Technology Conference, IEEE (2001). 5. J.P. Lu, L. Chen, D. Gonzalez, H.L. Guo, D.J. Rose, M. Marudachalam, W.U. Hsu, H.Y. Liu, F. Cataldi, B. Chatterjee, P.B. Smith, P. Holverson, R.L. Guldi, N.M. Russell, G. Shinn, S. Zuhoski, J.D. Luttmer, Understanding and eliminating defects in electroplated Cu films, Interconnect Technology Conference, Proceedings of the IEEE 2001 International (2001), p. 280. 6. Z.G. Song, S.K. Loh, M. Gunawardana, C.K. Oh, S. Redkar, Unique defects and analyses with copper damascene process for multilevel metallization, IPFA 2003, Proceedings of the 10th International Symposium on the Physical and Failure Analysis of Integrated Circuits, (2003), p. 12. 7. P. Wrschka, J. Hernandez, G.S. Oehrlein, J.A. Negrych, G. Haag, P. Rau, J.E. Currie, Development of a slurry employing a unique silica abrasive for the CMP of Cu damascene structures, J. Electrochem. Soc. 148 (2001), p. 321. 8. T.C. Wang, Y.L. Wang, T.E. Hsieh, S.C. Chang, Y.L. Cheng, Copper voids improvement for copper dual damascene interconnection process, J. Phy. Chem. Sol. 69 (2008), p. 566. 9. R.L. Guldi, J.B. Shaw, J. Ritchison, S. Oestreich, K. Davis, R. Fiordalice, Characterization of copper voids in dual damascene processes, Proceedings of Advanced Semiconductor Manufacturing 2002 IEEE/SEMI Conference and Workshop (2002), p. 351. 10. J. Reid, V. Bhaskaran, R. Contolini, E. Patton, R. Jackson, E. Broadbent, T. Walsh, S. Mayer, R. Schetty, J. Martin, M. Toben, S. Menard, Optimization of damascene feature fill for copper electroplating process, Proceedings of Interconnect Technology, IEEE International Conference (1999), p. 284. 11. G.B. Alers, D. Dornisch, J. Siri, K. Kattige, L. Tam, E. Broadbent, G.W. Ray, Trade-off between reliability and post-CMP defects during recrystallization anneal for copper damascene interconnects, in: Reliability Physics Symposium, 2001. Proceedings of the 39th Annual 2001 IEEE International (2001), p. 350. 12. T.C. Wang, T.E. Hsieh, M.T. Wang, D.S. Su, C.H. Chang, Y.L. Wang, J.Y. Lee, Stress migration and electromigration improvement for copper dual damascene interconnection, J. Electrochem. Soc. 152 (2005), p. 45. 13. J. Koike, M. Haneda, J. Iijima, M. Wada, Cu alloy metallization for self-forming barrier process, IEEE Interconnect Technology Conference (2006), p. 161. 14. J. Koike, M. Wada, Self-forming diffusion barrier layer in Cu-Mn alloy metallization, App. Phy. Lett. 87, 041911 (2005) 15. J.P. Wang, Y.K. Su, Effects of surface cleaning on stressvoiding and electromigration of Cu-damascene interconnection, Trans. Device. Mater. Relia. IEEE (2008), p. 210. 16. 陳科維,Study of Nano-scale Copper Metallization on Damascene Process Integration for Semiconductor Integrated Circuits,銅製程在奈米半導體積體電路製程整合研究,國立交通大學博士論文2006 17. 林珉旭,A Study on Semiconductor Al-Cu Process Defect and Wafer Edge Yield improvement,半導體鋁銅製程金屬導線缺陷改善及晶圓邊緣良率提升研究,國立交通大學碩士論文2007 18. 鄭義榮,內連接導線系統之可靠度-銅導線/低介電絕緣層,Reliability of Cu/ Low-k Interconnects,國家奈米元件實驗室奈米通訊第20卷第1期, P34 19. 楊正杰,銅金屬與低介電常數材料與製程,毫微米通訊第7卷第4期 20. 蕭明昇,利用二氧化矽做為硬式遮蔽層對80奈米蝕刻製程的影響,逢甲大學碩士論文2008 21. International Technology Roadmap for Semiconductor, 2011. 22. B. Li, J. Gill, C. J. Christiansen, T. D. Sullivan, P. S. McLaughlin, Impact of via-line Contact on Cu interconnect Electromigration Performance, 43th IEEE Annual International Reliability Physical Symposium Proceedings Conference (IRPS), p . 24-30, 2005. 23. V. C. Yang, P. Flaitz, B. Li, F. Chen, C. Christiansen, S. Y. Lee, P. Ma, and D. Edelstein, Co Capping Layers for Cu/Low-k Interconnects, Microelectron. Eng. 92 (79), 2012. 24. Y. L. Cheng, B. L. Lin, S. Y. Lee, C. C. Chiu, and Kenneth Wu, Cu Interconnect Width Effect, Mechanism and Resolution on Down-stream Stress Electromigration, 45th IEEE Annual International Reliability Physical Symposium Proceedings Conference (IRPS), p . 128-133, 2007. 25. K. Croes, C. J. Wilson, M. Lofrano, G. P. Beyer, and Z. Tokei, Interconnect Reliability-A study of the Effect of Dimensional and Porosity Scaling, Microelectron. Eng.88 (614), 2011. 26. K. Croes, G. Cannata, L. Zhao, and Z. Tokei, Study of Copper Drift During TDDB of Intermetal Dielectrics by Using Fully Passivated MOS Capacitors as Test Vehicle, Microelectron. Reliab. 48(1384), 2008. 27. Z. Tokei, K. Croes, and G. P. Bey er , Reliability of Copper low-k Interconnects, Microelectron. Eng.87(348), 2010. 28. J. W. McP herson, Time Dependent Dielectric Breakdown Physics- Model Revisited, Microelectron. Reliab.52(1753), 2012. 29. Y. L. Cheng, Jun-Fu Huang, Yu-Min Chang, and Jihperng Leu, Impact of Plasma treatment on Structure and Electrical Properties of Porous Low Dielectric Constant SiCOH Material, Thin Solid Films, Accepted, 2013. 30. M. Pantouvaki, F. Sebaai, K. Kellens, D. Goossens, B. Vereecke, J. Versluijs, E. V. Besien, R. Caluwaerts, K. Marrant, H. Bender, A. Moussa, H. Struyf, and G. P. Beyer,Dielectric Reliability of 70 nm Pitch air-gap Interconnect Structures, Microelectron. Eng. 88(1618), 2011. 31. C. M. Tan and A. Roy, Electromigration in ULSI Interconnects, Material Science & Eng.58(1), 2007. 32. K. Croes, S. Demuynck, Y. K. Siew, M. Pantouvaki, C. J. Wilson, N. Heylen, G. P. Beyer, and Z. Tokei, Full reliability study of advanced metallization options for 30 nm 1/2 pitch interconnects, Microelectron. Eng. 2013. 33. H. Shi, H. Hung, J. Bao, J. Liu, P. S. Ho, Y. Zhou, J. T. Pender, M. D. Armacost, and D. Kyser, Role of Ions, Photons, and Radicals in Inducing Plasma Damage to Ultra low-k Dielectrics, J. Vac. Sci. Technol. B30, p. 011206-1~9, 2012. 34. Hong Xiao著,羅正忠、張鼎張譯,半導體製程技術導論 35. E.C.Douglas, Solid state technology, vol. 24, 1981, p.65. 36. J. S. Judge, Etching for pattern definition, Electromechanical society, 1976, p.19. 37. S. Wolf, Silicon processing for the VLSI era, vol. 1, ch15, Lattice Press, 1986. 38. J. L. Vossen and W. Kern, thin film process, part III, Academic Press, 1978. 39. D. L. Flamm, V. M. Donnely, and D. E. Ibbotson, J. Vacuum Science and Technology B, vol. 1, 1983, p.23. 40. P. J. Revell and G. F. Goldspink, vacuum, vol. 34, 1984, p.455. 41. Brian Chapman , Glow Discharge Processes: sputtering and plasma etching, pp.1-172, Wiley , New York , 1980. 42. Oleg A. Popov. , High density plasma sources: design, physics, and performance, P76-P148, Noyes Publications, 1995. 43. Chang, J.P. and Coburn, J.W., Plasma-surface interactions, Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, v 21, n 5 SUPPL., 2003, p S145-S151. 44. Chang, J.P. and Sawin, H.H., Notch formation by stress enhanced spontaneous etching of polysilicon, Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, v 19, n 5, 2001, p 1870-1873. 45. Eddy Jr., C.R., Leonhardt, D., Shamamian, V.A., Butler, J.E, and Thoms, B.D., Mass spectrometry sampling method for characterizing high-density plasma etching mechanisms, Applied Physics Letters, v 82, n 21, May 26, 2003, p 3626-3628. 46. Characterization of a low pressure, high ion density, plasma metal etcher, Rod Hill a) National Semiconductor, Fairchild Research Center, Santa Clara, California 95052 47. T. Hori, M. D. Bowden, K. Uchino, and K. Muraoka, Measurements of electron temperature, electron density, and neutral density in a radio-frequency inductively coupled plasma Department of Energy Conversion, Department of Electrical Engineering, Kyushu University, Hakozaki Fukuoka, Japan 48. Masahiko Aoki and Yoshitaka Sasamura, Simulation of microloading in aluminum etching, Nissin Electric Co., Ltd., 575 Kuze Tonoshiro-cho, Minami-ku, Kyoto 601, Japan 49. R.R. Rogers, S.R. Wilson, Localized Corrosion of Aluminum – 1.5% Copper Thin Films Exposed to Photoresist Developing Solution, J. Vac. Sci. Technol. A9(3) May/Jun 1992, P1616 –1621 50. K.H. Baek, C.I. Kim, K.H. Kwon, T.H. Kim, Passivation Role of Fluorine on the Anticorrosion of AlCu Films After Plasma Etching, J. Vac. Sci. Technol. A 16(3), May/Jun 1998 51. S. Bothra, H. Sur, V.Liang, R. Annapragada and J. Patel, Corrosion of Tungsten due to plasma charging in a metal plasma etcher, VLSI Technology, Inc. 1109, Mckay Dr, San Jose, CA 95035 52. S. Thomas, H.M. Berg, “Micro-Corrosion of Al-Cu Bonding Pads”, Motorola, Inc., P.153 53. 莊達人,VLSI 製造技術,高立出版社(1995). 54. 張俊彥 教授 主編,鄭晃忠 教授 審校,積體電路製程及設備技術手冊 55. Thomas Dittkrist, Application of plasma parameters to characterize product interactions between memory and logic products at Gate Contact (GC) Stack etch in LAM TCP, 2rd European AEC/APC Conference - Dresden, P204, April 18th-20th 2001 56. R. A. Stewart, P. Vitello,D. B. Graves, ”Two-dimensional fluid model of high density inductively coupled plasma sources”, J. Vac. Sci. Technol. B 12(1) 1994 57. C. Lee, M. A. Lieberman, “Global model of Ar , O2 , Cl2 and Ar /O2 high-density plasma discharges”, J. Vac. Sci. Technol. A 13(2) 1995 58. Y. T. Lee, M. A. Lieberman, A. J. Lichtenberg, F. Bose, H. Baltes and R. Patrick, “Global model for high pressure electronegative radio-frequency discharges”, J. Vac. Sci. Technol. A 15(1) 1997 59. Shahid Rauf, and Mark J. Kushner, Virtual Plasma Equipment Model:A Tool for Investigating Feedback Control in Plasma Processing Equipment, IEEE transitions on semiconductor manufacturing, vol.11, no 3, 1998 60. R. Patrick, S. Baldwin, N. Williams, “Application of direct bias control in high-density inductively coupled plasma etching equipment”, J. Vac. Sci. Technol. A 18(2) 2000 61. Z.Y. Wu, R.K. Shiue, and C.S. Chang, Transmission Electron Microscopy Study of the Infrared Brazed High-strength Titanium Alloy. Journal of Materials Science & Technology, 2010. 26(4): p. 311-316. 62. C.T. Chang, T.Y. Yeh, R.K. Shiue, and C.S. Chang, Microstructural Evolution of Infrared Brazed CP-Ti Using Ti-Cu-Ni Brazes. Journal of Materials Science & Technology, 2011. 27(2): p. 131-138. 63. C.T. Chang, Z.Y. Wu, R.K. Shiue, and C.S. Chang, Infrared brazing Ti–6Al–4V and SP-700 alloys using the Ti–20Zr–20Cu–20Ni braze alloy. Materials Letters, 2007. 61(3): p. 842-845. 64. Y. Guanjun and H. Shiming, Study on the phase equilibria of the Ti–Ni–Nb ternary system at 900°C. Journal of Alloys and Compounds, 2000. 297(1–2): p. 226-230. 65. C.C. Lin, C. Chen, R.K. Shiue, and S.C. Shi, Vacuum brazing Mo using Ti–Ni–Nb braze alloys. International Journal of Refractory Metals and Hard Materials, 2011. 29(5): p. 641-644. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77654 | - |
| dc.description.abstract | 隨著積體電路(integrated circuit, IC)的進步,半導體元件尺寸越來越小、導線層數急遽增加,使金屬導線 (interconnection) 線寬 (line width) 也要隨之縮小,元件的導線已經進入奈米化(nano-scale)的尺寸,其主要的目的在於降低因為積體電路高度元件積集度所產生的功率消耗與熱量,並大幅縮小其體積,以達成元件輕薄短小、提高功能與降低功率的可能。元件導線中的電阻及電容所造成的電阻-電容延遲時間效應(RC delay time effect),會嚴重影響到整體電路的運作速度,在半導體製程上,導線的電容與電阻性能決定了製程技術。要解決這個問題有二種方法:第一個是採用低電阻的銅金屬當導線材料;較早的半導體製程在線寬大於0.13微米(μm)採用鋁金屬為導線,而銅金屬的電阻比鋁還低了約三分之一。第二個是選用低介電常數材料(low-K dielectric)作為介電層之材料。改用銅金屬作電路導線,除了可以改善積體電路的傳輸效能,可以將性能提升30%~40%之多外,鋁製程是採用真空物理氣相沉積(physical vapor deposition,PVD)的方式,而銅製程是採用電鍍(electro copper plating, ECP)的方式將銅鍍在晶片上,因此銅製程可比鋁製程節省約三成左右的材料及製造成本。此外,銅金屬的抗電致遷移能力亦比鋁金屬好,可減少導線斷開的機率,大幅提高積體電路的可靠性。然而,雖然銅製程的優點多,但因銅對矽元素而言是活性金屬,很容易擴散到矽中,或是污染無塵室,因此在製程上比較麻煩,要更加小心。
隨著半導體銅製程技術進入線寬小於40 奈米(nanometer)世代,各線路之厚度及寬度皆急遽降低。隨著銅金屬導線結構微縮化(scaling down),因銅金屬的高活性產生的缺陷與缺點,也開始慢慢浮現,並影響到半導體元件的正常運作。更嚴重的是,此類缺陷通常是在製程完成初期並看不出異常,而是要經過一段時間的電壓操作(operation voltage)後才會出現,也就是我們所說的可靠度缺陷(reliability defect),因此在奈米世代,對於可靠度極限之了解與正確的描述其主要的失效機制是極為重要的。銅損(Copper loss)便是其中最嚴重的一種可靠度缺陷,在數個最先進的奈米世代中,都可以看到它的蹤跡,雖然都提出了改善的方法,但是在下一世代又會再度出現,可見銅損已經到了製程臨界點。 本論文中,將會針對在銅金屬製程中的各項過程步驟,對銅損的影響作探討,並透過特別設計的銅製程結構,藉著穿透式電子顯微鏡(TEM)、導線特性及產品良率,以期找出對銅損最好的改善方向與製程條件。 | zh_TW |
| dc.description.abstract | For RC delay concern, material of metal line was changed form Aluminum to Copper under 0.13um technology. The Copper metal process was called damascene technology which includes three different processes to Aluminum metal process: deposition for barrier and seed layers, copper electro-deposition, electro copper plating (ECP) and copper chemical mechanical planarization (CMP)
With chip size and line width continuously shrinkage in advanced technology, metal line dimensional was shrunk to nanometer scale, and Cu voids in metal lines cause the failure of via-induced metal-island corrosion. It impacts not only yield loss but also device reliability, specifically electron migration (EM) and stress migration (SM). One of the Cu voids is located under via bottom which is more unpredictable than others due to hard to be detect by inline defect scan. The Cu void under via bottom is caused by integrated processes such as via dry etch and wet clean. It is not similar to the Cu void caused by barrier Cu-seed and ECP Cu. The mechanism of Cu voids under via bottom formation from dry etch and wet clean are related to Cu dual-damascene interconnection. Both plasma damage and chemical reaction are proposed to explain its failure mechanism. In the integrated process of Cu interconnects, we can design not only the safety dimension of Cu line via depth but also process criteria with less damage and oxidation in dry etching and wet clean based on Cu loss amount (Cu recess) in TEM inspection. EDS mapping for element detection in failure analysis was used to identify failed process stage, and high temperature operation life test was also used for reliability assessment. The modified actions for via bottom improve not only wafer yield but also reliability quality. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T22:13:57Z (GMT). No. of bitstreams: 1 ntu-107-D97527003-1.pdf: 12563255 bytes, checksum: 1583d2697937c109b8194fec89dc7d42 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
中文摘要 II 英文摘要 IV 目錄 VI 圖目錄 IX 第一章 文獻前言 1 1-1 研究動機 1 1-2 研究動機 4 1-3 論文架構 5 第二章 文獻回顧及問題描述 8 2-1 銅製程簡介 8 2-1-1 介電層沉積(low-K film deposition) 8 2-1-2 雙鑲嵌:微影步驟與選擇性蝕刻 11 2-1-3 濕式清洗(wet clean) 13 2-1-4 阻障層(barrier layer) 13 2-1-5 銅晶種層(seed layer) 15 2-1-6 銅電鍍(electro copper plating, ECP) 15 2-1-7 化學機械研磨(chemical mechanical planarization, CMP) 16 2-1-8 覆蓋層(capping layer) 17 2-2 銅製程的可靠度 17 2-2-1 電致遷移(electro-migration, EM) 18 2-2-2 應力遷移(stress-migration, SM) 22 2-2-3 低介電質材料崩潰電壓(break-down voltage)與崩潰時間(Time-Dependence-Dielectric-Breakdown, TDDB) 23 2-2-4 高低溫度環境測試 26 2-3 研究方向 29 第三章 實驗目的與方法 43 3-1 製程與圖案設計 43 3-1-1 實驗製程設計 43 3-1-2 實驗圖案設計 45 3-2 實驗條件 45 3-2-1 底層金屬材料 45 3-2-2 深寬比率 46 3-2-3 乾式蝕刻電漿功率 46 3-2-4 濕式清洗 47 3-2-5 阻障與晶種層厚度 48 3-2-6 銅電鍍電流與過程設定 49 3-3 量測方法 49 3-3-1 銅損耗量 49 3-3-2 電性參數測試 50 3-3-3 產品良率 51 3-3-4 可靠度測試 52 第四章 結果與討論 60 4-1 製程步驟銅損耗量 60 4-1-1 各製程步驟的銅損耗量比較 60 4-1-2 底層金屬材料對銅損的比較 62 4-1-3 深寬比率對銅損的比較 63 4-1-4 乾式蝕刻對銅損的比較 64 4-1-5 濕式清洗對銅損的比較 66 4-1-6 晶種層厚度對銅損的比較 68 4-1-7 銅電鍍電流與過程設定的比較 70 4-2 可靠度測試 72 4-2-1 高溫壽命測試與高溫儲存測試 72 4-2-2 抗電致遷移測試 73 4-2-3 缺陷可靠度失效率 74 第五章 結論 91 5-1 從銅損耗量與產品良率找出對銅損的最佳製程參數 91 5-2 改善銅損缺陷對奈米級半導體金屬導線積體電路之可靠度結果 93 參考文獻 95 | |
| dc.language.iso | zh-TW | |
| dc.subject | 可靠度缺陷 | zh_TW |
| dc.subject | 銅損 | zh_TW |
| dc.subject | 銅製程 | zh_TW |
| dc.subject | Reliability | en |
| dc.subject | Cu void under via bottom | en |
| dc.subject | Dual damascene | en |
| dc.subject | Cu loss | en |
| dc.title | 改善銅損缺陷在奈米級半導體金屬導線積體電路製程整合之研究 | zh_TW |
| dc.title | The Study of Ameliorating Cu Loss in Nano-scale Integrated Circuit Process Integration | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 郭東昊,蔡履文,鄭凱文,陳奎輔 | |
| dc.subject.keyword | 銅製程,可靠度缺陷,銅損, | zh_TW |
| dc.subject.keyword | Dual damascene,Cu loss,Cu void under via bottom,Reliability, | en |
| dc.relation.page | 99 | |
| dc.identifier.doi | 10.6342/NTU201800924 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2018-06-12 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-D97527003-1.pdf 未授權公開取用 | 12.27 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
