Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77528
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張淑媛zh_TW
dc.contributor.advisorSui-Yuan Changen
dc.contributor.author蔡幸純zh_TW
dc.contributor.authorHsin-Tsuen Tsaien
dc.date.accessioned2021-07-10T22:07:08Z-
dc.date.available2024-02-28-
dc.date.copyright2018-10-11-
dc.date.issued2018-
dc.date.submitted2002-01-01-
dc.identifier.citation1. Megan L. Shaw, P.P., Orthomyxoviridas, in Fields Virology. 2007. p. 1151-1160.
2. Zheng, W. and Y.J. Tao, Structure and assembly of the influenza A virus ribonucleoprotein complex. FEBS Lett, 2013. 587(8): p. 1206-14.
3. Gamblin, S.J. and J.J. Skehel, Influenza hemagglutinin and neuraminidase membrane glycoproteins. J Biol Chem, 2010. 285(37): p. 28403-9.
4. Shtyrya, Y.A., L.V. Mochalova, and N.V. Bovin, Influenza virus neuraminidase: structure and function. Acta Naturae, 2009. 1(2): p. 26-32.
5. Bui, M., et al., Role of the influenza virus M1 protein in nuclear export of viral ribonucleoproteins. J Virol, 2000. 74(4): p. 1781-6.
6. Pielak, R.M. and J.J. Chou, Influenza M2 proton channels. Biochim Biophys Acta, 2011. 1808(2): p. 522-9.
7. Cady, S.D., et al., Structure and function of the influenza A M2 proton channel. Biochemistry, 2009. 48(31): p. 7356-64.
8. Lin, D., J. Lan, and Z. Zhang, Structure and function of the NS1 protein of influenza A virus. Acta Biochim Biophys Sin (Shanghai), 2007. 39(3): p. 155-62.
9. Hale, B.G., et al., The multifunctional NS1 protein of influenza A viruses. J Gen Virol, 2008. 89(Pt 10): p. 2359-76.
10. O'Neill, R.E., J. Talon, and P. Palese, The influenza virus NEP (NS2 protein) mediates the nuclear export of viral ribonucleoproteins. EMBO J, 1998. 17(1): p. 288-96.
11. Neumann, G., M.T. Hughes, and Y. Kawaoka, Influenza A virus NS2 protein mediates vRNP nuclear export through NES-independent interaction with hCRM1. EMBO J, 2000. 19(24): p. 6751-8.
12. Fujiyoshi, Y., et al., Fine structure of influenza A virus observed by electron cryo-microscopy. EMBO J, 1994. 13(2): p. 318-26.
13. Calder, L.J., et al., Structural organization of a filamentous influenza A virus. Proc Natl Acad Sci U S A, 2010. 107(23): p. 10685-90.
14. Huang, Q., et al., Early steps of the conformational change of influenza virus hemagglutinin to a fusion active state: stability and energetics of the hemagglutinin. Biochim Biophys Acta, 2003. 1614(1): p. 3-13.
15. Schroeder, C., et al., The influenza virus ion channel and maturation cofactor M2 is a cholesterol-binding protein. Eur Biophys J, 2005. 34(1): p. 52-66.
16. Hsu, M.T., et al., Genomic RNAs of influenza viruses are held in a circular conformation in virions and in infected cells by a terminal panhandle. Proc Natl Acad Sci U S A, 1987. 84(22): p. 8140-4.
17. Cheong, H.K., C. Cheong, and B.S. Choi, Secondary structure of the panhandle RNA of influenza virus A studied by NMR spectroscopy. Nucleic Acids Res, 1996. 24(21): p. 4197-201.
18. Hirst, G.K., Adsorption of Influenza Virus on Cells of the Respiratory Tract. J Exp Med, 1943. 78(2): p. 99-109.
19. Matlin, K.S., et al., Infectious entry pathway of influenza virus in a canine kidney cell line. J Cell Biol, 1981. 91(3 Pt 1): p. 601-13.
20. Matrosovich, M., G. Herrler, and H.D. Klenk, Sialic Acid Receptors of Viruses. Top Curr Chem, 2015. 367: p. 1-28.
21. Zhou, N.N., et al., Genetic reassortment of avian, swine, and human influenza A viruses in American pigs. J Virol, 1999. 73(10): p. 8851-6.
22. Shinya, K., et al., Avian flu: influenza virus receptors in the human airway. Nature, 2006. 440(7083): p. 435-6.
23. Ibricevic, A., et al., Influenza virus receptor specificity and cell tropism in mouse and human airway epithelial cells. J Virol, 2006. 80(15): p. 7469-80.
24. Kumlin, U., et al., Sialic acid tissue distribution and influenza virus tropism. Influenza Other Respir Viruses, 2008. 2(5): p. 147-54.
25. Hamilton, B.S., G.R. Whittaker, and S. Daniel, Influenza virus-mediated membrane fusion: determinants of hemagglutinin fusogenic activity and experimental approaches for assessing virus fusion. Viruses, 2012. 4(7): p. 1144-68.
26. Lakadamyali, M., M.J. Rust, and X. Zhuang, Endocytosis of influenza viruses. Microbes Infect, 2004. 6(10): p. 929-36.
27. Sieczkarski, S.B. and G.R. Whittaker, Influenza virus can enter and infect cells in the absence of clathrin-mediated endocytosis. Journal of Virology, 2002. 76(20): p. 10455-10464.
28. Gorlich, D., et al., Isolation of a Protein That Is Essential for the First Step of Nuclear-Protein Import. Cell, 1994. 79(5): p. 767-778.
29. Adam, E.J.H. and S.A. Adam, Identification of Cytosolic Factors Required for Nuclear Location Sequence-Mediated Binding to the Nuclear-Envelope. Journal of Cell Biology, 1994. 125(3): p. 547-555.
30. Gorlich, D., et al., A 41 amino acid motif in importin-alpha confers binding to importin-beta and hence transit into the nucleus. Embo Journal, 1996. 15(8): p. 1810-1817.
31. Wu, W.W.H., Y.H.B. Sun, and N. Pante, Nuclear import of influenza A viral ribonucleoprotein complexes is mediated by two nuclear localization sequences on viral nucleoprotein. Virology Journal, 2007. 4.
32. Ye, Z., D. Robinson, and R.R. Wagner, Nucleus-targeting domain of the matrix protein (M1) of influenza virus. J Virol, 1995. 69(3): p. 1964-70.
33. Liu, Q.F., et al., A crucial role of N-terminal domain of influenza A virus M1 protein in interaction with swine importin alpha 1 protein. Virus Genes, 2014. 49(1): p. 157-162.
34. Mikulasova, A., E. Vareckova, and E. Fodor, Transcription and replication of the influenza a virus genome. Acta Virol, 2000. 44(5): p. 273-82.
35. Zheng, H.Y., et al., Influenza A virus RNA polymerase has the ability to stutter at the polyadenylation site of a viral RNA template during RNA replication. Journal of Virology, 1999. 73(6): p. 5240-5243.
36. Stevaert, A. and L. Naesens, The Influenza Virus Polymerase Complex: An Update on Its Structure, Functions, and Significance for Antiviral Drug Design. Med Res Rev, 2016. 36(6): p. 1127-1173.
37. Paterson, D. and E. Fodor, Emerging Roles for the Influenza A Virus Nuclear Export Protein (NEP). Plos Pathogens, 2012. 8(12).
38. Li, J., et al., Nucleocytoplasmic Shuttling of Influenza A Virus Proteins. Viruses-Basel, 2015. 7(5): p. 2668-2682.
39. Rossman, J.S. and R.A. Lamb, Influenza virus assembly and budding. Virology, 2011. 411(2): p. 229-36.
40. Su, S., et al., Epidemiology, Evolution, and Recent Outbreaks of Avian Influenza Virus in China. J Virol, 2015. 89(17): p. 8671-6.
41. Uyeki, T.M., et al., Lack of evidence for human-to-human transmission of avian influenza A (H9N2) viruses in Hong Kong, China 1999. Emerg Infect Dis, 2002. 8(2): p. 154-9.
42. Kilbourne, E.D., Influenza pandemics of the 20th century. Emerg Infect Dis, 2006. 12(1): p. 9-14.
43. Jhung, M.A., et al., Epidemiology of 2009 pandemic influenza A (H1N1) in the United States. Clin Infect Dis, 2011. 52 Suppl 1: p. S13-26.
44. Smith, G.J., et al., Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature, 2009. 459(7250): p. 1122-5.
45. Gao, R., et al., Human infection with a novel avian-origin influenza A (H7N9) virus. N Engl J Med, 2013. 368(20): p. 1888-97.
46. Marjuki, H., et al., Characterization of drug-resistant influenza A(H7N9) variants isolated from an oseltamivir-treated patient in Taiwan. J Infect Dis, 2015. 211(2): p. 249-57.
47. Klenk, H.D. and W. Garten, Host cell proteases controlling virus pathogenicity. Trends Microbiol, 1994. 2(2): p. 39-43.
48. Chen, J., et al., First genome report and analysis of chicken H7N9 influenza viruses with poly-basic amino acids insertion in the hemagglutinin cleavage site. Sci Rep, 2017. 7(1): p. 9972.
49. Yang, L., et al., Genesis and Spread of Newly Emerged Highly Pathogenic H7N9 Avian Viruses in Mainland China. J Virol, 2017. 91(23).
50. Hay, A.J., et al., The Molecular-Basis of the Specific Anti-Influenza Action of Amantadine. Embo Journal, 1985. 4(11): p. 3021-3024.
51. Monto, A.S., The role of antivirals in the control of influenza. Vaccine, 2003. 21(16): p. 1796-800.
52. von Itzstein, M., et al., A study of the active site of influenza virus sialidase: an approach to the rational design of novel anti-influenza drugs. J Med Chem, 1996. 39(2): p. 388-91.
53. Hurt, A.C., et al., Oseltamivir Resistance and the H274Y Neuraminidase Mutation in Seasonal, Pandemic and Highly Pathogenic Influenza Viruses. Drugs, 2009. 69(18): p. 2523-2531.
54. Lin, P.H., et al., Virological, serological, and antiviral studies in an imported human case of avian influenza A(H7N9) virus in Taiwan. Clin Infect Dis, 2014. 58(2): p. 242-6.
55. Hai, R., et al., Influenza A(H7N9) virus gains neuraminidase inhibitor resistance without loss of in vivo virulence or transmissibility. Nature Communications, 2013. 4.
56. Gerhard, W., et al., Role of the B-cell response in recovery of mice from primary influenza virus infection. Immunological Reviews, 1997. 159: p. 95-103.
57. Tsibane, T., et al., Influenza Human Monoclonal Antibody 1F1 Interacts with Three Major Antigenic Sites and Residues Mediating Human Receptor Specificity in H1N1 Viruses. Plos Pathogens, 2012. 8(12).
58. Chen, Z., et al., Human monoclonal antibodies targeting the haemagglutinin glycoprotein can neutralize H7N9 influenza virus. Nature Communications, 2015. 6.
59. Gerhard, W., et al., Antigenic structure of influenza virus haemagglutinin defined by hybridoma antibodies. Nature, 1981. 290(5808): p. 713-7.
60. Caton, A.J., et al., The antigenic structure of the influenza virus A/PR/8/34 hemagglutinin (H1 subtype). Cell, 1982. 31(2 Pt 1): p. 417-27.
61. Sui, J.H., et al., Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nature Structural & Molecular Biology, 2009. 16(3): p. 265-273.
62. Ekiert, D.C., et al., A Highly Conserved Neutralizing Epitope on Group 2 Influenza A Viruses. Science, 2011. 333(6044): p. 843-850.
63. Friesen, R.H.E., et al., A common solution to group 2 influenza virus neutralization. Proceedings of the National Academy of Sciences of the United States of America, 2014. 111(1): p. 445-450.
64. Corti, D., et al., A Neutralizing Antibody Selected from Plasma Cells That Binds to Group 1 and Group 2 Influenza A Hemagglutinins. Science, 2011. 333(6044): p. 850-856.
65. Kallewaard, N.L., et al., Structure and Function Analysis of an Antibody Recognizing All Influenza A Subtypes. Cell, 2016. 166(3): p. 596-608.
66. Dreyfus, C., et al., Highly Conserved Protective Epitopes on Influenza B Viruses. Science, 2012. 337(6100): p. 1343-1348.
67. Andrews, S.F., et al., Preferential induction of cross-group influenza A hemagglutinin stem-specific memory B cells after H7N9 immunization in humans. Sci Immunol, 2017. 2(13).
68. DiLillo, D.J., et al., Broadly neutralizing hemagglutinin stalk-specific antibodies require FcgammaR interactions for protection against influenza virus in vivo. Nat Med, 2014. 20(2): p. 143-51.
69. Impagliazzo, A., et al., A stable trimeric influenza hemagglutinin stem as a broadly protective immunogen. Science, 2015. 349(6254): p. 1301-1306.
70. Fu, Y., et al., A broadly neutralizing anti-influenza antibody reveals ongoing capacity of haemagglutinin-specific memory B cells to evolve. Nature Communications, 2016. 7.
71. Ha, Y., et al., H5 avian and H9 swine influenza virus haemagglutinin structures: possible origin of influenza subtypes. EMBO J, 2002. 21(5): p. 865-75.
72. Russell, R.J., et al., H1 and H7 influenza haemagglutinin structures extend a structural classification of haemagglutinin subtypes. Virology, 2004. 325(2): p. 287-96.
73. Igarashi, M., et al., Genetically destined potentials for N-linked glycosylation of influenza virus hemagglutinin. Virology, 2008. 376(2): p. 323-9.
74. Wanzeck, K., K.L. Boyd, and J.A. McCullers, Glycan shielding of the influenza virus hemagglutinin contributes to immunopathology in mice. Am J Respir Crit Care Med, 2011. 183(6): p. 767-73.
75. Mallajosyula, V.V., et al., Influenza hemagglutinin stem-fragment immunogen elicits broadly neutralizing antibodies and confers heterologous protection. Proc Natl Acad Sci U S A, 2014. 111(25): p. E2514-23.
76. Yassine, H.M., et al., Hemagglutinin-stem nanoparticles generate heterosubtypic influenza protection. Nature Medicine, 2015. 21(9): p. 1065-+.
77. Bommakanti, G., et al., Design of Escherichia coli-Expressed Stalk Domain Immunogens of H1N1 Hemagglutinin That Protect Mice from Lethal Challenge. Journal of Virology, 2012. 86(24): p. 13434-13444.
78. Valkenburg, S.A., et al., Stalking influenza by vaccination with pre-fusion headless HA mini-stem. Scientific Reports, 2016. 6.
79. Mallajosyula, V.V.A., et al., Hemagglutinin sequence conservation guided stem immunogen design from influenza A H3 subtype. Frontiers in Immunology, 2015. 6.
80. Ekiert, D.C., et al., A highly conserved neutralizing epitope on group 2 influenza A viruses. Science, 2011. 333(6044): p. 843-50.
81. Nakamura, G., et al., An In Vivo Human-Plasmablast Enrichment Technique Allows Rapid Identification of Therapeutic Influenza A Antibodies. Cell Host & Microbe, 2013. 14(1): p. 93-103.
82. Mallory, R.M., et al., A phase 1 study to evaluate the safety and pharmacokinetics of MEDI8852, an anti-influenza A monoclonal antibody, in healthy adult volunteers. Biologicals, 2017. 50: p. 81-86.
83. Gupta, P., et al., Preclinical pharmacokinetics of MHAA4549A, a human monoclonal antibody to influenza A virus, and the prediction of its efficacious clinical dose for the treatment of patients hospitalized with influenza A. Mabs, 2016. 8(5): p. 991-997.
84. Dittmann, J., et al., Influenza A virus strains differ in sensitivity to the antiviral action of Mx-GTPase. J Virol, 2008. 82(7): p. 3624-31.
85. Zimmermann, P., et al., The viral nucleoprotein determines Mx sensitivity of influenza A viruses. J Virol, 2011. 85(16): p. 8133-40.
86. Riegger, D., et al., The nucleoprotein of newly emerged H7N9 influenza A virus harbors a unique motif conferring resistance to antiviral human MxA. J Virol, 2015. 89(4): p. 2241-52.
87. Dunand, C.J.H., et al., Both Neutralizing and Non-Neutralizing Human H7N9 Influenza Vaccine-Induced Monoclonal Antibodies Confer Protection. Cell Host & Microbe, 2016. 19(6): p. 800-813.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77528-
dc.description.abstract自西元2013年中國爆發新型重組禽流感H7N9病毒感染,截至去年已有五波的H7N9流感病毒爆發。雖然現今已有許多可中和不同病毒株之廣效性中和抗體,然而因為不同病毒亞型的HA仍有些結構上的差異,導致許多廣效性中和抗體對於H7N9病毒之中和能力較差。因此,本篇研究之目的為探討可中和H7N9流感病毒的抗體之特性。首先,我們將一位感染H7N9病毒的病人周邊血單核細胞運送至財團法人生物技術開發中心(DCB),以生產多個人類單株抗體後,先以H7N9類病毒顆粒之結合能力來篩選抗體,再藉由微量抗體中和反應試驗(Microneutralization assay,mNT)找到兩支對於H7N9病毒具有中和能力之抗體,分別為HNP6 C3HK和HNP2 C11HL2。我們經由細胞免疫螢光試驗比較此二抗體對於流感病毒表面蛋白質HA、NA及M蛋白質的結合能力,發現HNP6 C3HK及HNP2 C11HL2是透過結合HA蛋白質而發揮其中和能力;此外,此二抗體亦對2017年所分離出具有多鹼性胺基酸插入之高致病性H7具有結合能力。關於廣效結合性的部分,我們發現此二抗體可結合Group 2的HA,包含H3、H7及H10,然而對於Group 1的HA,兩支抗體皆無法結合H1,僅有HNP2 C11HL2可結合H9。進一步中和實驗的結果顯示HNP6 C3HK 可抑制分別來自2007,2014和2017年之H3N2 病毒,而HNP2 C11HL2只具有抑制2007年H3N2病毒之能力。為了確認抗體之結合位點位在HA stem上,我們利用將全長HA經胰蛋白酶和二硫蘇糖醇(DTT)作用後得到HA stem之結構,並測試抗體的結合能力,可以發現此二抗體的結合皆下降。我們亦參考文獻將HA做特定修飾後僅保留stem之結構,然而發現此合成stem並非正確結構,因而無法被已知結合於stem結構之抗體所辨認。進一步探討HNP6 C3HK和HNP2 C11HL2於HA蛋白質之結合位點,我們將許多HA stem區域之特定位點做單點突變後,比較抗體結合能力的變化。由細胞免疫螢光試驗發現S29、N46、I357和D358突變後會影響抗體結合能力,I357及D358之突變甚至會導致HNP6 C3HK結合完全消失;我們亦使用流式細胞術量化相對於未突變之HA,此二抗體對於帶有S29A,N46H,I357A及D358A之HA的結合百分比,並得到與細胞免疫螢光試驗一致的結果。為了確認I357及D358為此二抗體之結合位點,我們透過比較此二抗體對於未含突變及帶有此二突變的重組H7N9病毒之中和能力,發現HNP6 C3HK和HNP2 C11HL2對於分別帶有I357A和D358A之重組病毒失去其抑制之能力。在探討抗病毒機制的部分,我們發現若先將HNP2 C11HL2與成熟之HA作用才進行酸性環境刺激與DTT處理,可以抑制HA1與HA2的解離。最後我們透過測試抗體依賴的細胞介導之細胞毒性作用發現,HNP6 C3HK可藉由結合Fc γRIIIa接受器活化下游反應。綜言之,由感染H7N9病毒的病人檢體所合成之中和性抗體HNP6 C3HK和HNP2 C11HL2對於H3、H7和H10有結合能力且可中和H3N2與H7N9病毒。另外,位於融合肽(Fusion peptide)之357和358對於此二抗體之結合與中和相當重要。zh_TW
dc.description.abstractReassortant avian influenza A H7N9 virus has caused 5 epidemic waves in China since 2013. Although there have been several broadly neutralizing antibodies (bnAb) showing cross-reactivity against various influenza viruses, most bnAbs exhibit less effective antiviral activity against H7N9 virus due to the differences in structure and glycosylated modification patterns between hemagglutinin proteins of group 1 and group 2 influenza virus. This study aimed to investigate the characteristics of two neutralizing antibodies that effectively neutralize H7N9 virus. First, a number of human monoclonal antibodies (HuMAbs) were generated from the peripheral blood mononuclear cells (PBMCs) of one H7N9-infected patient by the Development Center of Biotechnology (DCB). After initial binding screening using the virus-like particles, micro-neutralization assay was performed to determine the neutralizing abilities of selected HuMAbs against H7N9 viruses. Two HuMAbs, HNP6 C3HK and HNP2 C11HL2, exhibited efficient neutralizing abilities. In immunofluorescence assay, HNP6 C3HK and HNP2 C11HL2 showed binding activity to HA protein. Besides, highly pathogenic H7 bearing poly-basic amino acids insertion in the cleavage site could also be recognized by these two HuMAbs. In addition, both antibodies had cross-binding ability to H3, H7, H10 of group 2 influenza viruses and HNP2 C11HL2 showed reactivity to H9 of group1 influenza viruses. Furthermore, HNP6 C3HK exhibited broadly neutralizing ability to H3N2 viruses isolated in 2007, 2014 and 2017, and HNP2 C11HL2 can inhibit H3N2 virus in 2007. To confirm that the binding sites of these two antibodies are located on the stem region, the binding abilities of these two HuMAbs to trimeric stem structure generated by sequential treatment of trypsin and DTT on HA0 were determined. In this experiment, the binding activity of both antibodies decreased upon trypsin and DTT treatment. A H7 stem structure was also synthesized based on the study results from other study, but the stem structure could not be recognized by a reference antibody targeting to conformational epitopes in the stem region. Next, the residues critical for HNP6 C3HK and HNP2 C11HL2 binding were determined by site-directed mutagenesis and immunofluorescence assay (IFA). The substitution at resides S29, N46, I357 and D358 reduced the binding of these two antibodies. Substitutions of I357A and D358A even abolished the binding of HNP6 C3HK. The binding abilities of both antibodies to four mutant variants were also quantified by flow cytometry and the results were consistent with the IFA. To further confirm these findings, the neutralizing abilities of HNP6 C3HK and HNP2 C11HL2 against recombinant H7N9 mutant viruses carrying I357A or D358A substitutions were examined. Both antibodies lost neutralizing abilities to mutant viruses as compared to wild type recombinant viruses. The study results were further confirmed by the finding that the binding of HNP2 C11HL2 to the HA prior to the treatment of low pH-trigger and DTT could block the dissociation of HA1 and HA2. Finally, HNP6 C3HK was shown to exhibit the capability of inducing antibody-dependent cellular cytotoxicity (ADCC) through binding to FcγRIIIa receptor. In conclusion, HNP6 C3HK and HNP2 C11HL2 generated from B cells of a H7N9-infected patient showed binding abilities to H3, H7 and H10 and broadly neutralizing activities against H7N9 and H3N2 viruses. I357 and D358 were critical for the binding of both antibodies.en
dc.description.provenanceMade available in DSpace on 2021-07-10T22:07:08Z (GMT). No. of bitstreams: 1
ntu-107-R04424010-1.pdf: 2044743 bytes, checksum: 3bd03c3e33aaa13a055ae9a5e4ac950c (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents中文摘要 I
英文摘要 III
圖目錄 4
表目錄 5
Introduction 6
1-1 Influenza virus 6
1-1-1 The structure of influenza virus 6
1-1-2 Stages of viral replication 7
1-2 Epidemiology and Pandemics of influenza virus 13
1-3 Novel reassortant avian-origin H7N9 virus 15
2-1 Antiviral therapy of influenza A virus 16
2-1-1 Antiviral agent against influenza A virus 16
2-1-2 Drug resistance of influenza H7N9 virus 17
2-1-3 Neutralizing antibody against influenza virus 18
Rationale and Aim 21
Materials and Methods 22
2-1 Materials 22
2-1-1 Cell 22
2-1-2 Influenza Virus Strains 22
2-1-3 Medium and reagent 22
2-1-4 Antibody 24
2-1-5 Commercial Kits 24
2-1-6 Plasmids 25
2-1-7 Primers 25
2-1-8 Reverse Transcription-Polymerase Chain Reaction, RT-PCR 25
2-1-9 Competent cell 26
2-1-10 Bacteria Culture system 26
2-1-11 Restriction enzyme 26
2-2 Methods 27
2-2-1 Cells 27
2-2-2 Virus amplification 28
2-2-3 Plaque assay 28
2-2-4 Growth kinetics assay 29
2-2-5 Extraction of viral RNA 29
2-2-6 RT-PCR Reverse transcription- Polymerase Chain Reaction) 30
2-2-7 Heat Shock transformation 31
2-2-8 Preparation of hemagglutinin expression plasmids 31
2-2-9 Transfection 32
2-2-10 Generation of recombinant virus 33
2-2-11 Generation of virus like particle (VLP) 34
2-2-12 Tissue culture infectious dose,TCID50 34
2-2-13 Immunostaining-based micro-neutralization assay 35
2-2-14 Immunofluorescence assay 36
2-2-15 FACS based binding to cell surface expressed HA proteins 37
2-2-16 Conformational change flow cytometry assay 38
2-2-17 Surrogate reporter-based antibody-dependent cell-mediated cytotoxicity (ADCC) assay 39
2-2-18 Data availability 40
2-2-19 Statistical analysis 40
Results 41
Generation of two H7N9 specific monoclonal antibodies from human memory B cells 41
Binding activity of HNP6 C3HK and HNP2 C11HL2. 42
HNP6 C3HK and HNP2 C11HL2 can broadly neutralize group 2 human influenza A viruses. 43
The binding sites of HNP6 C3HK and HNP2 C11HL2 are not only on stem region, but also on head region of HA protein. 44
Design H7 stem according to pdmH1s structure 45
H7 stem cannot be recognized by MEDI8852 through FA 46
H7 stem cannot be recognized by MEDI8852 through FACS 46
Similar expression levels between H7FL and H7s were detected by western blotting 47
Epitope mapping of HNP6 C3HK and HNP2 C11HL2. 47
The antiviral mechanism of HNP6 C3HK and HNP2 C11HL2. 50
HNP6 C3HK mediated antibody-dependent cell-mediated cytotoxicity (ADCC) in vitro 51
Discussion 53
Figures and Tables 61
Reference 84
-
dc.language.isoen-
dc.title探討針對A型流感病毒之廣效中和人類單株抗體zh_TW
dc.titleCharacterization of broadly neutralizing human monoclonal antibodies against influenza A virusesen
dc.typeThesis-
dc.date.schoolyear106-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee高全良;李君男;施信如;艾麗霜zh_TW
dc.contributor.oralexamcommitteeChuan-Liang Kao;Chun-Nan Lee;Shin Ru shih;Li-Shuang Aien
dc.subject.keyword流感病毒,H7N9,廣效性中和抗體,zh_TW
dc.subject.keywordInfluenza virus,H7N9,broadly neutralizing antibody,en
dc.relation.page89-
dc.identifier.doi10.6342/NTU201802994-
dc.rights.note未授權-
dc.date.accepted2018-08-13-
dc.contributor.author-college醫學院-
dc.contributor.author-dept醫學檢驗暨生物技術學研究所-
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-106-2.pdf
  目前未授權公開取用
2 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved