Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77603
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor薛文証
dc.contributor.authorChih-Ying Yenen
dc.contributor.author顏志穎zh_TW
dc.date.accessioned2021-07-10T22:11:07Z-
dc.date.available2021-07-10T22:11:07Z-
dc.date.copyright2018-08-02
dc.date.issued2018
dc.date.submitted2018-07-27
dc.identifier.citation[1] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, 'The electronic properties of graphene,' Rev. Mod. Phys. 81, 109-162 (2009).
[2] C. W. J. Beenakker, 'Colloquium: Andreev reflection and klein tunneling in graphene,' Rev. Mod. Phys. 80, 1337-1354 (2008).
[3] M. Z. Hasan and C. L. Kane, 'Colloquium: Topological insulators,' Rev. Mod. Phys. 82, 3045-3067 (2010).
[4] X. Qi and S. Zhang, 'Topological insulators and superconductors,' Rev. Mod. Phys. 83, 1057-1110 (2011).
[5] X. Wan, A. M. Turner, A. Vishwanath and S. Y. Savrasov, 'Topological semimetal and fermi-arc surface states in the electronic structure of pyrochlore iridates,' Phys. Rev. B 83, 205101 (2011).
[6] P. Hosur and X. Qi, 'Recent developments in transport phenomena in weyl semimetals,' C. R. Phys. 14, 857-870 (2013).
[7] Z. Shi, M. Wang and J. Wu, 'A spin filter transistor made of topological weyl semimetal,' Appl. Phys. Lett. 107, 102403 (2015).
[8] G. P. Boechler, J. M. Whitney, C. S. Lent, A. O. Orlov and G. L. Snider, 'Fundamental limits of energy dissipation in charge-based computing,' Appl. Phys. Lett. 97, 103502 (2010).
[9] R. K. Cavin, P. Lugli and V. V. Zhirnov, 'Science and engineering beyond moore's law,' Proc. IEEE 100, 1720-1749 (2012).
[10] R. D. Y. Hills, A. Kusmartseva and F. V. Kusmartsev, 'Current-voltage characteristics of weyl semimetal semiconducting devices, veselago lenses, and hyperbolic dirac phase,' Phys. Rev. B 95, 214103 (2017).
[11] C. Bai and X. Zhang, 'Klein paradox and resonant tunneling in a graphene superlattice,' Phys. Rev. B 76, 075430 (2007).
[12] H. Li, J. M. Shao, H. B. Zhang and G. W. Yang, 'Electrical tuning of transport properties of topological insulator ultrathin films,' Nanoscale 6, 3127-3137 (2014).
[13] P. A. M. Dirac, 'The quantum theory of the electron,' Proc. R. Soc. 117, 610 (1928).
[14] H. Weyl, 'Gravitation and the electron,' Proc. Natl. Acad. Sci. U. S. A. 15, 323-334 (1929).
[15] C. Herring, 'Accidental degeneracy in the energy bands of crystals,' Phys. Rev. 52, 365-373 (1937).
[16] R. Karplus and J. M. Luttinger, 'Hall effect in ferromagnetics,' Phys. Rev. 95, 1154-1160 (1954).
[17] M. V. Berry, Aspects of degeneracy,Springer, US, Boston, MA(1985).
[18] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, 'Electric field effect in atomically thin carbon films,' Science 306, 666 (2004).
[19] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos and A. A. Firsov, 'Two-dimensional gas of massless dirac fermions in graphene,' Nature 438, 197 (2005).
[20] Y. Zhang, Y. Tan, H. L. Stormer and P. Kim, 'Experimental observation of the quantum hall effect and berry's phase in graphene,' Nature 438, 201 (2005).
[21] A. K. Geim, 'Graphene prehistory,' Phys. Scripta 2012, 014003 (2012).
[22] L. Fu and C. L. Kane, 'Topological insulators with inversion symmetry,' Phys. Rev. B 76, 045302 (2007).
[23] H. j. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang and S. C. Zhang, 'Topological insulators in bi2se3, Bi2Te3 and Sb2Te3 with a single dirac cone on the surface,' Nat. Phys. 5, 438 (2009).
[24] B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian and H. Ding, 'Experimental discovery of weyl semimetal taas,' Phys. Rev. X 5, 031013 (2015).
[25] N. Xu, H. M. Weng, B. Q. Lv, C. E. Matt, J. Park, F. Bisti, V. N. Strocov, D. Gawryluk, E. Pomjakushina, K. Conder, N. C. Plumb, M. Radovic, G. Autès, O. V. Yazyev, Z. Fang, X. Dai, T. Qian, J. Mesot, H. Ding and M. Shi, 'Observation of weyl nodes and fermi arcs in tantalum phosphide,' Nat. Commun. 7, 11006 (2016).
[26] S. Y. Xu, N. Alidoust, I. Belopolski, Z. Yuan, G. Bian, T. R. Chang, H. Zheng, V. N. Strocov, D. S. Sanchez, G. Chang, C. Zhang, D. Mou, Y. Wu, L. Huang, C. C. Lee, S. M. Huang, B. Wang, A. Bansil, H. T. Jeng, T. Neupert, A. Kaminski, H. Lin, S. Jia and M. Zahid Hasan, 'Discovery of a weyl fermion state with fermi arcs in niobium arsenide,' Nat. Phys. 11, 748 (2015).
[27] S. Y. Xu, C. Liu, S. K. Kushwaha, R. Sankar, J. W. Krizan, I. Belopolski, M. Neupane, G. Bian, N. Alidoust, T. R. Chang, H. T. Jeng, C. Y. Huang, W. F. Tsai, H. Lin, P. P. Shibayev, F. C. Chou, R. J. Cava and M. Z. Hasan, 'Observation of fermi arc surface states in a topological metal,' Science 347, 294 (2015).
[28] A. A. Burkov and L. Balents, 'Weyl semimetal in a topological insulator multilayer,' Phys. Rev. Lett. 107, 127205 (2011).
[29] G. Xu, H. Weng, Z. Wang, X. Dai and Z. Fang, 'Chern semimetal and the quantized anomalous hall effect in HgCr2Se4,' Phys. Rev. Lett. 107, 186806 (2011).
[30] Y. Chen, D. L. Bergman and A. A. Burkov, 'Weyl fermions and the anomalous hall effect in metallic ferromagnets,' Phys. Rev. B 88, 125110 (2013).
[31] D. Bulmash, C. X. Liu and X. L. Qi, 'Prediction of a weyl semimetal in Hg1−x−yCdxMny,' Phys. Rev. B 89, 081106 (2014).
[32] S. M. Huang, S. Y. Xu, I. Belopolski, C. C. Lee, G. Chang, B. Wang, N. Alidoust, G. Bian, M. Neupane, C. Zhang, S. Jia, A. Bansil, H. Lin and M. Z. Hasan, 'A weyl fermion semimetal with surface fermi arcs in the transition metal monopnictide TaAs class,' Nat. Commun. 6, 7373 (2015).
[33] H. Weng, C. Fang, Z. Fang, B. A. Bernevig and X. Dai, 'Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides,' Phys. Rev. X 5, 011029 (2015).
[34] M. Hirayama, R. Okugawa, S. Ishibashi, S. Murakami and T. Miyake, 'Weyl node and spin texture in trigonal tellurium and selenium,' Phys. Rev. Lett. 114, 206401 (2015).
[35] C. Bai, Y. Yang and K.-W. Wei, 'A wavevector filter in inversion symmetric weyl semimetal,' Phys. Lett. A 380, 764-767 (2016).
[36] C. Bai, Y. Yang and K. Chang, 'Chiral tunneling in gated inversion symmetric weyl semimetal,' Sci. Rep-UK 6, 21283 (2016).
[37] C. Yesilyurt, S. G. Tan, G. Liang and M. B. A. Jalil, 'Klein tunneling in weyl semimetals under the influence of magnetic field,' Sci. Rep-UK 6, 38862 (2016).
[38] X. Hu and F. Cheng, 'Electron tunneling through double magnetic barriers in weyl semimetals,' Sci. Rep-UK 7, 13633 (2017).
[39] C. Yesilyurt, Z. B. Siu, S. G. Tan, G. Liang, S. A. Yang and M. B. A. Jalil, 'Anomalous tunneling characteristic of weyl semimetals with tilted energy dispersion,' Appl. Phys. Lett. 111, 063101 (2017).
[40] C. Yesilyurt, Z. B. Siu, S. G. Tan, G. Liang and M. B. A. Jalil, 'Conductance modulation in weyl semimetals with tilted energy dispersion without a band gap,' J. Appl. Phys. 121, 244303 (2017).
[41] Y. Ominato, K. Kobayashi and K. Nomura, 'Anisotropic magnetotransport in dirac-weyl magnetic junctions,' Phys. Rev. B 95, 085308 (2017).
[42] Y. Yang, C. Bai, X. Xu and Y. Jiang, 'Shot noise and electronic properties in the inversion-symmetric weyl semimetal resonant structure,' Nanotechnology 29, 074002 (2018).
[43] Z. Wang, Y. Sun, X. Q. Chen, C. Franchini, G. Xu, H. Weng, X. Dai and Z. Fang, 'Dirac semimetal and topological phase transitions in A3Bi (A = Na, K, Rb),' Phys. Rev. B 85, 195320 (2012).
[44] Z. Wang, H. Weng, Q. Wu, X. Dai and Z. Fang, 'Three-dimensional dirac semimetal and quantum transport in Cd3As2,' Phys. Rev. B 88, 125427 (2013).
[45] J. Liu and D. Vanderbilt, 'Weyl semimetals from noncentrosymmetric topological insulators,' Phys. Rev. B 90, 155316 (2014).
[46] D. Hsieh, Y. Xia, L. Wray, D. Qian, A. Pal, J. H. Dil, J. Osterwalder, F. Meier, G. Bihlmayer, C. L. Kane, Y. S. Hor, R. J. Cava and M. Z. Hasan, 'Observation of unconventional quantum spin textures in topological insulators,' Science 323, 919 (2009).
[47] A. C. Potter, I. Kimchi and A. Vishwanath, 'Quantum oscillations from surface fermi arcs in weyl and dirac semimetals,' Nat. Commun. 5, 5161 (2014).
[48] H. Z. Lu and S. Q. Shen, 'Quantum transport in topological semimetals under magnetic fields,' Front. Phys-Beijing 12, 127201 (2017).
[49] M. Büttiker, Y. Imry, R. Landauer and S. Pinhas, 'Generalized many-channel conductance formula with application to small rings,' Phys. Rev. B 31, 6207-6215 (1985).
[50] Y. Liu, C. Zhang, X. Yuan, T. Lei, C. Wang, D. Di Sante, A. Narayan, L. He, S. Picozzi, S. Sanvito, R. Che and F. Xiu, 'Gate-tunable quantum oscillations in ambipolar Cd3As2 thin films,' Npg Asia Materials 7, e221 (2015).
[51] A. B. Sushkov, J. B. Hofmann, G. S. Jenkins, J. Ishikawa, S. Nakatsuji, S. Das Sarma and H. D. Drew, 'Optical evidence for a weyl semimetal state in pyrochlore Eu2Ir2O7,' Phys. Rev. B 92, 241108 (2015).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77603-
dc.description.abstract本論文建構外爾半金屬層狀結構的外爾費米子傳播行為模型,推導出電子在有限層數結構內的穿透率、電流、電導等公式,接著探討外爾半金屬中不同手徵粒子受電位障與磁位障的影響,最後深入討論不同的位障以及改變位障強度、寬度、結構週期數及排列方式對電子傳輸的影響,明顯看到施予電壓位障並不會使克萊恩穿隧通道消失,且穿透率能帶和電子入射角始終對稱,而鐵磁性材料所引起的磁位障則會關閉正向入射通道,禁帶的出現使得某些能量下的電子無法穿透,且藉由調控各項參數可使結構出現顯著的波向量濾波行為,以及解決實現相對論性材料電子元件的難題克萊恩穿隧,因此對於實現以外爾半金屬為基礎的原件提供了簡單的構想。zh_TW
dc.description.abstractIn this thesis, the propagation behavior model of Weyl fermion of layered structure on the Weyl semimetal is constructed. The transmission, current, conductance of the finite layered structure are calculated. Then, the influence of potential barrier and magnetic barrier on different chiral particle is investigated. Finally, the influence of different potential barrier on the Weyl semimetal and the barrier strength, width, the period of structural and the arrangement for the electron transport are deeply investigated. It is obvious that the application of the voltage barrier does not cause the Klein tunneling to disappear. Besides, the transmission spectra and the angle of incidence are always symmetrical. Magnetic barrier arising from ferromagnetic material will cause normally incident channel to close. In addition, a forbidden band to make electron unable to transmit completely in some energy region is presented. By adjust different structure parameter, system will show strong wave vector filtering behavior, which can solve the biggest problem between implementation of the relativistic material base electronic devices.en
dc.description.provenanceMade available in DSpace on 2021-07-10T22:11:07Z (GMT). No. of bitstreams: 1
ntu-107-R05525090-1.pdf: 11502296 bytes, checksum: 274c2921b2f5e746e735bb2205616ccc (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents摘要 i
Abstract ii
目錄 iii
圖目錄 v
符號表 ix
第一章 導論 1
1.1. 背景與研究動機 1
1.2. 歷史文獻回顧 3
1.3. 論文架構 5
第二章 基本理論 6
2.1. 狄拉克方程式與狄拉克材料 6
2.1.1. 狄拉克方程式與外爾方程式 6
2.1.2. 螺旋性與手徵 9
2.2. 石墨烯、拓樸絕緣體、拓樸半金屬 11
2.2.1. 石墨烯 11
2.2.2. 拓樸絕緣體 12
2.2.3. 拓樸半金屬 13
2.3. 外爾半金屬 14
2.3.1. 費米弧表面態 14
2.3.2. 手徵反常 16
第三章 外爾半金屬模型 18
3.1. 雙節點模型 18
3.2. 漢米爾頓算符 19
3.3. 波函數之本徵向量 20
3.3.1. 方向傳遞 21
3.3.2. 方向傳遞 24
3.4. 轉移矩陣法 26
3.5. 有限層數結構之穿透率、電導 29
3.5.1. 穿透率 29
3.5.2. 電導 31
第四章 層狀電位障外爾半金屬的電子傳輸 35
4.1. 單層電位障下結構參數對電子傳輸之影響 37
4.1.1. 電位障對不同手徵粒子的影響 37
4.1.2. 入射角度與傳遞方向對傳輸性質的影響 37
4.1.3. 入射能量與結構參數對傳輸性質的影響 38
4.2. 雙層電位障下結構參數對電子傳輸之影響 39
4.3. 多層電位障結構對電子傳輸之影響 40
第五章 層狀磁位障外爾半金屬的電子傳輸 52
5.1. 磁位障對不同手徵粒子的影響 53
5.2. 磁位障平行傳播方向對傳輸性質的影響 53
5.2.1. 單層磁位障 53
5.2.2. 雙層磁位障 55
5.3. 磁位障垂直傳播方向對傳輸性質的影響 56
5.3.1. 單層磁位障 56
5.3.2. 雙層磁位障 57
第六章 結論與未來展望 72
6.1. 結論 72
6.2. 未來展望 74
參考文獻 75
dc.language.isozh-TW
dc.subject電導zh_TW
dc.subject自旋電子學zh_TW
dc.subject外爾半金屬zh_TW
dc.subject手徵費米子zh_TW
dc.subject克萊恩傳輸zh_TW
dc.subject轉移矩陣zh_TW
dc.subjectKleining tunnelingen
dc.subjectspintronicsen
dc.subjectconductanceen
dc.subjecttransfer matrixen
dc.subjectWeyl semimetalen
dc.subjectchiral fermionen
dc.title反轉對稱外爾半金屬之電子傳輸特性zh_TW
dc.titleElectronic Transport Property of Inversion-Symmetric Weyl Semimetalsen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭勝文,黃智賢,張慶瑞,邱仁政
dc.subject.keyword外爾半金屬,手徵費米子,克萊恩傳輸,轉移矩陣,電導,自旋電子學,zh_TW
dc.subject.keywordWeyl semimetal,chiral fermion,Kleining tunneling,transfer matrix,conductance,spintronics,en
dc.relation.page81
dc.identifier.doi10.6342/NTU201802060
dc.rights.note未授權
dc.date.accepted2018-07-27
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-R05525090-1.pdf
  未授權公開取用
11.23 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved