請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77598完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 薛文証 | |
| dc.contributor.author | Po-Chin Chang | en |
| dc.contributor.author | 張博欽 | zh_TW |
| dc.date.accessioned | 2021-07-10T22:10:50Z | - |
| dc.date.available | 2021-07-10T22:10:50Z | - |
| dc.date.copyright | 2018-08-02 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-07-30 | |
| dc.identifier.citation | [1] S. E. Harris, J. E. Field, A. Imamoglu. “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107-1110, (1990).
[2] K. J. Boller, A. Imamoglu, S. E. Harris. “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593-2596, (1991). [3] A. Kasapi, M. Jain, G. Y. Yin, S. E. Harris. “Electromagnetically induced transparency: propagation dynamics,” Phys. Rev. Lett. 74, 2447-2450, (1995). [4] L. V. Hau, S. E. Harris, Z. Dutton, C.H.Behroozi. “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598, (1999). [5] D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, M. D. Lukin. “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783-786, (2001). [6] C. Liu, Z. Dutton, C. H. Behroozi, L. V. Hau. “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490-493, (2001). [7] R. W. Boyd, D. J. Gauthier. “Controlling the velocity of light pulses,” Science 326, 1074-1077, (2009). [8] H. J. Kimble. “The quantum internet,” Nature 453, 1023–1030, (2008). [9] M. D. Lukin, A. Imamoglu. “Controlling photons using electromagnetically induced transparency,” Nature 413, 273-276, (2001). [10] A. I. Lvovsky, B. C. Sanders, W. Tittel. “Optical quantum memory,” Nat. Photonics 3, 706–714, (2009). [11] S. Fan. “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80, 908-911, (2002). [12] C. Y. Chao, L. J. Guo. “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance.” Appl. Phys. Lett. 83, 1527-1529, (2003). [13] A. Naweed, G. Farea, S. I. Shopova, A. T. Rosenberger. “Induced transparency and absorption in coupled whispering-gallery microresonators,” Phys. Rev. A 71, 043804, (2005). [14] K. Totsuka, N. Kobayashi, M. Tomita. “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904, (2007). [15] Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, M. Lipson. “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901, (2006). [16] W. Liang, L. Yang, J. K. S. Poon, Y. Huang, K. J. Vahala, A. Yariv. “Transmission characteristics of a Fabry-Perot etalon-microtoroid Resonator coupled system,” Opt. Lett. 31, 510–512, (2006). [17] Y. Lu, J. Yao, X. Li, P. Wang. “Tunable asymmetrical Fano resonance and bistability in a microcavity-resonator-coupled Mach-Zehnder interferometer,” Opt. Lett. 30, 3069–3071, (2005). [18] Q. Xu, P. Dong, M. Lipson. “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3, 406-410, (2007). [19] Y. F. Xiao, X. B. Zou, W. Jiang, Y. L. Chen, G. C Guo. “Analog to multiple electromagnetically induced transparency in all-optical dropfilter systems,” Phys. Rev. A 75, 063833, (2007). [20] W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47-73 (2012). [21] N. N. Rao, Elements of Engineering Electromagnetics, Prentice-Hall, New Jersey (2004). [22] H. A. Haus, Waves and Fields in Optoelectronics, Prentice-Hall, New Jerecy (1984). [23] Y. C. Liu, B. B. Li, Y. F. Xiao. “Electromagnetically induced transparencyin optical microcavities,” Nanophotonics 6, 789-811, (2017). [24] X. Zhou, L. Zhang, A. M. Armani, R. G. Beausoleil, A. E. Willner, W. Pang. “Power enhancement and phase regimes in embedded microring resonators in analogy with electromagnetically induced transparency,” Opt. Express 21, 28414, (2013). [25] H. Yu, M. Chen, P. Li, S. Yang, H. Chen, S. Xie. “Compact Q-value enhanced bandpass filter based on the EIT-like effect accompanying application in downconversion APL,” Opt. Lett. 38, 3906-3909, (2013). [26] A. Naweed. “Photonic coherence effects from dual-waveguide coupled pair of co-resonant microring resonators,” Opt. Express 23, 12573-12581, (2015). [27] Q. Wang, X. Feng, Y. Zhao, H. Hu, J. Li. “Fiber ring resonator based slow-light and high sensitivity gas sensing technology,” Sens. actuators. B Chem. 14, 197-203, (2015). [28] I. Chremmos, O. Schwelb, N. Uzunoglu. Photonic Microresonator Research and Applications, Springer, USA (2010). [29] U. Fano “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866-1878, (1961). [30] M. F. Limonov, M. V. Rybin, A. N. Poddubny, Y. S. Kivshar. “Fano resonances in photonics,” Nat. photonics 11, 543-554, (2017). [31] Y. F. Xiao, M. Li, Y. C. Liu, Y. Li, X. Sun, Q. Gong. “Asymmetric Fano resonance analysis in indirectly coupled microresonators,” Phys. Rev. A 82,065804, (2010). [32] B. Peng, S. K. Ozdemir, W. Chen, F. Nori, L. Yang. “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 55082, (2014). [33] A. Imamoglu, S. E. Harris. “Lasers without inversion: interference of dressed lifetime-broadened states,” Opt. Lett. 14, 1344–1346, (1989). [34] G. Z. Zhang, M. Katsuragawa, K. Hakuta, R. I. Thompson, B. P. Stoicheff. “Sum-frequency generation using strong-field coupling and induced transparency in atomic hydrogen,” Phys. Rev. A 52, 1584-1593, (1995). [35] P. Yeh, Optical Waves in Layered Media, Wiley, USA (1988). [36] C. L. Garrido Alzar, M. A. G. Martinez, P. Nussenzveig. “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70, 37-41, (2002). [37] D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, R. W. Boyd. “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804, (2004). [38] L. Maleki, A. B. Matsko, A. A. Savchenkov, and V. S. Ilchenko. “Tunable delay line with interacting whispering-gallery-mode resonators,” Opt. Lett. 29, 626-628, (2004). [39] M. Aspelmeyer, T. J. Kippenberg, F. Marquardt. “Cavity optomechanics,” Rev. Mod. Phys. 86,1391-1450, (2014). [40] Y. C. Liu, Y. F. Xiao. “Macroscopic mechanical systems are entering the quantum world.” Natl. Sci. Rev. 2, 9–10, (2015). [41] Y. F. Xiao, V. Gaddam, L. Yang. “Coupled optical microcavities: an enhanced refractometric sensing configuration,” Opt. Express 16, 12538-12543 (2008). [42] X. F. Xiao, B. Min, X. Jiang, C. H. Dong, L. Yang. “Coupling whisperinggallery-mode microcavities with modal coupling mechanism,” IEEE J. Quant Electron. 44, 1065-1070, (2008). [43] P. Yeh, A. Yariv, Photonics, Oxford University Press, USA (2007). [44] V. Intaraprasonk, S. Fan. “Enhancing the waveguide resonator optical force with an all-optical on-chip analog of electromagnetically induced transparency,” Phys. Rev. A 86, 063833, (2012). [45] J. Hu , T. Lang , Z. Hong, C. Shen, G. Shi. “Comparison of electromagnetically induced transparency performance in metallic and all-dielectric metamaterials,” J. Lightwave. Technol. 36, 2083-2093, (2018). [46] L. Ma, O. Slattery, X. Tnag. “Optical quantum memory based on electromagnetically induced transparency,” J. Opt. 19, 043001, (2017). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77598 | - |
| dc.description.abstract | 本論文目的在於研究耦合微環共振器中的類電磁引致透明效應。相較於傳統的電磁引致透明效應,光學系統中的類電磁引致透明效應有許多優點,像是在室溫、固態以及晶片尺度的條件下操作。首先,介紹傳統的電磁引致透明效應、波導理論和共振器原理。然後進一步探討串聯結構與並聯結構的耦合微環共振器的光傳輸特性,且推導出兩種結構的穿透率、反射率和吸收率公式,並說明如何使用耦合微環共振器產生類電磁感引致明效應,最後再以數值分析模擬兩種不同結構之參數對於其透明窗口的影響。串聯結構中,會分別討論耦合係數、吸收係數、環半徑、環數對於類電磁引致透明效應的影響。另一方面在並聯結構還會考慮直波導長度對於類電磁引致透明效應的影響。研究結果顯示,兩種結構對於不同參數的調整會有不同的結果,故能藉由這樣的結果應用於窄帶濾波器、光儲存器、量子記憶體、感測器及光學力增強器。 | zh_TW |
| dc.description.abstract | Electromagnetically induced transparency-like (EIT-like) effect in microring resonator is researched in this thesis. Compared to the traditional EIT effect in atomic system, optical system has some advantages, such as operating at room temperature, solid state, and chip-scale conditions. First, the traditional electromagnetic induced transparency effect, waveguide theory and resonator principle are introduced. Then, the optical propagation characteristics of coupled microring resonators with series structure and parallel structure are further discussed. The formulas of transmittance, reflectance, and absorptance of both structures are derived, and how to use the coupled microring resonator to generate EIT-like effect would be demonstrated. Finally, numerical analysis was used to simulate the influence of the parameters of two different structures on their transparent windows. In the series structure, coupling coefficient, absorption coefficient, ring radius, and ring number will be discussed. On the other hand, the parallel coupling structure also considers the effect of straight waveguide length on the EIT-like effect. The results of the research show that the two structures have different results for adjustment of different parameters, so the results can be applied to narrow-band filters, optical storage, quantum memory, sensors and filed enhancement. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T22:10:50Z (GMT). No. of bitstreams: 1 ntu-107-R05525088-1.pdf: 4737773 bytes, checksum: a199a35cdc50d4c187a15ca24fca42ce (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 摘要 iii Abstract iv 目錄 v 圖目錄 vii 符號表 vii 第一章 導論 1 1.1 背景與研究動機 1 1.2 歷史文獻回顧 3 1.3 論文架構 5 第二章 電磁引致透明效應及波導理論與共振器原理 6 2.1 電磁引致透明效應 6 2.2 波導理論 8 2.3 共振器原理 12 第三章 耦合微環共振器理論 15 3.1 耦合微環共振器 15 3.2 串聯耦合微環共振器的光傳輸 18 3.3 並聯耦合微環共振器的光傳輸 21 3.4 穿透率、反射率與吸收率 24 3.5 相移與群延遲 28 第四章 串聯耦合微環共振器的類電磁引致透明效應 30 4.1 耦合係數對類電磁引致透明效應之影響 31 4.2 吸收係數對類電磁引致透明效應之影響 41 4.3 環半徑對類電磁引致透明效應之影響 46 4.4 環數對類電磁引致透明效應之影響 52 第五章 並聯耦合微環共振器的類電磁引致透明效應 57 5.1 耦合係數對類電磁引致透明效應之影響 60 5.2 吸收係數對類電磁引致透明效應之影響 67 5.3 環半徑對類電磁引致透明效應之影響 73 5.4 直波導對類電磁引致透明效應之影響 79 5.5 環數對類電磁引致透明效應之影響 85 第六章 結論與展望 90 6.1 結論 90 6.2 未來展望 92 參考文獻 93 | |
| dc.language.iso | zh-TW | |
| dc.subject | 耦合微環共振器 | zh_TW |
| dc.subject | 電磁引致透明效應 | zh_TW |
| dc.subject | 透明窗口 | zh_TW |
| dc.subject | transparency window | en |
| dc.subject | Electromagnetically induced transparency like effect | en |
| dc.subject | microring resonator | en |
| dc.title | 耦合微環共振器中的類電磁引致透明效應 | zh_TW |
| dc.title | Electromagnetically Induced Transparency-like Effect in Coupled Microring Resonators | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃俊穎,黃啟炎,鄭勝文,鄭宇翔 | |
| dc.subject.keyword | 耦合微環共振器,電磁引致透明效應,透明窗口, | zh_TW |
| dc.subject.keyword | microring resonator,Electromagnetically induced transparency like effect,transparency window, | en |
| dc.relation.page | 97 | |
| dc.identifier.doi | 10.6342/NTU201802086 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2018-07-30 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-R05525088-1.pdf 未授權公開取用 | 4.63 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
