Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77548
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳志毅
dc.contributor.authorPo-Han Changen
dc.contributor.author張博涵zh_TW
dc.date.accessioned2021-07-10T22:08:08Z-
dc.date.available2021-07-10T22:08:08Z-
dc.date.copyright2018-08-13
dc.date.issued2018
dc.date.submitted2018-08-10
dc.identifier.citationReferences for Chapter 1
[1] S. M. Sze, K. K. Ng, Physics of Semiconductor Devices, 3rd Edition, John Wiley & Sons, Hoboken, New Jersey 2007, Chapter 13.
[2] S. O. Kasap, Optoelectronics and Photonics: Principles and Practices, 2nd Edition, Pearson Education, Upper Saddle River, New Jersey 2013, Chapter 5.
[3] H. Wang, D. H. Kim, Chem. Soc. Rev. 2017, 46, 5204.
[4] Y. Lee, J. Kwon, E. Hwang, C. H. Ra, W. J. Yoo, J. H. Ahn, J. H. Park, J. H. Cho, Adv. Mater. 2015, 27, 41.
[5] D. Kufer, I. Nikitskiy, T. Lasanta, G. Navickaite, F. H. L. Koppens, G. Konstantatos, Adv. Mater. 2015, 27, 176.
[6] C. Ma, Y. Shi, W. Hu, M.-H. Chiu, Z. Liu, A. Bera, F. Li, H. Wang, L.-J. Li, T. Wu, Adv. Mater. 2016, 28, 3683.
[7] M. Spina, M. Lehmann, B. Náfrádi, L. Bernard, E. Bonvin, R. Gaál, A. Magrez, L. Forró, E. Horváth, Small 2015, 11, 4824.
[8] Y. Wang, R. Fullon, M. Acerce, C. E. Petoukhoff, J. Yang, C. Chen, S. Du, S. K. Lai, S. P. Lau, D. Voiry, D. O'Carroll, G. Gupta, A. D. Mohite, S. Zhang, H. Zhou, M. Chhowalla, Adv. Mater. 2017, 29, 1603995.
[9] Y. Wang, Y. Zhang, Y. Lu, W. Xu, H. Mu, C. Chen, H. Qiao, J. Song, S. Li, B. Sun, Y. B. Cheng, Q. Bao, Adv. Optical Mater. 2015, 3, 1389.
[10] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666.
[11] S. Y. Liu, Investigation of Device Characteristics in Alternating Current-Driven Organic Light-emitting Diodes and Graphene Field Effect Transistors Modified with Self- Assembled Monolayer on Silicon Dioxide Substrates, Master Thesis, National Taiwan University, 2014.
[12] F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari, Nat. Photonics 2010, 4, 611.
[13] K. S. Novoselov, V. I. Fal′ko, L. Colombo, P. R. Gellert, M. G. Schwab, K. Kim, Nature 2012, 490, 192.
[14] F. Schwierz, Nat. Nanotechnol. 2010, 5, 487.
[15] V. L. Nguyen, Y. H. Lee, Small 2015, 11, 3512.
[16] M. Chen, R. C. Haddon, R. Yan, E. Bekyarova, Mater. Horiz. 2017, 4, 1054.
[17] A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, Rev. Mod. Phys. 2009, 81, 109.
[18] E. Y. Andrei, G. Li, X. Du, Rep. Prog. Phys. 2012, 75, 056501.
[19] A. K. Geim, Science 2009, 324, 1530.
[20] M. Orlita, C. Faugeras, P. Plochocka, P. Neugebauer, G. Martinez, D. K. Maude, A.-L. Barra, M. Sprinkle, C. Berger, W. A. de Heer, M. Potemski, Phys. Rev. Lett. 2008, 101, 267601.
[21] A. V. Klekachev, A. Nourbakhsh, I. Asselberghs, A. L. Stesmans, M. M. Heyns, S. D. Gendt, Electrochem. Soc. Interface 2013, 22, 63.
[22] F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, P. Avouris, Nat. Nanotechnol. 2009, 4, 839.
[23] T. Mueller, F. Xia, P. Avouris, Nat. Photonics 2010, 4, 297.
[24] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, Science 2008, 320, 1308.
[25] J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, M. G. Spencer, Appl. Phys. Lett. 2008, 92, 042116.
[26] G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. de Arquer, F. Gatti, F. H. L. Koppens, Nat. Nanotechnol. 2012, 7, 363.
[27] P. H. Chang, Y. C. Tsai, S. W. Shen, S. Y. Liu, K. Y. Huang, C. S. Li, H. P. Chang, C. I. Wu, ACS Photonics 2017, 4, 2335.
[28] P. H. Chang, S. Y. Liu, Y. B. Lan, Y. C. Tsai, X. Q. You, C. S. Li, K. Y. Huang, A. S. Chou, T. C. Cheng, J. K. Wang, C. I. Wu, Sci. Rep. 2017, 7, 46281.
[29] Y. Zhang, M. Cao, X. Song, J. Wang, Y. Che, H. Dai, X. Ding, G. Zhang, J. Yao, J. Phys. Chem. C 2015, 119, 21739.
[30] D. Shao, J. Gao, P. Chow, H. Sun, G. Xin, P. Sharma, J. Lian, N. A. Koratkar, S. Sawyer, Nano Lett. 2015, 15, 3787.
[31] W. Guo, S. Xu, Z. Wu, N. Wang, M. M. T. Loy, S. Du, Small 2013, 9, 3031.
[32] G. Haider, P. Roy, C. W. Chiang, W. C. Tan, Y. R. Liou, H. T. Chang, C. T. Liang, W. H. Shih, Y. F. Chen, Adv. Funct. Mater. 2016, 26, 620.
[33] V. Q. Dang, T. Q. Trung, D. I. Kim, L. T. Duy, B. U. Hwang, D. W. Lee, B. Y. Kim, L. D. Toan, N. E. Lee, Small 2015, 11, 3054.
[34] W. C. Tan, W. H. Shih, Y. F. Chen, Adv. Funct. Mater. 2014, 24, 6818.
[35] W. Zhang, C. P. Chuu, J. K. Huang, C. H. Chen, M. L. Tsai, Y. H. Chang, C. T. Liang, Y. Z. Chen, Y. L. Chueh, J. H. He, M. Y. Chou, L. J. Li, Sci. Rep. 2014, 4, 3826.
[36] H. Xu, J. Wu, Q. Feng, N. Mao, C. Wang, J. Zhang, Small 2014, 10, 2300.
[37] Z. Sun, L. Aigouy, Z. Chen, Nanoscale 2016, 8, 7377.
[38] V. Q. Dang, G. S. Han, T. Q. Trung, L. T. Duy, Y. U. Jin, B. U. Hwang, H. S. Jung, N. E. Lee, Carbon 2016, 105, 353.
[39] P. H. Chang, C. S. Li, F. Y. Fu, K. Y. Huang, A. S. Chou, C. I. Wu, Adv. Funct. Mater. 2018, 28, 1800179.
[40] Y. C. Tsai, Highly Sensitive Graphene and Low Bandgap Semiconductive Organic Polymer Hybrid Photodetectors, Master Thesis, National Taiwan University, 2017.
References for Chapter 2
[1] P. H. Chang, C. S. Li, F. Y. Fu, K. Y. Huang, A. S. Chou, C. I. Wu, Adv. Funct. Mater. 2018, 28, 1800179.
[2] Q. H. Wu, Y. Zhao, G. Hong, J. G. Ren, C. Wang, W. Zhang, S. T. Lee, Carbon 2013, 65, 46.
[3] M. F. Lo, Z. Q. Guan, T. W. Ng, C. Y. Chan, C. S. Lee, Adv. Funct. Mater. 2015, 25, 1213.
[4] W. R. Salaneck, M. Lögdlund, M. Fahlman, G. Greczynski, Th. Kugler, Mater. Sci. Eng. R Rep. 2001, 34, 121.
[5] W. H. Lin, T. H. Chen, J. K. Chang, J. I. Taur, Y. Y. Lo, W. L. Lee, C. S. Chang, W. B. Su, C. I. Wu, ACS Nano 2014, 8, 1784.
[6] P. H. Chang, S. Y. Liu, Y. B. Lan, Y. C. Tsai, X. Q. You, C. S. Li, K. Y. Huang, A. S. Chou, T. C. Cheng, J. K. Wang, C. I. Wu, Sci. Rep. 2017, 7, 46281.
[7] S. Y. Liu, Investigation of Device Characteristics in Alternating Current-Driven Organic Light-emitting Diodes and Graphene Field Effect Transistors Modified with Self- Assembled Monolayer on Silicon Dioxide Substrates, Master Thesis, National Taiwan University, 2014.
[8] Y. C. Tsai, Highly Sensitive Graphene and Low Bandgap Semiconductive Organic Polymer Hybrid Photodetectors, Master Thesis, National Taiwan University, 2017.
[9] P. H. Chang, Y. C. Tsai, S. W. Shen, S. Y. Liu, K. Y. Huang, C. S. Li, H. P. Chang, C. I. Wu, ACS Photonics 2017, 4, 2335.
[10] D. H. Kim, H. S. Lee, H. Yang, L. Yang, K. Cho, Adv. Funct. Mater. 2008, 18, 1363.
[11] W. H. Lee, J. Park, Y. Kim, K. S. Kim, B. H. Hong, K. Cho, Adv. Mater. 2011, 23, 3460.
[12] S. Y. Chen, P. H. Ho, R. J. Shiue, C. W. Chen, W. H. Wang, Nano Lett. 2012, 12, 964.
[13] P. Li, C. Chen, J. Zhang, S. Li, B. Sun, Q. Bao, Front. Mater. 2014, 1, 26.
[14] Y. Liang, Z. Xu, J. Xia, S. T. Tsai, Y. Wu, G. Li, C. Ray, L. Yu, Adv. Mater. 2010, 22, E135.
[15] Z. He, C. Zhong, S. Su, M. Xu, H. Wu, Y. Cao, Nat. Photonics 2012, 6, 591.
[16] H. S. Jung, N. G. Park, Small 2015, 11, 10.
[17] Z. K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, R. H. Friend, Nat. Nanotechnol. 2014, 9, 687.
[18] S. D. Stranks, H. J. Snaith, Nat. Nanotechnol. 2015, 10, 391.
[19] M. A. Green, A. Ho-Baillie, H. J. Snaith, Nat. Photonics 2014, 8, 506.
[20] H. Wang, D. H. Kim, Chem. Soc. Rev. 2017, 46, 5204.
[21] Q. Chen, H. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. Liu, G. Li, Y. Yang, J. Am. Chem. Soc. 2014, 136, 622.
[22] X. Q. You, Open-Air Vapor-Assisted Solution Process Perovskite Solar Cell and Graphene Anode Conventional Organic Solar Cell, Master Thesis, National Taiwan University, 2015.
[23] F. Li, C. Ma, H. Wang, W. Hu, W. Yu, A. D. Sheikh, T. Wu, Nat. Commun. 2015, 6, 8238.
[24] U. H. Hamdeh, R. D. Nelson, B. J. Ryan, U. Bhattacharjee, J. W. Petrich, M. G. Panthani, Chem. Mater. 2016, 28, 6567.
[25] W. B. Zhang, L. J. Xiang, H. B. Li, J. Mater. Chem. A 2016, 4, 19086.
[26] H. S. Han, M. Hong, S. S. Gokhale, S. B. Sinnott, K. Jordan, J. E. Baciak, J. C. Nino, J. Phys. Chem. C 2014, 118, 3244.
[27] K. M. Boopathi, S. Raman, R. Mohanraman, F. C. Chou, Y. Y. Chen, C. H. Lee, F. C. Chang, C. W. Chu, Sol. Energy Mater. Sol. Cells 2014, 121, 35.
[28] R. E. Brandt, R. C. Kurchin, R. L. Z. Hoye, J. R. Poindexter, M. W. B. Wilson, S. Sulekar, F. Lenahan, P. X. T. Yen, V. Stevanović, J. C. Nino, M. G. Bawendi, T. Buonassisi, J. Phys. Chem. Lett. 2015, 6, 4297.
[29] A. J. Lehner, H. Wang, D. H. Fabini, C. D. Liman, C. A. Hébert, E. E. Perry, M. Wang, G. C. Bazan, M. L. Chabinyc, R. Seshadri, Appl. Phys. Lett. 2015, 107, 131109.
[30] S. S. Gokhale, H. Han, J. E. Baciak, J. C. Nino, K. A. Jordan, Radiat. Meas. 2015, 74, 47.
References for Chapter 3
[1] P. H. Chang, Y. C. Tsai, S. W. Shen, S. Y. Liu, K. Y. Huang, C. S. Li, H. P. Chang, C. I. Wu, ACS Photonics 2017, 4, 2335.
[2] G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. de Arquer, F. Gatti, F. H. L. Koppens, Nat. Nanotechnol. 2012, 7, 363.
[3] S. Y. Liu, Investigation of Device Characteristics in Alternating Current-Driven Organic Light-emitting Diodes and Graphene Field Effect Transistors Modified with Self- Assembled Monolayer on Silicon Dioxide Substrates, Master Thesis, National Taiwan University, 2014.
[4] M. Ishigami, J. H. Chen, W. G. Cullen, M. S. Fuhrer, E. D. Williams, Nano Lett. 2007, 7, 1643.
[5] C. H. Lui, L. Liu, K. F. Mak, G. W. Flynn, T. F. Heinz, Nature 2009, 462, 339.
[6] C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, J. Hone, Nat. Nanotechnol. 2010, 5, 722.
[7] M. Lafkioti, B. Krauss, T. Lohmann, U. Zschieschang, H. Klauk, K. v. Klitzing, J. H. Smet, Nano Lett. 2010, 10, 1149.
[8] W. H. Lee, J. Park, Y. Kim, K. S. Kim, B. H. Hong, K. Cho, Adv. Mater. 2011, 23, 3460.
[9] S. Y. Chen, P. H. Ho, R. J. Shiue, C. W. Chen, W. H. Wang, Nano Lett. 2012, 12, 964.
[10] Z. Liu, A. A. Bol, W. Haensch, Nano Lett. 2011, 11, 523.
[11] H. Chen, X. Guo, Small 2013, 9, 1144.
[12] Y. C. Tsai, Highly Sensitive Graphene and Low Bandgap Semiconductive Organic Polymer Hybrid Photodetectors, Master Thesis, National Taiwan University, 2017.
[13] R. Decker, Y. Wang, V. W. Brar, W. Regan, H. Z. Tsai, Q. Wu, W. Gannett, A. Zettl, M. F. Crommie, Nano Lett. 2011, 11, 2291.
[14] Y. Liang, Z. Xu, J. Xia, S. T. Tsai, Y. Wu, G. Li, C. Ray, L. Yu, Adv. Mater. 2010, 22, E135.
[15] Z. He, C. Zhong, S. Su, M. Xu, H. Wu, Y. Cao, Nat. Photonics 2012, 6, 591.
[16] W. Guo, S. Xu, Z. Wu, N. Wang, M. M. T. Loy, S. Du, Small 2013, 9, 3031.
[17] M. Spina, M. Lehmann, B. Náfrádi, L. Bernard, E. Bonvin, R. Gaál, A. Magrez, L. Forró, E. Horváth, Small 2015, 11, 4824.
[18] Z. Sun, Z. Liu, J. Li, G. A. Tai, S. P. Lau, F. Yan, Adv. Mater. 2012, 24, 5878.
[19] D. Shao, J. Gao, P. Chow, H. Sun, G. Xin, P. Sharma, J. Lian, N. A. Koratkar, S. Sawyer, Nano Lett. 2015, 15, 3787.
[20] S. H. Cheng, T. M. Weng, M. L. Lu, W. C. Tan, J. Y. Chen, Y. F. Chen, Sci. Rep. 2013, 3, 2694.
[21] W. C. Tan, W. H. Shih, Y. F. Chen, Adv. Funct. Mater. 2014, 24, 6818.
[22] W. Zhang, C. P. Chuu, J. K. Huang, C. H. Chen, M. L. Tsai, Y. H. Chang, C. T. Liang, Y. Z. Chen, Y. L. Chueh, J. H. He, M. Y. Chou, L. J. Li, Sci. Rep. 2014, 4, 3826.
[23] Y. Lee, J. Kwon, E. Hwang, C. H. Ra, W. J. Yoo, J. H. Ahn, J. H. Park, J. H. Cho, Adv. Mater. 2015, 27, 41.
[24] Y. Wang, Y. Zhang, Y. Lu, W. Xu, H. Mu, C. Chen, H. Qiao, J. Song, S. Li, B. Sun, Y. B. Cheng, Q. Bao, Adv. Optical Mater. 2015, 3, 1389.
[25] Z. Sun, L. Aigouy, Z. Chen, Nanoscale 2016, 8, 7377.
[26] G. Haider, P. Roy, C. W. Chiang, W. C. Tan, Y. R. Liou, H. T. Chang, C. T. Liang, W. H. Shih, Y. F. Chen, Adv. Funct. Mater. 2016, 26, 620.
References for Chapter 4
[1] P. H. Chang, S. Y. Liu, Y. B. Lan, Y. C. Tsai, X. Q. You, C. S. Li, K. Y. Huang, A. S. Chou, T. C. Cheng, J. K. Wang, C. I. Wu, Sci. Rep. 2017, 7, 46281.
[2] H. S. Jung, N. G. Park, Small 2015, 11, 10.
[3] M. A. Green, A. Ho-Baillie, H. J. Snaith, Nat. Photonics 2014, 8, 506.
[4] J.-P. Correa-Baena, M. Saliba, T. Buonassisi, M. Grätzel, A. Abate, W. Tress, A. Hagfeldt, Science 2017, 358, 739.
[5] H. Wang, D. H. Kim, Chem. Soc. Rev. 2017, 46, 5204.
[6] W. Tian, H. Zhou, L. Li, Small 2017, 13, 1702107.
[7] Y. Lee, J. Kwon, E. Hwang, C. H. Ra, W. J. Yoo, J. H. Ahn, J. H. Park, J. H. Cho, Adv. Mater. 2015, 27, 41.
[8] Y. Wang, Y. Zhang, Y. Lu, W. Xu, H. Mu, C. Chen, H. Qiao, J. Song, S. Li, B. Sun, Y. B. Cheng, Q. Bao, Adv. Optical Mater. 2015, 3, 1389.
[9] S. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G. Xing, T. C. Sumbce, Y. M. Lam, Energy Environ. Sci. 2014, 7, 399.
[10] Z. Sun, L. Aigouy, Z. Chen, Nanoscale 2016, 8, 7377.
[11] M. Liu, M. B. Johnston, H. J. Snaith, Nature 2013, 501, 395.
[12] L. K. Ono, S. Wang, Y. Kato, S. R. Ragaa, Y. Qi, Energy Environ. Sci. 2014, 7, 3989.
[13] O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, H. J. Bolink, Nat. Photonics 2014, 8, 128.
[14] C. W. Chen, H. W. Kang, S. Y. Hsiao, P. F. Yang, K. M. Chiang, H. W. Lin, Adv. Mater. 2014, 26, 6647.
[15] L. K. Ono, M. R. Leyden, S. Wang, Y. Qi, J. Mater. Chem. A 2016, 4, 6693.
[16] C. Ying, C. Shi, N. Wu, J. Zhang, M. Wang, Nanoscale 2015, 7, 12092.
[17] P. Schulz, E. Edri, S. Kirmayer, G. Hodes, D. Cahenb, A. Kahn, Energy Environ. Sci. 2014, 7, 1377.
[18] F. Li, C. Ma, H. Wang, W. Hu, W. Yu, A. D. Sheikh, T. Wu, Nat. Commun. 2015, 6, 8238.
[19] V. Q. Dang, G. S. Han, T. Q. Trung, L. T. Duy, Y. U. Jin, B. U. Hwang, H. S. Jung, N. E. Lee, Carbon 2016, 105, 353.
[20] M. Spina, M. Lehmann, B. Náfrádi, L. Bernard, E. Bonvin, R. Gaál, A. Magrez, L. Forró, E. Horváth, Small 2015, 11, 4824.
References for Chapter 5
[1] P. H. Chang, C. S. Li, F. Y. Fu, K. Y. Huang, A. S. Chou, C. I. Wu, Adv. Funct. Mater. 2018, 28, 1800179.
[2] A. Babayigit, A. Ethirajan, M. Muller, B. Conings, Nat. Mater. 2016, 15, 247.
[3] A. H. Slavney, T. Hu, A. M. Lindenberg, H. I. Karunadasa, J. Am. Chem. Soc. 2016, 138, 2138.
[4] U. H. Hamdeh, R. D. Nelson, B. J. Ryan, U. Bhattacharjee, J. W. Petrich, M. G. Panthani, Chem. Mater. 2016, 28, 6567.
[5] R. E. Brandt, R. C. Kurchin, R. L. Z. Hoye, J. R. Poindexter, M. W. B. Wilson, S. Sulekar, F. Lenahan, P. X. T. Yen, V. Stevanović, J. C. Nino, M. G. Bawendi, T. Buonassisi, J. Phys. Chem. Lett. 2015, 6, 4297.
[6] F. Giustino, H. J. Snaith, ACS Energy Lett. 2016, 1, 1233.
[7] M. Lyu, J. H. Yun, M. Cai, Y. Jiao, P. V. Bernhardt, M. Zhang, Q. Wang, A. Du, H. Wang, G. Liu, L. Wang, Nano Res. 2016, 9, 692.
[8] T. Singh, A. Kulkarni, M. Ikegami, T. Miyasaka, ACS Appl. Mater. Interfaces 2016, 8, 14542.
[9] C. Ran, Z. Wu, J. Xi, F. Yuan, H. Dong, T. Lei, X. He, X. Hou, J. Phys. Chem. Lett. 2017, 8, 394.
[10] Z. Zhang, X. Li, X. Xia, Z. Wang, Z. Huang, B. Lei, Y. Gao, J. Phys. Chem. Lett. 2017, 8, 4300.
[11] A. J. Lehner, H. Wang, D. H. Fabini, C. D. Liman, C. A. Hébert, E. E. Perry, M. Wang, G. C. Bazan, M. L. Chabinyc, R. Seshadri, Appl. Phys. Lett. 2015, 107, 131109.
[12] W. B. Zhang, L. J. Xiang, H. B. Li, J. Mater. Chem. A 2016, 4, 19086.
[13] S. S. Gokhale, H. Han, J. E. Baciak, J. C. Nino, K. A. Jordan, Radiat. Meas. 2015, 74, 47.
[14] H. S. Han, M. Hong, S. S. Gokhale, S. B. Sinnott, K. Jordan, J. E. Baciak, J. C. Nino, J. Phys. Chem. C 2014, 118, 3244.
[15] J. Li, X. Guan, C. Wang, H. C. Cheng, R. Ai, K. Yao, P. Chen, Z. Zhang, X. Duan, X. Duan, Small 2017, 13, 1701034.
[16] A. Koma, Thin Solid Films 1992, 216, 72.
[17] A. Koma, J. Cryst. Growth 1999, 201/202, 236.
[18] S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, J. E. Goldberger, ACS Nano 2013, 7, 2898.
[19] K. S. Novoselov, A. Mishchenko, A. Carvalho, A. H. Castro Neto, Science 2016, 353, aac9439.
[20] V. L. Nguyen, Y. H. Lee, Small 2015, 11, 3512.
[21] M. Chen, R. C. Haddon, R. Yan, E. Bekyarova, Mater. Horiz. 2017, 4, 1054.
[22] W. H. Lin, T. H. Chen, J. K. Chang, J. I. Taur, Y. Y. Lo, W. L. Lee, C. S. Chang, W. B. Su, C. I. Wu, ACS Nano 2014, 8, 1784.
[23] W. Dang, H. Peng, H. Li, P. Wang, Z. Liu, Nano Lett. 2010, 10, 2870.
[24] W. Wang, K. K. Leung, W. K. Fong, S. F. Wang, Y. Y. Hui, S. P. Lau, Z. Chen, L. J. Shi, C. B. Cao, C. Surya, J. Appl. Phys. 2012, 111, 093520.
[25] A. Azizi, S. Eichfeld, G. Geschwind, K. Zhang, B. Jiang, D. Mukherjee, L. Hossain, A. F. Piasecki, B. Kabius, J. A. Robinson, N. Alem, ACS Nano 2015, 9, 4882.
[26] J. A. Miwa, M. Dendzik, S. S. Grønborg, M. Bianchi, J. V. Lauritsen, P. Hofmann, S. Ulstrup, ACS Nano 2015, 9, 6502.
[27] X. Li, L. Basile, B. Huang, C. Ma, J. Lee, I. V. Vlassiouk, A. A. Puretzky, M. W. Lin, M. Yoon, M. Chi, J. C. Idrobo, C. M. Rouleau, B. G. Sumpter, D. B. Geohegan, K. Xiao, ACS Nano 2015, 9, 8078.
[28] Z. B. Aziza, H. Henck, D. Pierucci, M. G. Silly, E. Lhuillier, G. Patriarche, F. Sirotti, M. Eddrief, A. Ouerghi, ACS Nano 2016, 10, 9679.
[29] J. Song, J. Yuan, F. Xia, J. Liu, Y. Zhang, Y. L. Zhong, J. Zheng, Y. Liu, S. Li, M. Zhao, Z. Tian, R. A. Caruso, K. P. Loh, Q. Bao, Adv. Electron. Mater. 2016, 2, 1600077.
[30] E. S. Kim, J. Y. Hwang, K. H. Lee, H. Ohta, Y. H. Lee, S. W. Kim, Adv. Mater. 2017, 29, 1604899.
[31] K. M. Boopathi, S. Raman, R. Mohanraman, F. C. Chou, Y. Y. Chen, C. H. Lee, F. C. Chang, C. W. Chu, Sol. Energy Mater. Sol. Cells 2014, 121, 35.
[32] Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, J. Huang, Adv. Mater. 2014, 26, 6503.
[33] X. Sun, C. Zhang, J. Chang, H. Yang, H. Xi, G. Lu, D. Chen, Z. Lin, X. Lu, J. Zhang, Y. Hao, Nano Energy 2016, 28, 417.
[34] Z. Huang, X. Hu, C. Liu, L. Tan, Y. Chen, Adv. Funct. Mater. 2017, 27, 1703061.
[35] M. Jang, T. Q. Trung, J. H. Jung, B. Y. Kim, N. E. Lee, Phys. Chem. Chem. Phys. 2014, 16, 4098.
[36] D. Shao, J. Gao, P. Chow, H. Sun, G. Xin, P. Sharma, J. Lian, N. A. Koratkar, S. Sawyer, Nano Lett. 2015, 15, 3787.
[37] Z. Luo, J. Shang, S. Lim, D. Li, Q. Xiong, Z. Shen, J. Lin, T. Yu, Appl. Phys. Lett. 2010, 97, 233111.
[38] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666.
[39] V. Q. Dang, G. S. Han, T. Q. Trung, L. T. Duy, Y. U. Jin, B. U. Hwang, H. S. Jung, N. E. Lee, Carbon 2016, 105, 353.
[40] P. H. Chang, S. Y. Liu, Y. B. Lan, Y. C. Tsai, X. Q. You, C. S. Li, K. Y. Huang, A. S. Chou, T. C. Cheng, J. K. Wang, C. I. Wu, Sci. Rep. 2017, 7, 46281.
[41] Y. Lee, J. Kwon, E. Hwang, C. H. Ra, W. J. Yoo, J. H. Ahn, J. H. Park, J. H. Cho, Adv. Mater. 2015, 27, 41.
[42] Y. Wang, Y. Zhang, Y. Lu, W. Xu, H. Mu, C. Chen, H. Qiao, J. Song, S. Li, B. Sun, Y. B. Cheng, Q. Bao, Adv. Optical Mater. 2015, 3, 1389.
[43] Z. Sun, L. Aigouy, Z. Chen, Nanoscale 2016, 8, 7377.
[44] M. Spina, M. Lehmann, B. Náfrádi, L. Bernard, E. Bonvin, R. Gaál, A. Magrez, L. Forró, E. Horváth, Small 2015, 11, 4824.
[45] L. Qin, L. Wu, B. Kattel, C. Li, Y. Zhang, Y. Hou, J. Wu, W. L. Chan, Adv. Funct. Mater. 2017, 27, 1704173.
[46] G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. de Arquer, F. Gatti, F. H. L. Koppens, Nat. Nanotechnol. 2012, 7, 363.
[47] W. Guo, S. Xu, Z. Wu, N. Wang, M. M. T. Loy, S. Du, Small 2013, 9, 3031.
[48] V. Q. Dang, T. Q. Trung, D. I. Kim, L. T. Duy, B. U. Hwang, D. W. Lee, B. Y. Kim, L. D. Toan, N. E. Lee, Small 2015, 11, 3054.
[49] H. Xu, J. Wu, Q. Feng, N. Mao, C. Wang, J. Zhang, Small 2014, 10, 2300.
[50] X. Liu, E. K. Lee, J. H. Oh, Small 2014, 10, 3700.
[51] W. Zhang, C. P. Chuu, J. K. Huang, C. H. Chen, M. L. Tsai, Y. H. Chang, C. T. Liang, Y. Z. Chen, Y. L. Chueh, J. H. He, M. Y. Chou, L. J. Li, Sci. Rep. 2014, 4, 3826.
References for Chapter 6
[1] P. H. Chang, Y. C. Tsai, S. W. Shen, S. Y. Liu, K. Y. Huang, C. S. Li, H. P. Chang, C. I. Wu, ACS Photonics 2017, 4, 2335.
[2] P. H. Chang, S. Y. Liu, Y. B. Lan, Y. C. Tsai, X. Q. You, C. S. Li, K. Y. Huang, A. S. Chou, T. C. Cheng, J. K. Wang, C. I. Wu, Sci. Rep. 2017, 7, 46281.
[3] P. H. Chang, C. S. Li, F. Y. Fu, K. Y. Huang, A. S. Chou, C. I. Wu, Adv. Funct. Mater. 2018, 28, 1800179.
[4] M. Spina, M. Lehmann, B. Náfrádi, L. Bernard, E. Bonvin, R. Gaál, A. Magrez, L. Forró, E. Horváth, Small 2015, 11, 4824.
[5] W. Zhang, C. P. Chuu, J. K. Huang, C. H. Chen, M. L. Tsai, Y. H. Chang, C. T. Liang, Y. Z. Chen, Y. L. Chueh, J. H. He, M. Y. Chou, L. J. Li, Sci. Rep. 2014, 4, 3826.
[6] F. Schwierz, Nat. Nanotechnol. 2010, 5, 487.
[7] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano, Nat. Nanotechnol. 2012, 7, 699.
[8] G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, L. Colombo, Nat. Nanotechnol. 2014, 9, 768.
[9] D. Kufer, I. Nikitskiy, T. Lasanta, G. Navickaite, F. H. L. Koppens, G. Konstantatos, Adv. Mater. 2015, 27, 176.
[10] C. Ma, Y. Shi, W. Hu, M.-H. Chiu, Z. Liu, A. Bera, F. Li, H. Wang, L.-J. Li, T. Wu, Adv. Mater. 2016, 28, 3683.
[11] Y. Wang, R. Fullon, M. Acerce, C. E. Petoukhoff, J. Yang, C. Chen, S. Du, S. K. Lai, S. P. Lau, D. Voiry, D. O'Carroll, G. Gupta, A. D. Mohite, S. Zhang, H. Zhou, M. Chhowalla, Adv. Mater. 2017, 29, 1603995.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77548-
dc.description.abstract本論文中,我們分別使用低能隙高分子、鈣鈦礦、以及碘化鉍三種半導體吸光材料作為主動層並沉積於石墨烯場效電晶體上,以實現具有超高光導增益之石墨烯/半導體異質接面感光元件。
首先,我們研究經自組裝分子薄膜修飾之二氧化矽基板對於石墨烯/高分子光偵測元件之影響,我們發現此修飾可降低二氧化矽基板與石墨烯間之陷阱密度以及在石墨烯轉印過程中殘留之帶電雜質,並同時提升元件之通道導電率、光響應率、以及偵測率。以外,自組裝分子薄膜修飾技術亦可抑制長時間被捕捉於石墨烯/基板間之光載子所造成的緩慢下降之殘餘光電流。
接著,我們採用蒸鍍製程成功地將緻密且均勻之鈣鈦礦薄膜成長於石墨烯上,並有效減少石墨烯上鈣鈦礦薄膜之空隙及孔洞,在光致螢光的量測中,我們於整個石墨烯/鈣鈦礦複合薄膜之量測範圍內發現顯著且均勻的螢光淬熄,代表光產生之激子可於石墨烯/鈣鈦礦介面有效的分離,並實現具有可閘極調控之超高光響應率達~10^7 A/W以及偵測率達~10^15 Jones之光感測電晶體。
雖然鈣鈦礦具有優異之光電特性,然而,因其含有具毒性之鉛,使得其於光電領域之應用大為受限。我們嘗試將無鉛低毒性之碘化鉍薄膜沉積於石墨烯上作為吸光層,並發現碘化鉍於石墨烯上展現出緻密且極為平整的外觀以及優異之結晶性,其歸因於具層狀晶格結構之碘化鉍與石墨烯間之作用力為極弱之凡德瓦力,其已被光電子能譜術證實。此外,藉由光電子能譜量測獲得之碘化鉍以及石墨烯介面之能帶結構可證實光載子於該介面之轉移行為。最後,使用石墨烯/碘化鉍異質結構之光偵測器其光響應率以及偵測率可達到~10^6 A/W以及~10^14 Jones。
本論文中之石墨烯光感測器於極低光強度之環境下皆展現出優異的光靈敏度,在低可見光之影像感測應用上頗具潛力。此種石墨烯/半導體複合元件亦適合用於研究因照光造成之石墨烯與半導體間之電荷轉移行為。
zh_TW
dc.description.abstractIn this dissertation, low-bandgap polymer, methylammonium lead iodide perovskite, and BiI3 are utilized as light-harvesting materials and deposited on graphene field-effect transistors to achieve ultrahigh-gain photodetectors (PDs) with graphene/semiconductor vertical heterostructures.
First, we investigate the influence of self-assembled monolayer (SAM)- functionalized SiO2 substrates on graphene/polymer hybrid PDs. It is observed that SAM modification is capable of removing the trap sites and charged impurities from the graphene transfer process at graphene/SiO2 interfaces, resulting in the simultaneous improvement of channel conductivities, responsivities, and detectivities of the device. Moreover, SAM treatments can reduce the long-lived trapping of photocarriers between graphene and substrates, which depresses the slow decay residual photocurrents in the transient photocurrent relaxation of graphene/polymer hybrid PDs.
Subsequently, we carry out sequential vapor deposition to successfully form compact and uniform methylammonium lead iodide perovskite films on graphene and to reduce the density of voids or pin-holes in the perovskite active layers. Both uniform and significant photoluminescence intensity quenching has been observed over the entire measured regions of graphene/perovskite hybrid films, indicating excellent exciton separation at the graphene/perovskite interfaces. Ultrasensitive graphene/perovskite hybrid phototransistors with gate-tunable photosensitivities, an extremely high responsivity of ~10^7 A/W, and detectivity of ~10^15 Jones are realized.
Although methylammonium lead iodide perovskite has promising optoelectronic properties, the toxicity of Pb is a main concern for its further applications in optoelectronics. We deposit BiI3, a lead-free alternative absorber material, on graphene sheets via van der Waals epitaxy. The BiI3 deposited on graphene reveals extremely flat and compact morphologies and excellent crystallinities, mainly ascribed to the weak van der Waals interactions between graphene and layered BiI3, which are verified using photoemission spectroscopy. The photoinduced charge transfer occurring at the graphene/BiI3 heterointerfaces can also be consistently illustrated using the results of spectroscopic analysis. Finally, the PD with graphene/BiI3 heterostructures demonstrates an extremely high responsivity of ~10^6 A/W and detectivity of ~10^14 Jones.
All the graphene-based hybrid optical detectors developed in this study exhibit outstanding photosensitivities under weak ambient light condition, and thus, they are highly promising for low-visible-light imaging applications. In addition, such graphene/semiconductor hybrid devices are appropriate for the investigation of the photoinduced charge transfer behaviors occurring at graphene/semiconductor interfaces.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T22:08:08Z (GMT). No. of bitstreams: 1
ntu-107-D01941010-1.pdf: 13407836 bytes, checksum: cc6cdee09c3031ff05102c8c9c51d94d (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents誌謝 I
摘要 II
Abstract III
Contents V
List of Figures IX
List of Tables XIX
Chapter 1 Introduction 1
1.1 Photodetectors 2
1.1.1 Photodiodes 2
1.1.2 Photoconductors 2
1.2 Photodetector characteristics 3
1.2.1 Responsivity and external quantum efficiency 3
1.2.2 Noise equivalent power and shot-noise-limited detectivity 4
1.2.3 Response time 5
1.3 Graphene/semiconductor hybrid photodetectors 5
1.3.1 Introduction to graphene 5
1.3.2 Graphene field-effect transistors 6
1.3.3 Graphene/PbS quantum dot hybrid phototransistors 7
1.3.4 Gain mechanisms of graphene-based hybrid photodetector 8
1.3.5 Illumination-dependent photosensitivities 9
1.4 Organization of the dissertation 9
References for Chapter 1 16
Chapter 2 Experimental Methods 19
2.1 Photoemission spectroscopy 20
2.2 Fabrication of graphene field-effect transistors 21
2.2.1 Substrate preparation 21
2.2.2 Device fabrication 22
2.3 Fabrication of graphene-based hybrid photodetectors 22
2.3.1 Polymer deposition 23
2.3.2 Perovskite deposition 23
2.3.3 BiI3 deposition 24
2.4 Photoresponse measurements 24
2.5 Material characterization 25
References for Chapter 2 31
Chapter 3 High-Performance Graphene/Polymer Hybrid Photodetectors Using Self-Assembled-Monolayer-Modified Substrates 34
3.1 Motivation 35
3.2 Optimizing the electrical properties of graphene FETs 36
3.2.1 Enhanced hydrophobicity of substrate surfaces 36
3.2.2 Reduced doping effects from substrates 36
3.2.3 Increased carrier mobility 37
3.2.4 Depressed conductance hysteresis 37
3.3 Characterization of graphene/polymer hybrid films 38
3.3.1 Basic characteristics 38
3.3.2 Electronic structures at graphene/polymer interfaces 38
3.4 Performance improvements of graphene/polymer photodetectors 39
3.4.1 Responsivity 39
3.4.2 Detectivity 40
3.4.3 Response time 41
3.5 Summary 44
References for Chapter 3 61
Chapter 4 Ultrasensitive Graphene/Perovskite Hybrid Photodetectors by Sequential Vapor Deposition 63
4.1 Motivation 64
4.2 Characterization of graphene/perovskite hybrid films 66
4.2.1 Basic characteristics 66
4.2.2 Electronic structures at graphene/perovskite interfaces 67
4.2.3 Exciton quenching at graphene/perovskite interfaces 68
4.3 Performance of graphene/perovskite photodetectors 69
4.3.1 Responsivity 70
4.3.2 Detectivity 70
4.3.3 Response time 71
4.3.4 External quantum efficiency 71
4.3.5 Perovskite photodetectors without graphene 72
4.4 Summary 73
References for Chapter 4 86
Chapter 5 Van der Waals Epitaxy of Graphene/BiI3 Vertical Heterostructures for Low-Intensity Photodetection 88
5.1 Motivation 89
5.2 Characterization of graphene/BiI3 hybrid films 90
5.2.1 Van der Waals epitaxy of graphene/BiI3 heterostructures 90
5.2.2 Electronic structures at graphene/BiI3 interfaces 91
5.3 Performance of graphene/BiI3 photodetectors 94
5.3.1 Responsivity 95
5.3.2 Detectivity 96
5.3.3 Response time 96
5.3.4 External quantum efficiency 97
5.3.5 BiI3 photodetectors without graphene 97
5.4 Summary 98
References for Chapter 5 110
Chapter 6 Summary and Future Works 114
6.1 Summary 115
6.2 Future works 118
6.2.1 Photodetectors based on transition metal dichalcogenide/semiconductor heterostructures 118
6.2.2 Electronic structures of layered materials deposited on different substrates 118
References for Chapter 6 121
dc.language.isoen
dc.subject光電子能譜術zh_TW
dc.subject凡德瓦磊晶zh_TW
dc.subject石墨烯zh_TW
dc.subject場效電晶體zh_TW
dc.subject光感測器zh_TW
dc.subject自組裝分子薄膜zh_TW
dc.subject光導增益zh_TW
dc.subjectgrapheneen
dc.subjectphotoemission spectroscopyen
dc.subjectphotoconductive gainen
dc.subjectself-assembled monolayersen
dc.subjectphotodetectorsen
dc.subjectfield-effect transistorsen
dc.subjectvan der Waals epitaxyen
dc.title超高增益石墨烯光感測元件zh_TW
dc.titleUltrahigh Gain Graphene-Based Photodetectorsen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree博士
dc.contributor.oralexamcommittee林恭如,林致廷,陳奕君,吳肇欣,張文豪
dc.subject.keyword石墨烯,場效電晶體,光感測器,自組裝分子薄膜,光導增益,光電子能譜術,凡德瓦磊晶,zh_TW
dc.subject.keywordgraphene,field-effect transistors,photodetectors,self-assembled monolayers,photoconductive gain,photoemission spectroscopy,van der Waals epitaxy,en
dc.relation.page121
dc.identifier.doi10.6342/NTU201800308
dc.rights.note未授權
dc.date.accepted2018-08-10
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-D01941010-1.pdf
  未授權公開取用
13.09 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved