Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77570
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳中平(Chung-Ping Chen)
dc.contributor.authorTung-Hsien Tsaien
dc.contributor.author蔡東憲zh_TW
dc.date.accessioned2021-07-10T22:09:20Z-
dc.date.available2021-07-10T22:09:20Z-
dc.date.copyright2018-08-09
dc.date.issued2018
dc.date.submitted2018-08-07
dc.identifier.citationREFERENCE
[1] Y. T. Lin, Y. S. Lin, C. H. Chen, H. C. Chen, Y. C. Yang and S. S. Lu, “A 0.5-V Biomedical System-on-a-Chip for Intrabody Communication System,” in IEEE Transactions on Industrial Electronics, vol. 58, no. 2, pp. 690-699, Feb. 2011.
[2] J. Kwong and A. P. Chandrakasan, “An Energy-Efficient Biomedical Signal Processing Platform,” in IEEE Journal of Solid-State Circuits, vol. 46, no. 7, pp. 1742-1753, July 2011.
[3] Rich Liu, (2012, Dec. 5). Process Integration Devices Structures Tables on International Technology Roadmap for Semiconductors [Online]. Available: https://www.maltiel.com/itrs.html
[4] Y. Ho, Y. S. Yang, C. Chang and C. Su, “A Near-Threshold 480 MHz 78 µW All-Digital PLL With a Bootstrapped DCO,” in IEEE Journal of Solid-State Circuits, vol. 48, no. 11, pp. 2805-2814, Nov. 2013.
[5] J. Lee and H. Wang, “Study of Subharmonically Injection-Locked PLLs,” in IEEE Journal of Solid-State Circuits, vol. 44, no. 5, pp. 1539-1553, May 2009.
[6] S. I. Liu, C. Y. Yang, 鎖相迴路. Tsang Hai Book Publishing Co., 2006.
[7] B. Razavi, Design of Analog CMOS Integrated Circuit. NewYork, NY, USA: McGraw-Hill, 2001.
[8] C. L. Peng, C. P. Chen, Design and Implementation of 30 GHz Phase-Locked Loop in a 0.18μm CMOS Technology, Master Thesis, National Taiwan University, Graduate Institute of Electronics Engineering, 2011.
[9] Y. S. Tang, C. C. Sue, “A 0.5V Low Power All-Digital Phase-Locked Loop,” Master Thesis, National Chiao Tung University, Institute of Electrical and Control Engineering, 2011.
[10] Y. L. Lo, W. B. Yang, T. S. Chao and K. H. Cheng, “Designing an Ultralow-Voltage Phase-Locked Loop Using a Bulk-Driven Technique,” in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 56, no. 5, pp. 339-343, May 2009.
[11] J. W. Moon, K. C. Choi and W. Y. Choi, 'A 0.4-V, 90 ∼ 350-MHz PLL with an Active Loop-Filter Charge Pump,' in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 61, no. 5, pp. 319-323, May 2014.
[12] P. Raha, 'A 0.6-4.2V low-power configurable PLL architecture for 6 GHz-300 MHz applications in a 90 nm CMOS process,' 2004 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.04CH37525), 2004, pp. 232-235.
[13] K. C. Choi, S. G. Kim, S. W. Lee, B. C. Lee and W. Y. Choi, 'A 990-μW 1.6-GHz PLL Based on a Novel Supply-Regulated Active-Loop-Filter VCO,' in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 60, no. 6, pp. 311-315, Jun. 2013.
[14] B. M. Helal, C. M. Hsu, K. Johnson and M. H. Perrott, 'A Low Jitter Programmable Clock Multiplier Based on a Pulse Injection-Locked Oscillator With a Highly-Digital Tuning Loop,' in IEEE Journal of Solid-State Circuits, vol. 44, no. 5, pp. 1391-1400, May 2009.
[15] Y. C. Huang and S. I. Liu, 'A 2.4GHz sub-harmonically injection-locked PLL with self-calibrated injection timing,' 2012 IEEE International Solid-State Circuits Conference, San Francisco, CA, 2012, pp. 338-340.
[16] Sheng Ye, L. Jansson and I. Galton, 'A multiple-crystal interface PLL with VCO realignment to reduce phase noise,' in IEEE Journal of Solid-State Circuits, vol. 37, no. 12, pp. 1795-1803, Dec. 2002.
[17] I. T. Lee, Y. J. Chen, S. I. Liu, C. P. Jou, F. L. Hsueh and H. H. Hsieh, 'A divider-less sub-harmonically injection-locked PLL with self-adjusted injection timing,' 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, CA, 2013, pp. 414-415.
[18] Z. Zhang, L. Liu, P. Feng and N. Wu, 'A 2.4–3.6-GHz Wideband Subharmonically Injection-Locked PLL With Adaptive Injection Timing Alignment Technique,' in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 3, pp. 929-941, Mar. 2017.
[19] I. T. Lee, K. H. Zeng and S. I. Liu, 'A 4.8-GHz Dividerless Subharmonically Injection-Locked All-Digital PLL With a FOM of -252.5 dB,' in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 60, no. 9, pp. 547-551, Sep. 2013.
[20] J. H. Lou and J. B. Kuo, 'A 1.5-V full-swing bootstrapped CMOS large capacitive-load driver circuit suitable for low-voltage CMOS VLSI,' in IEEE Journal of Solid-State Circuits, vol. 32, no. 1, pp. 119-121, Jan. 1997.
[21] J. Kil, J. Gu and C. H. Kim, 'A High-Speed Variation-Tolerant Interconnect Technique for Sub-Threshold Circuits Using Capacitive Boosting,' in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 16, no. 4, pp. 456-465, Apr. 2008.
[22] K. H. Cheng, Y. C. Tsai, Y. L. Lo and J. S. Huang, 'A 0.5-V 0.4–2.24-GHz Inductorless Phase-Locked Loop in a System-on-Chip,' in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 58, no. 5, pp. 849-859, May 2011.
[23] C. L. Wei and S. I. Liu, 'A Digital PLL Using Oversampling Delta-Sigma TDC,' in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 63, no. 7, pp. 633-637, Jul. 2016.
[24] C. F. Liang and K. J. Hsiao, 'An injection-locked ring PLL with self-aligned injection window,' 2011 IEEE International Solid-State Circuits Conference, San Francisco, CA, 2011, pp. 90-92.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77570-
dc.description.abstract中文摘要
隨著製程及物聯網技術的不斷進步,生醫晶片與穿戴式醫療裝置的應用也越來越興起。然而,各項電子產品的生命週期皆受限於電池的壽命長短,因此低功耗的電路設計顯得越來越重要。根據國際半導體科技組織的報告指出,下一世代低功耗電路設計,其供應電壓將下降至0.5V。在人體通訊的積體電路系統中,鎖相迴路負責提供參考頻率。然而,在低電壓環境下,電晶體的電流會變得更加微弱,導致鎖相迴路的操作頻率受到限制。除此之外,在低電壓環境中,雜訊效應也會變得更加明顯,進而使得電路表現變得更差。
本篇論文中將針對上述之議題提出架構上的討論及改善的設計方法。我們提出了一個可以操作在供應電壓0.5伏特的自動注入鎖定之鎖相迴路,其操作頻率為330MHz至730MHz。晶片採用TSMC 90nm標準CMOS製程實現,晶片面積和核心面積分別為0.7621mm2 和 0.1193mm2。當操作頻率為480MHz時並且開啟自動注入的狀態下,位移1MHz的相位雜訊為 -112.3dBc/Hz,積分範圍從1kHz到30MHz的方均根抖動量為4.93ps,參考突波為 -37.27dB,功率消耗為337.2μW。
在供應電壓0.5伏特的條件下,我們將採用改良式之Bootstrapped 技術來提升震盪器的操作頻率。差動對Bootstrapped技術不只可以增加震盪器輸出訊號的震幅,也會增加電晶體驅動電流的能力。同時,使用閘極切換的技術以增加充電汞的操作區域。針對相位雜訊的問題,我們採用了次諧波注入鎖定的技術來抑制震盪器的相位雜訊和抖動。我們的設計同時採用了自動注入鎖定及手動注入鎖定之技術以做為對照。
zh_TW
dc.description.abstractABSTRACT
Based on the advance of the integrated circuit technologies, applications of biomedical IC and wearable medical devices become more popular. Due to the limitation of electronic power consumption by the batteries, the issues related to low power design for circuits are more important. According to the reports proposed by International Technology Roadmap for Semiconductor (ITRS), supply voltage of general low-power circuits will be scaled down to 0.5V for the next generation applications. In the integrated-circuit system of human body communication (HBC), the phase-locked loop is responsible for providing the reference frequency. However, the current of transistors are much weaker in low voltage environment, which limits the operating frequency of the phase-locked loop. Besides, the noise effect also becomes more severe in low voltage environment, which will lead to a poor performance of PLL output.
In this thesis, we proposed an improved solution to the above topics. The proposed circuit is a 0.5V phase-locked loop with adaptive injection-locked technique. The tuning range of the proposed circuit is from 330 to 730MHz. The chip is fabricated in TSMC 90nm Standard CMOS Technology. The chip area and active core area are 0.7621mm2 and 0.1193mm2, respectively. At the output clock of 480MHz, the measured spur level at 30MHz away from the 480MHz clock output is -37.27dB. The measured phase noise at 1MHz offset is -112.3dBc/Hz and the measured rms jitter integrated from 1kHz to 30MHz is 4.93ps with adaptive injection locking. The power consumption of the fabricated circuit is 337.2μW, which is lower than general requirements.
The modified bootstrapped technique is adopted to increase the frequency of oscillator under low supply voltage of 0.5V. The swing of oscillator and the driving ability of MOSFET can be increased by using the differential bootstrapped technique. The gate switching is then introduced to the charge pump (CP) in order to increase operation range. The injection technique is adopted to suppress the phase noise and jitter of PLL output clock. Besides, this work is realized with adaptive and manual injection techniques, respectively.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T22:09:20Z (GMT). No. of bitstreams: 1
ntu-107-R04945011-1.pdf: 3398469 bytes, checksum: ecf358b9f185156f88caea4ba4817ae1 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsCONTENTS
口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES xii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Overview 3
Chapter 2 PLL Background 4
2.1 Charge Pump PLL [6] [7] [8] [9] 4
2.2 Building Blocks of PLL 5
2.2.1 Phase/Frequency Detector (PFD) and Charge Pump (CP) 5
2.2.2 Low Pass Filter (LPF) 8
2.2.3 Voltage-Controlled Oscillator (VCO) 10
2.2.4 Frequency Divider 11
2.3 Building Blocks of PLL 12
2.3.1 Linear Model of PFD and CP 12
2.3.2 Linear Model of LPF 13
2.3.3 Linear Model of VCO and Divider 13
2.3.4 Stability analysis of Phase-Locked Loop 14
2.3.5 General Design Procedure of Phase-Locked Loop 16
2.4 Low Voltage Phased-Locked Loop 17
2.4.1 VCO with Bulk-driven delay element 17
2.4.2 Current-Controlled Oscillator 19
2.4.3 Active Loop Filter 20
2.4.4 Supply-Regulated Active Loop Filter 21
Chapter 3 A Low Voltage Phase-Locked Loop with Adaptive Injection-Locked Alignment Technique 23
3.1 Subharmonically Injection-Locked Phase-Locked Loop 25
3.1.1 Injection-Locked PLL 25
3.1.2 Noise Model of Injection-Locked PLL 27
3.2 Adaptive Injection-Locked Loop 29
3.2.1 Operating Procedure 29
3.2.2 Pulse Generator (PG) 31
3.2.3 Timing-Adjusted Phase Detector (TAPD) 33
3.3 Manual Injection-Locked PLL 35
3.3.1 Operating Procedure 35
3.3.2 Voltage-Controlled Delay-Line (VCDL) 36
3.4 Bootstrapped Voltage-Controlled Oscillator (BVCO) 38
3.4.1 Operation Principle of delay cell of BVCO 40
3.4.2 Reverse Current 41
3.4.3 Parasitic Capacitor 43
3.4.4 KVCO of Bootstrapped-VCO 44
3.5 Charge Pump (CP) 45
3.6 Low Pass Filter (LPF) 47
3.7 One Oscillator Periodical Constant Delay Divider 49
3.8 Simulation Results 50
Chapter 4 Measurement Results 52
4.1 Experiment Setup 52
4.2 Measurement Environment 53
4.3 Measurement Results 55
Chapter 5 Conclusion and Future Work 60
5.1 Conclusion 60
5.2 Future Work 61
REFERENCE 63
dc.language.isoen
dc.title具有自適應注入鎖定技術之低電壓鎖相迴路zh_TW
dc.titleA Low Voltage Phased-Locked Loop with Adaptive Injection-Locked Techniqueen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee盧信嘉(Hsin-Chia Lu),林宗賢(Tsung-Hsien Lin),林致廷(Chih-Ting Lin)
dc.subject.keyword鎖相迴路,低電壓,自動注入鎖定,zh_TW
dc.subject.keywordPhase-Locked Loop,Low Voltage,Adaptive Injection-Locked,en
dc.relation.page66
dc.identifier.doi10.6342/NTU201802645
dc.rights.note未授權
dc.date.accepted2018-08-07
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-R04945011-1.pdf
  目前未授權公開取用
3.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved