Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 基因體與系統生物學學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77542
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曾宇鳳(Yufeng Jane Tseng)
dc.contributor.authorMing-Tsung Hsuen
dc.contributor.author徐銘聰zh_TW
dc.date.accessioned2021-07-10T22:07:49Z-
dc.date.available2021-07-10T22:07:49Z-
dc.date.copyright2018-08-21
dc.date.issued2018
dc.date.submitted2018-08-10
dc.identifier.citation1. Torre, L.A., et al., Global cancer statistics, 2012. CA Cancer J Clin, 2015. 65(2): p. 87-108.
2. Hsiao, A.J., L.H. Chen, and T.H. Lu, Ten leading causes of death in Taiwan: A comparison of two grouping lists. J Formos Med Assoc, 2015. 114(8): p. 679-80.
3. The top 10 causes of death. World Health Organization 24 May 2018; Available from: http://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death.
4. Taiwan's Leading Causes of Death in 2016. Ministry of Health and Welfare of Taiwan; Available from: https://www.mohw.gov.tw/cp-3425-33347-2.html.
5. Eramo, A., T.L. Haas, and R. De Maria, Lung cancer stem cells: tools and targets to fight lung cancer. Oncogene, 2010. 29(33): p. 4625-35.
6. Frantz, C., K.M. Stewart, and V.M. Weaver, The extracellular matrix at a glance. Journal of Cell Science, 2010. 123(24): p. 4195-4200.
7. Lu, P., V.M. Weaver, and Z. Werb, The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol, 2012. 196(4): p. 395-406.
8. Hwang, I., Cell-cell communication via extracellular membrane vesicles and its role in the immune response. Mol Cells, 2013. 36(2): p. 105-11.
9. Alberts B, Johnson A, Lewis J, et al. Molecular Biology of the Cell. 4th edition. New York: Garland Science; 2002. General Principles of Cell Communication. Available from: https://www.ncbi.nlm.nih.gov/books/NBK26813/.
10. Yanez-Mo, M., et al., Biological properties of extracellular vesicles and their physiological functions. Journal of Extracellular Vesicles, 2015. 4.
11. Tkach, M. and C. Thery, Communication by Extracellular Vesicles: Where We Are and Where We Need to Go. Cell, 2016. 164(6): p. 1226-1232.
12. Pang, M.-F. and C.M. Nelson, Intercellular Communication, the Tumor Microenvironment, and Tumor Progression, in Intercellular Communication in Cancer, M. Kandouz, Editor. 2015, Springer Netherlands: Dordrecht. p. 343-362.
13. Contreras-Naranjo, J.C., H.J. Wu, and V.M. Ugaz, Microfluidics for exosome isolation and analysis: enabling liquid biopsy for personalized medicine. Lab Chip, 2017. 17(21): p. 3558-3577.
14. Colombo, M., G. Raposo, and C. Thery, Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol, 2014. 30: p. 255-89.
15. van der Pol, E., et al., Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev, 2012. 64(3): p. 676-705.
16. Vlassov, A.V., et al., Exosomes: Current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochimica Et Biophysica Acta-General Subjects, 2012. 1820(7): p. 940-948.
17. Suchorska, W.M. and M.S. Lach, The role of exosomes in tumor progression and metastasis (Review). Oncol Rep, 2016. 35(3): p. 1237-44.
18. Stuffers, S., et al., Multivesicular endosome biogenesis in the absence of ESCRTs. Traffic, 2009. 10(7): p. 925-37.
19. Trajkovic, K., et al., Ceramide triggers budding of exosome vesicles into multivesicular Endosomes. Science, 2008. 319(5867): p. 1244-1247.
20. Andreu, Z. and M. Yanez-Mo, Tetraspanins in extracellular vesicle formation and function. Front Immunol, 2014. 5: p. 442.
21. Chairoungdua, A., et al., Exosome release of beta-catenin: a novel mechanism that antagonizes Wnt signaling. Journal of Cell Biology, 2010. 190(6): p. 1079-1091.
22. Boker, K.O., et al., The Impact of the CD9 Tetraspanin on Lentivirus Infectivity and Exosome Secretion. Mol Ther, 2018. 26(2): p. 634-647.
23. van Niel, G., et al., The tetraspanin CD63 regulates ESCRT-independent and -dependent endosomal sorting during melanogenesis. Dev Cell, 2011. 21(4): p. 708-21.
24. Hurwitz, S.N., et al., Nanoparticle analysis sheds budding insights into genetic drivers of extracellular vesicle biogenesis. Journal of Extracellular Vesicles, 2016. 5.
25. Mulcahy, L.A., R.C. Pink, and D.R. Carter, Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles, 2014. 3.
26. McMahon, H.T. and E. Boucrot, Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol, 2011. 12(8): p. 517-33.
27. Parton, R.G. and K. Simons, The multiple faces of caveolae. Nat Rev Mol Cell Biol, 2007. 8(3): p. 185-94.
28. Swanson, J.A., Shaping cups into phagosomes and macropinosomes. Nature Reviews Molecular Cell Biology, 2008. 9(8): p. 639-649.
29. Martens, S. and H.T. McMahon, Mechanisms of membrane fusion: disparate players and common principles. Nat Rev Mol Cell Biol, 2008. 9(7): p. 543-56.
30. Johnstone, R.M., et al., Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem, 1987. 262(19): p. 9412-20.
31. Maia, J., et al., Exosome-Based Cell-Cell Communication in the Tumor Microenvironment. Front Cell Dev Biol, 2018. 6: p. 18.
32. Kalluri, R., The biology and function of exosomes in cancer. J Clin Invest, 2016. 126(4): p. 1208-15.
33. De Toro, J., et al., Emerging roles of exosomes in normal and pathological conditions: new insights for diagnosis and therapeutic applications. Front Immunol, 2015. 6: p. 203.
34. Lobb, R.J., L.G. Lima, and A. Moller, Exosomes: Key mediators of metastasis and pre-metastatic niche formation. Semin Cell Dev Biol, 2017. 67: p. 3-10.
35. Robbins, P.D. and A.E. Morelli, Regulation of immune responses by extracellular vesicles. Nat Rev Immunol, 2014. 14(3): p. 195-208.
36. Simpson, R.J., et al., Exosomes: proteomic insights and diagnostic potential. Expert Rev Proteomics, 2009. 6(3): p. 267-83.
37. Choi, D.S., et al., Proteomics, transcriptomics and lipidomics of exosomes and ectosomes. Proteomics, 2013. 13(10-11): p. 1554-71.
38. Zhang, X., et al., Exosomes in cancer: small particle, big player. J Hematol Oncol, 2015. 8: p. 83.
39. Ferguson, S.W. and J. Nguyen, Exosomes as therapeutics: The implications of molecular composition and exosomal heterogeneity. Journal of Controlled Release, 2016. 228: p. 179-190.
40. Kreimer, S., et al., Mass-spectrometry-based molecular characterization of extracellular vesicles: lipidomics and proteomics. J Proteome Res, 2015. 14(6): p. 2367-84.
41. Pocsfalvi, G., et al., Mass spectrometry of extracellular vesicles. Mass Spectrom Rev, 2016. 35(1): p. 3-21.
42. Green, T.M., et al., Breast Cancer-Derived Extracellular Vesicles: Characterization and Contribution to the Metastatic Phenotype. Biomed Res Int, 2015. 2015: p. 634865.
43. Ji, H., et al., Proteome profiling of exosomes derived from human primary and metastatic colorectal cancer cells reveal differential expression of key metastatic factors and signal transduction components. Proteomics, 2013. 13(10-11): p. 1672-86.
44. Welton, J.L., et al., Proteomics analysis of bladder cancer exosomes. Mol Cell Proteomics, 2010. 9(6): p. 1324-38.
45. Duijvesz, D., et al., Proteomic profiling of exosomes leads to the identification of novel biomarkers for prostate cancer. PLoS One, 2013. 8(12): p. e82589.
46. Liang, B., et al., Characterization and proteomic analysis of ovarian cancer-derived exosomes. J Proteomics, 2013. 80: p. 171-82.
47. Anderson, J.D., et al., Comprehensive Proteomic Analysis of Mesenchymal Stem Cell Exosomes Reveals Modulation of Angiogenesis via Nuclear Factor-KappaB Signaling. Stem Cells, 2016. 34(3): p. 601-13.
48. Grange, C., et al., Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Res, 2011. 71(15): p. 5346-56.
49. Lindoso, R.S., F. Collino, and G. Camussi, Extracellular vesicles derived from renal cancer stem cells induce a pro-tumorigenic phenotype in mesenchymal stromal cells. Oncotarget, 2015. 6(10): p. 7959-69.
50. Yang, C. and P.D. Robbins, The roles of tumor-derived exosomes in cancer pathogenesis. Clin Dev Immunol, 2011. 2011: p. 842849.
51. Skotland, T., K. Sandvig, and A. Llorente, Lipids in exosomes: Current knowledge and the way forward. Prog Lipid Res, 2017. 66: p. 30-41.
52. Record, M., et al., Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies. Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids, 2014. 1841(1): p. 108-120.
53. Roma-Rodrigues, C., A.R. Fernandes, and P.V. Baptista, Exosome in Tumour Microenvironment: Overview of the Crosstalk between Normal and Cancer Cells. Biomed Research International, 2014.
54. Llorente, A., et al., Molecular lipidomics of exosomes released by PC-3 prostate cancer cells. Biochim Biophys Acta, 2013. 1831(7): p. 1302-9.
55. Zhang, J., et al., Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinformatics, 2015. 13(1): p. 17-24.
56. Rabinowits, G., et al., Exosomal microRNA: a diagnostic marker for lung cancer. Clin Lung Cancer, 2009. 10(1): p. 42-6.
57. Keerthikumar, S., et al., ExoCarta: A Web-Based Compendium of Exosomal Cargo. J Mol Biol, 2016. 428(4): p. 688-692.
58. Kalra, H., et al., Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol, 2012. 10(12): p. e1001450.
59. Kim, D.K., et al., EVpedia: a community web portal for extracellular vesicles research. Bioinformatics, 2015. 31(6): p. 933-9.
60. Properzi, F., M. Logozzi, and S. Fais, Exosomes: the future of biomarkers in medicine. Biomark Med, 2013. 7(5): p. 769-78.
61. Reclusa, P., et al., Exosomes as diagnostic and predictive biomarkers in lung cancer. Journal of Thoracic Disease, 2017. 9: p. S1373-S1382.
62. Vader, P., X.O. Breakefield, and M.J. Wood, Extracellular vesicles: emerging targets for cancer therapy. Trends Mol Med, 2014. 20(7): p. 385-93.
63. Marleau, A.M., et al., Exosome removal as a therapeutic adjuvant in cancer. Journal of Translational Medicine, 2012. 10.
64. Whiteside, T.L., Tumor-Derived Exosomes and Their Role in Cancer Progression. Advances in Clinical Chemistry, Vol 74, 2016. 74: p. 103-141.
65. Johnsen, K.B., et al., A comprehensive overview of exosomes as drug delivery vehicles - Endogenous nanocarriers for targeted cancer therapy. Biochimica Et Biophysica Acta-Reviews on Cancer, 2014. 1846(1): p. 75-87.
66. Jakobsen, K.R., et al., Exosomal proteins as potential diagnostic markers in advanced non-small cell lung carcinoma. Journal of Extracellular Vesicles, 2015. 4.
67. Kruger, S., et al., Molecular characterization of exosome-like vesicles from breast cancer cells. BMC Cancer, 2014. 14: p. 44.
68. Han, C., et al., Exosomes and Their Therapeutic Potentials of Stem Cells. Stem Cells International, 2016.
69. Nawaz, M., et al., Extracellular Vesicles: Evolving Factors in Stem Cell Biology. Stem Cells Int, 2016. 2016: p. 1073140.
70. Kumar, D., et al., Biomolecular characterization of exosomes released from cancer stem cells: Possible implications for biomarker and treatment of cancer. Oncotarget, 2015. 6(5): p. 3280-91.
71. Fatima, F. and M. Nawaz, Stem cell-derived exosomes: roles in stromal remodeling, tumor progression, and cancer immunotherapy. Chin J Cancer, 2015. 34(12): p. 541-53.
72. Gu, S.Y., et al., Acquisition of tumorigenic potential and enhancement of angiogenesis in pulmonary stem/progenitor cells through Oct-4 hyperexpression. Oncotarget, 2016. 7(12): p. 13917-13931.
73. Thery, C., et al., Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol, 2006. Chapter 3: p. Unit 3 22.
74. Schlosser, A. and R. Volkmer-Engert, Volatile polydimethylcyclosiloxanes in the ambient laboratory air identified as source of extreme background signals in nanoelectrospray mass spectrometry. Journal of Mass Spectrometry, 2003. 38(5): p. 523-525.
75. Olsen, J.V., et al., Parts per million mass accuracy on an orbitrap mass spectrometer via lock mass injection into a C-trap. Molecular & Cellular Proteomics, 2005. 4(12): p. 2010-2021.
76. R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
77. Durinck, S., et al., BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis. Bioinformatics, 2005. 21(16): p. 3439-3440.
78. Durinck, S., et al., Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat Protoc, 2009. 4(8): p. 1184-91.
79. Mi, H., et al., Large-scale gene function analysis with the PANTHER classification system. Nat Protoc, 2013. 8(8): p. 1551-66.
80. Mi, H., et al., PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res, 2017. 45(D1): p. D183-D189.
81. Yu, G.C., et al., clusterProfiler: an R Package for Comparing Biological Themes Among Gene Clusters. Omics-a Journal of Integrative Biology, 2012. 16(5): p. 284-287.
82. Yu, G., et al., DOSE: an R/Bioconductor package for disease ontology semantic and enrichment analysis. Bioinformatics, 2015. 31(4): p. 608-9.
83. Yu, G. and Q.Y. He, ReactomePA: an R/Bioconductor package for reactome pathway analysis and visualization. Mol Biosyst, 2016. 12(2): p. 477-9.
84. Orchard, S., et al., Protein interaction data curation: the International Molecular Exchange (IMEx) consortium. Nat Methods, 2012. 9(4): p. 345-50.
85. Shannon, P., et al., Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 2003. 13(11): p. 2498-504.
86. Pinero, J., et al., DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes. Database-the Journal of Biological Databases and Curation, 2015.
87. The UniProt, C., UniProt: the universal protein knowledgebase. Nucleic Acids Res, 2017. 45(D1): p. D158-D169.
88. Wishart, D.S., et al., HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res, 2018. 46(D1): p. D608-D617.
89. Ha, D., N.N. Yang, and V. Nadithe, Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharmaceutica Sinica B, 2016. 6(4): p. 287-296.
90. Lin, J., et al., Exosomes: novel biomarkers for clinical diagnosis. ScientificWorldJournal, 2015. 2015: p. 657086.
91. Mathivanan, S. and R.J. Simpson, ExoCarta: A compendium of exosomal proteins and RNA. Proteomics, 2009. 9(21): p. 4997-5000.
92. Simpson, R.J., H. Kalra, and S. Mathivanan, ExoCarta as a resource for exosomal research. J Extracell Vesicles, 2012. 1.
93. Kosaka, N., et al., Exosome in disease biology, diagnosis, and therapy. Inflammation and Regeneration, 2014. 34(5): p. 233-239.
94. Ung, T.H., et al., Exosome proteomics reveals transcriptional regulator proteins with potential to mediate downstream pathways. Cancer Sci, 2014. 105(11): p. 1384-92.
95. de las Heras-Rubio, A., et al., Ribosomal proteins as novel players in tumorigenesis. Cancer and Metastasis Reviews, 2014. 33(1): p. 115-141.
96. Zhou, X., et al., Ribosomal proteins: functions beyond the ribosome. J Mol Cell Biol, 2015. 7(2): p. 92-104.
97. Takahashi, A., et al., Exosomes maintain cellular homeostasis by excreting harmful DNA from cells. Nat Commun, 2017. 8: p. 15287.
98. Yang, H.R., et al., Cyclophilin A is upregulated in small cell lung cancer and activates ERK1/2 signal. Biochemical and Biophysical Research Communications, 2007. 361(3): p. 763-767.
99. Nigro, P., G. Pompilio, and M.C. Capogrossi, Cyclophilin A: a key player for human disease. Cell Death Dis, 2013. 4: p. e888.
100. Subra, C., et al., Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins. J Lipid Res, 2010. 51(8): p. 2105-20.
101. Hessvik, N.P. and A. Llorente, Current knowledge on exosome biogenesis and release. Cell Mol Life Sci, 2018. 75(2): p. 193-208.
102. Mattila, P.K., F.D. Batista, and B. Treanor, Dynamics of the actin cytoskeleton mediates receptor cross talk: An emerging concept in tuning receptor signaling. J Cell Biol, 2016. 212(3): p. 267-80.
103. Rappa, G., et al., Tetraspanin CD9 determines invasiveness and tumorigenicity of human breast cancer cells. Oncotarget, 2015. 6(10): p. 7970-91.
104. Kischel, P., et al., Overexpression of CD9 in human breast cancer cells promotes the development of bone metastases. Anticancer Res, 2012. 32(12): p. 5211-20.
105. Vences-Catalan, F., et al., Tetraspanin CD81, a modulator of immune suppression in cancer and metastasis. Oncoimmunology, 2016. 5(5): p. e1120399.
106. Tian, T., et al., Exosome Uptake through Clathrin-mediated Endocytosis and Macropinocytosis and Mediating miR-21 Delivery. Journal of Biological Chemistry, 2014. 289(32): p. 22258-22267.
107. Hutagalung, A.H. and P.J. Novick, Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev, 2011. 91(1): p. 119-49.
108. Tzeng, H.T. and Y.C. Wang, Rab-mediated vesicle trafficking in cancer. J Biomed Sci, 2016. 23(1): p. 70.
109. Alenquer, M. and M.J. Amorim, Exosome Biogenesis, Regulation, and Function in Viral Infection. Viruses, 2015. 7(9): p. 5066-83.
110. Rescher, U. and V. Gerke, Annexins--unique membrane binding proteins with diverse functions. J Cell Sci, 2004. 117(Pt 13): p. 2631-9.
111. Lizarbe, M.A., et al., Annexin-phospholipid interactions. Functional implications. Int J Mol Sci, 2013. 14(2): p. 2652-83.
112. Maji, S., et al., Exosomal Annexin II Promotes Angiogenesis and Breast Cancer Metastasis. Mol Cancer Res, 2017. 15(1): p. 93-105.
113. Madureira, P.A., et al., Annexin A2 is a novel Cellular Redox Regulatory Protein involved in Tumorigenesis. Oncotarget, 2011. 2(12): p. 1075-1093.
114. Rutnam, Z.J., T.N. Wight, and B.B. Yang, miRNAs regulate expression and function of extracellular matrix molecules. Matrix Biol, 2013. 32(2): p. 74-85.
115. Desgrosellier, J.S. and D.A. Cheresh, Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer, 2010. 10(1): p. 9-22.
116. Hamidi, H., M. Pietila, and J. Ivaska, The complexity of integrins in cancer and new scopes for therapeutic targeting. Br J Cancer, 2016. 115(9): p. 1017-1023.
117. Hoshino, A., et al., Tumour exosome integrins determine organotropic metastasis. Nature, 2015. 527(7578): p. 329-35.
118. Fedele, C., et al., The alpha(v)beta(6) Integrin Is Transferred Intercellularly via Exosomes. Journal of Biological Chemistry, 2015. 290(8): p. 4545-4551.
119. Singh, A., et al., Exosome-mediated Transfer of alpha v beta 3 Integrin from Tumorigenic to Nontumorigenic Cells Promotes a Migratory Phenotype. Molecular Cancer Research, 2016. 14(11): p. 1136-1146.
120. Marhaba, R., et al., CD44 and EpCAM: cancer-initiating cell markers. Curr Mol Med, 2008. 8(8): p. 784-804.
121. Mimeault, M. and S.K. Batra, Molecular biomarkers of cancer stem/progenitor cells associated with progression, metastases, and treatment resistance of aggressive cancers. Cancer Epidemiol Biomarkers Prev, 2014. 23(2): p. 234-54.
122. Yan, Y., X. Zuo, and D. Wei, Concise Review: Emerging Role of CD44 in Cancer Stem Cells: A Promising Biomarker and Therapeutic Target. Stem Cells Transl Med, 2015. 4(9): p. 1033-43.
123. Goodison, S., V. Urquidi, and D. Tarin, CD44 cell adhesion molecules. Mol Pathol, 1999. 52(4): p. 189-96.
124. Ponta, H., L. Sherman, and P.A. Herrlich, CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol, 2003. 4(1): p. 33-45.
125. Senbanjo, L.T. and M.A. Chellaiah, CD44: A Multifunctional Cell Surface Adhesion Receptor Is a Regulator of Progression and Metastasis of Cancer Cells. Front Cell Dev Biol, 2017. 5: p. 18.
126. Nakamura, K., et al., Exosomes Promote Ovarian Cancer Cell Invasion through Transfer of CD44 to Peritoneal Mesothelial Cells. Molecular Cancer Research, 2017. 15(1): p. 78-92.
127. Morrison, D.K., The 14-3-3 proteins: integrators of diverse signaling cues that impact cell fate and cancer development. Trends in Cell Biology, 2009. 19(1): p. 16-23.
128. Dovrat, S., et al., 14-3-3 and beta-catenin are secreted on extracellular vesicles to activate the oncogenic Wnt pathway. Mol Oncol, 2014. 8(5): p. 894-911.
129. Sakakura, H., et al., CD109 is a component of exosome secreted from cultured cells. Biochemical and Biophysical Research Communications, 2016. 469(4): p. 816-822.
130. Tao, J., et al., CD109 is a potential target for triple-negative breast cancer. Tumor Biology, 2014. 35(12): p. 12083-12090.
131. Mancuso, P., et al., A Subpopulation of Circulating Endothelial Cells Express CD109 and is Enriched in the Blood of Cancer Patients. Plos One, 2014. 9(12).
132. Zhang, F.L., et al., SWATH (TM)- and iTRAQ-based quantitative proteomic analyses reveal an overexpression and biological relevance of CD109 in advanced NSCLC. Journal of Proteomics, 2014. 102: p. 125-136.
133. Raposo, G. and W. Stoorvogel, Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol, 2013. 200(4): p. 373-83.
134. Campanella, C., et al., Exosomal Heat Shock Proteins as New Players in Tumour Cell-to-Cell Communication. Journal of Circulating Biomarkers, 2014. 3: p. 4.
135. McCready, J., et al., Secretion of extracellular hsp90alpha via exosomes increases cancer cell motility: a role for plasminogen activation. BMC Cancer, 2010. 10: p. 294.
136. Hannafon, B.N. and W.Q. Ding, Cancer stem cells and exosome signaling. Stem Cell Investig, 2015. 2: p. 11.
137. Marchan, R., et al., Choline-releasing glycerophosphodiesterase EDI3 links the tumor metabolome to signaling network activities. Cell Cycle, 2012. 11(24): p. 4499-506.
138. Stewart, J.D., et al., Choline-releasing glycerophosphodiesterase EDI3 drives tumor cell migration and metastasis. Proc Natl Acad Sci U S A, 2012. 109(21): p. 8155-60.
139. Chakraborty, M. and X.C. Jiang, Sphingomyelin and its role in cellular signaling. Adv Exp Med Biol, 2013. 991: p. 1-14.
140. de Gassart, A., et al., Lipid raft-associated protein sorting in exosomes. Blood, 2003. 102(13): p. 4336-44.
141. Kim, C.W., et al., Extracellular membrane vesicles from tumor cells promote angiogenesis via sphingomyelin. Cancer Res, 2002. 62(21): p. 6312-7.
142. Carracedo, A., L.C. Cantley, and P.P. Pandolfi, Cancer metabolism: fatty acid oxidation in the limelight. Nat Rev Cancer, 2013. 13(4): p. 227-32.
143. Sancho, P., D. Barneda, and C. Heeschen, Hallmarks of cancer stem cell metabolism. Br J Cancer, 2016. 114(12): p. 1305-12.
144. Longo, N., M. Frigeni, and M. Pasquali, Carnitine transport and fatty acid oxidation. Biochim Biophys Acta, 2016. 1863(10): p. 2422-35.
145. Lazar, I., et al., Adipocyte Exosomes Promote Melanoma Aggressiveness through Fatty Acid Oxidation: A Novel Mechanism Linking Obesity and Cancer. Cancer Research, 2016. 76(14): p. 4051-4057.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77542-
dc.description.abstract胞外體為重要的細胞外囊泡,參與細胞間的訊號交流,以脂質雙層膜包裹各種分子組成(例如:蛋白質、信使核醣核酸、小分子核醣核酸),將來源細胞的訊息傳送至鄰近細胞和遠端細胞。先前的研究指出,癌症幹細胞釋放出之胞外體可當作生物標誌物,以進行癌症的診斷與預後。然而,針對癌症幹細胞胞外體全面性的分子鑑定和特徵描述仍屬缺乏。本研究利用液相層析質譜儀,鑑定老鼠肺癌幹細胞胞外體之蛋白質和脂質,並針對基因本體、生物途徑和疾病進行功能性富集分析,探索在細胞間胞外體從事訊號傳遞功能的重要分子。結果顯示,老鼠肺癌幹細胞胞外體總計帶有198個蛋白質,其中主要的蛋白質包含有:胞外體的標誌蛋白(Cd9、Alix、Tsg101);參與內吞作用的網格蛋白、胞內體分選運輸蛋白複合體、Rab蛋白家族;參與細胞骨架調控的肌動蛋白、絲切蛋白、前纖維蛋白;參與細胞外基質與受體交互作用的整聯蛋白、層黏蛋白。此外,老鼠肺癌幹細胞胞外體存在47個特有專屬蛋白,反映出肺癌幹細胞進行訊號傳遞的獨特性和重要性。蛋白質分類系統將胞外體蛋白質分成25大類,前三大類分別為:核酸結合蛋白、酵素調節蛋白、水解酶。分析老鼠肺癌幹細胞胞外體蛋白質的人類同源蛋白基因,顯示許多同源基因與癌症、癌瘤、腫瘤轉移、細胞增生疾病有關。透過整合癌幹細胞胞外體蛋白質、相關疾病及已知藥物三者的連結關係,找到一個具有發展潛力的癌幹細胞治療藥物,並已藉由細胞存活分析,證實了該藥物對癌幹細胞的抑制效果。另外,分析脂質在老鼠肺癌幹細胞胞外體的分佈情形,顯示其含有高含量的甘油磷脂(PC aa C34:1、PC aa C34:2、PC aa C36:2、PC aa C36:3、PC aa C36:4)、鞘脂(SM C16:0、SM C24:0、SM C24:1)和肉鹼。亦從脂質本體的重新組織整理,得知脂質扮演的生物功能和參與的生化途徑。總結來說,本研究為全方位分析肺癌幹細胞胞外體分子組成的首要研究,從胞外體分子群中找出重要的關鍵分子,將能更進一步地瞭解胞外體如何調控腫瘤進展,本研究提供了肺癌幹細胞胞外體之分子圖譜,並建立了分析胞外體的策略和平台,為未來的胞外體研究奠定了良好的研究發展基礎。zh_TW
dc.description.abstractExosome is an important extracellular vesicle (EV) which participates in cell-cell communication by transferring molecular components, such as protein, mRNA and miRNA encapsulated in the lipid bilayer membrane of the exosome, from donor cells to proximal and distal cells. Previous studies showed that exosomes released from cancer stem cells (CSCs) can serve as biomarkers for cancer diagnosis and prognosis. However, a comprehensive molecular characterization of molecular components of CSC-derived exosomes remains unclear. In this study, we characterized proteins and lipids of exosomes derived from mouse lung CSCs. LC-MS/MS was used for identification and quantification of proteins and lipids. Functional enrichment analyses on gene ontology, pathway and disease were performed to investigate key components for exosome-mediated communication between cells. In total, 198 reliable proteins were identified. Major proteins include exosomal markers (Cd9, Alix, Tsg101); clathrin, ESCRT protein complex and Rab family proteins involved in endocytosis; actin, cofilin and profilin involved in regulation of actin cytoskeleton; integrins and laminins involved in ECM-receptor interaction. In addition, 47 specific proteins were recognized in mouse lung CSC-derived exosomes, which reflects the uniqueness and value of exploring lung CSC-induced signaling. Protein classification system classified exosomal proteins into 25 protein classes with nucleic acid binding, enzyme modulator and hydrolase being the top 3 abundant protein classes. Disease enrichment of human homologs indicated that many homologous genes associate with cancer, carcinoma, neoplasm metastasis, and disease of cellular proliferation. By integrating the relations among CSC-derived exosomal proteins, associated diseases and known drugs, a potential CSC-targeting therapeutic drug was found on the basis of the relation networks, and its inhibitory effect was already confirmed via cell viability assay. For the lipid composition, high abundance of glycerophospholipids (PC aa C34:1, PC aa C34:2, PC aa C36:2, PC aa C36:3, PC aa C36:4), sphingolipids (SM C16:0, SM C24:0, SM C24:1) and carnitine were observed. Lipid ontology was curated and reorganized to show their biological functions and involved processes. In summary, this is the first study to identify molecular components of exosomes from lung CSCs. Finding key components of exosomes could unmask the mystery of exosome-mediated regulation in tumor progression. This study provides a great exosomal landscape of lung CSCs, and an excellent analytical strategy and platform for future study of exosomes.en
dc.description.provenanceMade available in DSpace on 2021-07-10T22:07:49Z (GMT). No. of bitstreams: 1
ntu-107-D00B48004-1.pdf: 16819445 bytes, checksum: 4c13a85d16c1aa0c7456c9ab06c32fc5 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
摘要 iv
Abstract vi
Table of Contents viii
List of Figures xii
List of Tables xiv
Chapter 1. Introduction 1
1.1 Lung cancer 1
1.2 Tumor microenvironment 2
1.3 Exosomes 3
1.3.1 Extracellular vesicles 3
1.3.2 Biogenesis, secretion and uptake of exosomes 4
1.3.3 Functions of exosomes 7
1.3.4 Composition of exosomes 8
1.3.5 Applications of exosomes 12
1.4 Aim of this study 13
Chapter 2. Materials and Methods 16
2.1 Lung cancer stem cells 16
2.1.1 Origin of cells 16
2.1.2 Cell culture 16
2.2 Exosomes 17
2.2.1 Exosome isolation 17
2.2.2 Transmission electron microscopy (TEM) 18
2.2.3 Size distribution of exosomes 19
2.2.4 Western blot 19
2.3 Proteomics 20
2.3.1 Sample pre-processing 20
2.3.2 In-solution digestion 20
2.3.3 LC-MS/MS 21
2.3.4 Protein identification 22
2.3.5 Data analysis 22
2.3.6 Cell viability assay 24
2.4 Lipidomics 25
2.4.1 Targeted metabolic phenotyping 25
2.4.2 Functional annotation of metabolites and lipids 25
Chapter 3. Results 26
3.1 Lung cancer stem cells and exosomes 26
3.1.1 Characterization of lung CSC-derived exosomes 26
3.2 Proteomics 27
3.2.1 Proteomic profiling and protein composition of lung CSC-derived exosomes 27
3.2.2 Common and specific proteins between lung CSC-derived exosomes and other cell types-derived exosomes 29
3.2.3 Functional classification and indication of lung CSC-derived exosomal proteins 30
3.2.4 Functional enrichment analysis 38
3.2.5 Protein-protein interactions 41
3.2.6 Disease-protein-drug relations 42
3.2.7 Cell viability assay 43
3.3 Lipidomics 44
3.3.1 Lipidomic profiling and lipid composition of lung CSC-derived exosomes 44
Chapter 4. Discussion 48
4.1 Exosome extraction 48
4.2 Data completeness 48
4.3 Database 49
4.4 Strength and weakness 50
Chapter 5. Conclusion 52
Bibliography 178
dc.language.isoen
dc.subject生物資訊學zh_TW
dc.subject胞外體zh_TW
dc.subject癌幹細胞zh_TW
dc.subject肺癌zh_TW
dc.subject分子特徵zh_TW
dc.subject蛋白質體學zh_TW
dc.subject脂質體學zh_TW
dc.subjectExosomeen
dc.subjectBioinformaticsen
dc.subjectLipidomicsen
dc.subjectProteomicsen
dc.subjectMolecular characterizationen
dc.subjectLung canceren
dc.subjectCancer stem cellen
dc.title肺癌幹細胞胞外體之分子鑑定zh_TW
dc.titleMolecular Identification of Lung Cancer Stem Cell-Derived Exosomesen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree博士
dc.contributor.oralexamcommittee周綠蘋(Lu-Ping Chow),張瑛芝(Ying-Chih Chang),閻雲(Yun Yen),黃彥華(Yen-Hua Huang),郭柏齡(Po-Ling Kuo)
dc.subject.keyword胞外體,癌幹細胞,肺癌,分子特徵,蛋白質體學,脂質體學,生物資訊學,zh_TW
dc.subject.keywordExosome,Cancer stem cell,Lung cancer,Molecular characterization,Proteomics,Lipidomics,Bioinformatics,en
dc.relation.page196
dc.identifier.doi10.6342/NTU201802910
dc.rights.note未授權
dc.date.accepted2018-08-13
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept基因體與系統生物學學位學程zh_TW
顯示於系所單位:基因體與系統生物學學位學程

文件中的檔案:
檔案 大小格式 
ntu-107-D00B48004-1.pdf
  未授權公開取用
16.43 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved