請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77520完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 許書豪 | zh_TW |
| dc.contributor.advisor | Shu-Hao Hsu | en |
| dc.contributor.author | 陳妍如 | zh_TW |
| dc.contributor.author | Yen-Ju Chen | en |
| dc.date.accessioned | 2021-07-10T22:06:43Z | - |
| dc.date.available | 2024-02-28 | - |
| dc.date.copyright | 2018-10-11 | - |
| dc.date.issued | 2018 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | Reference
1. Bartel, D.P., Metazoan MicroRNAs. Cell, 2018. 173(1): p. 20-51. 2. Chen, Y., et al., Hepatic differentiation of liver-derived progenitor cells and their characterization by microRNA analysis. Liver Transpl, 2010. 16(9): p. 1086-97. 3. Song, G., et al., MicroRNAs control hepatocyte proliferation during liver regeneration. Hepatology, 2010. 51(5): p. 1735-43. 4. Fernandez-Hernando, C., et al., MicroRNAs in metabolic disease. Arterioscler Thromb Vasc Biol, 2013. 33(2): p. 178-85. 5. Lin, Q., et al., A role of miR-27 in the regulation of adipogenesis. FEBS J, 2009. 276(8): p. 2348-58. 6. Dumortier, O., C. Hinault, and E. Van Obberghen, MicroRNAs and metabolism crosstalk in energy homeostasis. Cell Metab, 2013. 18(3): p. 312-24. 7. Rogler, C.E., et al., Knockdown of miR-23, miR-27, and miR-24 Alters Fetal Liver Development and Blocks Fibrosis in Mice. Gene Expr, 2017. 17(2): p. 99-114. 8. Lefterova, M.I., et al., PPARgamma and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genome-wide scale. Genes Dev, 2008. 22(21): p. 2941-52. 9. Vickers, K.C., et al., MicroRNA-27b is a regulatory hub in lipid metabolism and is altered in dyslipidemia. Hepatology, 2013. 57(2): p. 533-42. 10. Hsu, S.H., et al., MicroRNA-122 regulates polyploidization in the murine liver. Hepatology, 2016. 64(2): p. 599-615. 11. Kalsbeek, A., S. la Fleur, and E. Fliers, Circadian control of glucose metabolism. Mol Metab, 2014. 3(4): p. 372-83. 12. Celton-Morizur, S., et al., The insulin/Akt pathway controls a specific cell division program that leads to generation of binucleated tetraploid liver cells in rodents. J Clin Invest, 2009. 119(7): p. 1880-7. 13. Cantley, L.C., The phosphoinositide 3-kinase pathway. Science, 2002. 296(5573): p. 1655-7. 14. Dong, X.C., et al., Inactivation of hepatic Foxo1 by insulin signaling is required for adaptive nutrient homeostasis and endocrine growth regulation. Cell Metab, 2008. 8(1): p. 65-76. 15. Zhou, X.Y., et al., Insulin regulation of hepatic gluconeogenesis through phosphorylation of CREB-binding protein. Nat Med, 2004. 10(6): p. 633-7. 16. Kohjima, M., et al., SREBP-1c, regulated by the insulin and AMPK signaling pathways, plays a role in nonalcoholic fatty liver disease. Int J Mol Med, 2008. 21(4): p. 507-11. 17. Mora, A., et al., Deficiency of PDK1 in liver results in glucose intolerance, impairment of insulin-regulated gene expression and liver failure. Biochem J, 2005. 385(Pt 3): p. 639-48. 18. Ishihara, H., et al., Association of the polymorphisms in the 5'-untranslated region of PTEN gene with type 2 diabetes in a Japanese population. FEBS Lett, 2003. 554(3): p. 450-4. 19. El-Serag, H.B., T. Tran, and J.E. Everhart, Diabetes increases the risk of chronic liver disease and hepatocellular carcinoma. Gastroenterology, 2004. 126(2): p. 460-8. 20. Byrne, C.D. and G. Targher, NAFLD: a multisystem disease. J Hepatol, 2015. 62(1 Suppl): p. S47-64. 21. Brown, M.S. and J.L. Goldstein, Selective versus total insulin resistance: a pathogenic paradox. Cell Metab, 2008. 7(2): p. 95-6. 22. Trajkovski, M., et al., MicroRNAs 103 and 107 regulate insulin sensitivity. Nature, 2011. 474(7353): p. 649-53. 23. Wang, X.C., et al., MicroRNA-185 regulates expression of lipid metabolism genes and improves insulin sensitivity in mice with non-alcoholic fatty liver disease. World J Gastroenterol, 2014. 20(47): p. 17914-23. 24. Cotney, J.L. and J.P. Noonan, Chromatin immunoprecipitation with fixed animal tissues and preparation for high-throughput sequencing. Cold Spring Harb Protoc, 2015. 2015(4): p. 419. 25. Tan, X., et al., cAMP response element-binding protein promotes gliomagenesis by modulating the expression of oncogenic microRNA-23a. Proc Natl Acad Sci U S A, 2012. 109(39): p. 15805-10. 26. Zhang, W., et al., Rhythmic expression of miR-27b-3p targets the clock gene Bmal1 at the posttranscriptional level in the mouse liver. FASEB J, 2016. 30(6): p. 2151-60. 27. Cerec, V., et al., Transdifferentiation of hepatocyte-like cells from the human hepatoma HepaRG cell line through bipotent progenitor. Hepatology, 2007. 45(4): p. 957-67. 28. Ulitsky, I., L.C. Laurent, and R. Shamir, Towards computational prediction of microRNA function and activity. Nucleic Acids Res, 2010. 38(15): p. e160. 29. Koo, S.H., et al., The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature, 2005. 437(7062): p. 1109-11. 30. Woo, S.L., et al., Metformin ameliorates hepatic steatosis and inflammation without altering adipose phenotype in diet-induced obesity. PLoS One, 2014. 9(3): p. e91111. 31. He, L., et al., Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein. Cell, 2009. 137(4): p. 635-46. 32. DeRan, M., et al., Energy stress regulates hippo-YAP signaling involving AMPK-mediated regulation of angiomotin-like 1 protein. Cell Rep, 2014. 9(2): p. 495-503. 33. Wang, J., et al., Mutual interaction between YAP and CREB promotes tumorigenesis in liver cancer. Hepatology, 2013. 58(3): p. 1011-20. 34. Zhang, M., et al., MicroRNA-27a regulates hepatic lipid metabolism and alleviates NAFLD via repressing FAS and SCD1. Sci Rep, 2017. 7(1): p. 14493. 35. Fu, X., et al., MicroRNA-26a regulates insulin sensitivity and metabolism of glucose and lipids. J Clin Invest, 2015. 125(6): p. 2497-509. 36. Ramirez, C.M., et al., MicroRNA 33 regulates glucose metabolism. Mol Cell Biol, 2013. 33(15): p. 2891-902. 37. Kornfeld, J.W., et al., Obesity-induced overexpression of miR-802 impairs glucose metabolism through silencing of Hnf1b. Nature, 2013. 494(7435): p. 111-5. 38. Madison, L.L., Role of insulin in the hepatic handling of glucose. Arch Intern Med, 1969. 123(3): p. 284-92. 39. Exton, J.H., et al., The hormonal control of hepatic gluconeogenesis. Recent Prog Horm Res, 1970. 26: p. 411-61. 40. Welsh, G.I. and C.G. Proud, Glycogen synthase kinase-3 is rapidly inactivated in response to insulin and phosphorylates eukaryotic initiation factor eIF-2B. Biochem J, 1993. 294 ( Pt 3): p. 625-9. 41. Jung, K.H., et al., MicroRNA Regulates Hepatocytic Differentiation of Progenitor Cells by Targeting YAP1. Stem Cells, 2016. 34(5): p. 1284-96. 42. Salzman, D.W., et al., miR-34 activity is modulated through 5'-end phosphorylation in response to DNA damage. Nat Commun, 2016. 7: p. 10954. 43. Rissland, O.S., S.J. Hong, and D.P. Bartel, MicroRNA destabilization enables dynamic regulation of the miR-16 family in response to cell-cycle changes. Mol Cell, 2011. 43(6): p. 993-1004. 44. Erion, D.M., et al., Prevention of hepatic steatosis and hepatic insulin resistance by knockdown of cAMP response element-binding protein. Cell Metab, 2009. 10(6): p. 499-506. 45. Wiernsperger, N.F. and C.J. Bailey, The antihyperglycaemic effect of metformin: therapeutic and cellular mechanisms. Drugs, 1999. 58 Suppl 1: p. 31-9; discussion 75-82. 46. Hundal, R.S., et al., Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes, 2000. 49(12): p. 2063-9. 47. Qi, L., et al., Adipocyte CREB promotes insulin resistance in obesity. Cell Metab, 2009. 9(3): p. 277-86. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77520 | - |
| dc.description.abstract | 肝臟的代謝變化或在肝臟日夜週期中可以維持能量的恆定。在調控肝臟代謝變化的基因中,微RNA (microRNA)為主要且能調節許多代謝反應。先前的研究指出miR-27對肝臟脂質合成 (lipogenesis) 是重要的,且肝臟脂質合成對於日夜週期扮演重要的角色。而胰島素訊息傳遞 (Insulin/Akt signaling)也是調控肝臟代謝的重要因子,因此我們假設miR-27可以參與胰島素訊息傳遞,我們首先在細胞實驗中觀察胰島素對miR-27的影響,利用人類肝前驅細胞株 (HepaRG cell line)加入胰島素,並且使其胰島素訊息傳遞活化,會有效抑制miR-27表現。接著,利用文獻搜尋和生物資訊網站分析,預測miR-27a可能抑制胰島素訊息傳遞的下游基因,包含Pdpk1、Pik3和磷酸化Akt。事實上,利用人類肝前驅細胞株和分離出的小鼠肝細胞 (primary mouse hepatocytes),透過轉染使其高度表現miR-27a,發現Pdpk1、Pik3ca和p-Akt表現量皆被抑制。之後利用螢光素酶報告分析方法(luciferase reporter assay)的結果,更進一步證實miR-27a可透過直接調控Pdpk1及Pik3r1的3’UTR促進其RNA之降解。為了更近一步找到胰島素調控miR-27的機制,我們搜尋文獻,發現CREB (cyclic AMP response element binding protein) 可以直接調控miR-23a~27a~24-2啟動子。在細胞及小鼠實驗中利用siRNA及Metformin兩種方式降低CREB表象,皆會抑制miR-27的表現。同時,當小鼠進行整夜禁食後或是高脂飲食餵食,使其肝臟高度表現CREB時,miR-27b會隨之顯著上升。我們進一步將禁食後之小鼠肝臟進行組織染色質免疫沈澱 (Tissue-ChIP),結果確認CREB可與miR-23a~27a~24-2啟動子上之CRE 位點直接且高度的結合。綜上,我們的結果發現胰島素可透過抑制CREB去抑制miR-27的表現,進而促進以Akt為主之胰島素訊息傳遞。 | zh_TW |
| dc.description.abstract | Metabolic signaling pathways in livers are mostly under circadian control to maintain energy homeostasis. Among genes involved in hepatic metabolism, microRNAs (miR) function as a master regulator and orchestrate multiple metabolic signaling pathways. Previous studies have shown that circadian expression of miR-27 in liver contributes to hepatic lipogenesis. Here we test the hypothesis that miR-27 participates in insulin/Akt signaling, which is a critical regulator of liver metabolism. First, cell culture experiments showed that miR-27 was significantly downregulated when HepaRG cells, a human liver progenitor cells, were treated with insulin and insulin/Akt signaling was activated. Secondly, literature searches and bioinformatics analysis predicted that miR-27 may target Pdpk1, Pik3ca, Pik3r1, and Pik3cd, all of which are critical activators of insulin/Akt signaling. Indeed, over-expression of miR-27a significantly suppressed Pdpk1, Pik3r1, and Akt phosphorylation in primary mouse hepatocytes and HepaRG cells. Luciferase reporter assay demonstrated that miR-27a directly targeted Pdpk1 and Pik3r1 3’UTR. Next, we investigated the possible mechanism by which insulin regulates miR-27. Previous study showed that cyclic AMP-responsive element binding protein (CREB) transcriptionally regulated miR-23a~27a~24-2 cluster. Indeed, our data showed that both siRNA- and metformin-mediated silencing of CREB significantly decreased miR-27 expression in HepaRG cells and mice. Also, our animal studies showed that miR-27b is significantly increased when CREB is induced in mice livers by either overnight fast or high-fat-diet feeding. Furthermore, chromosome immunoprecipitation of fasted/non-fasted liver extract using CREB antibody determined that CREB directly binds to their previously verified CRE sites on the promoter area of miR-23a~27a~24-2 cluster. More experiments are required to determine the role of miR-27 in physiology homeostasis. Taken together, we concluded that insulin may negatively regulated miR-27 through inhibition of CREB and this insulin-mediated miR-27 suppression may promote insulin-induced Akt signaling in livers. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T22:06:43Z (GMT). No. of bitstreams: 1 ntu-107-R04446009-1.pdf: 1978803 bytes, checksum: d8fe9e261e3ed94ae740f65d57bd58c0 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 誌謝(Acknowledgment) i
中文摘要 ii Abstracts iii Contents v List of Figure vii List of Tables viii Chapter 1 Introduction 1 1.1 MicroRNA biogenesis 1 1.2 The biological functions of miR-27 2 1.3 Insulin/PIK3/Akt signaling pathway 3 1.4 Nonalcoholic fatty liver disease (NAFLD) 4 Chapter 2 Material and methods 5 2.1 Animal 5 2.2 Cell culture experiments 5 2.3 Isolation and culture of mouse hepatocytes 6 2.4 RNA isolation and quantitative reverse transcriptase PCR (qRT-PCR) 6 2.5 Western blot analysis 7 2.6 Reporter plasmid and Luciferase Assays 7 2.7 Chromatin Immunoprecipitation analysis with fixed animal tissues 8 Chapter 3 Results 9 3.1 Insulin suppresses miR-27 in human differentiated hepatic cell line 9 3.2 miR-27 was predicted to regulate PIK3/AKT signaling 10 3.3 CREB transcriptionally regulates miR-27 expression 11 3.4 Metformin down-regulates miR-27 expressions via hippo signaling-mediated CREB degradation 12 3.5 Metformin restores aberrantly expression of miR-27 in diet-induced fatty liver 14 Chapter 4 Discussion 15 Chapter 5 Figures and Tables 19 Reference 35 | - |
| dc.language.iso | en | - |
| dc.subject | 微RNA | zh_TW |
| dc.subject | 胰島素訊息傳遞 | zh_TW |
| dc.subject | 肝臟代謝 | zh_TW |
| dc.subject | liver metabolism | en |
| dc.subject | microRNA | en |
| dc.subject | Insulin/Akt signaling | en |
| dc.title | MiR-27於肝臟中調控胰島素訊息傳遞所扮演的角色 | zh_TW |
| dc.title | The role of miR-27 in the regulation of insulin/Akt signaling in liver | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 106-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王淑慧;許弘明 | zh_TW |
| dc.contributor.oralexamcommittee | Shu-Huei Wang;Hong-Ming Hsu | en |
| dc.subject.keyword | 微RNA,胰島素訊息傳遞,肝臟代謝, | zh_TW |
| dc.subject.keyword | microRNA,Insulin/Akt signaling,liver metabolism, | en |
| dc.relation.page | 38 | - |
| dc.identifier.doi | 10.6342/NTU201803264 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2018-08-14 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 解剖學暨細胞生物學研究所 | - |
| 顯示於系所單位: | 解剖學暨細胞生物學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-2.pdf 未授權公開取用 | 1.93 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
