請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77512完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林敬哲 | zh_TW |
| dc.contributor.advisor | Jing-Jer Lin | en |
| dc.contributor.author | 李敏暄 | zh_TW |
| dc.contributor.author | Min-Hsuan Li | en |
| dc.date.accessioned | 2021-07-10T22:06:17Z | - |
| dc.date.available | 2024-02-28 | - |
| dc.date.copyright | 2018-10-09 | - |
| dc.date.issued | 2018 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | Reference
Bochman, M.L., Sabouri, N., and Zakian, V.A. (2010). Unwinding the functions of the Pif1 family helicases. DNA Repair (Amst) 9, 237-249. Boule, J.B., Vega, L.R., and Zakian, V.A. (2005). The yeast Pif1p helicase removes telomerase from telomeric DNA. Nature 438, 57-61. Budd, M.E., Reis, C.C., Smith, S., Myung, K., and Campbell, J.L. (2006). Evidence suggesting that Pif1 helicase functions in DNA replication with the Dna2 helicase/nuclease and DNA polymerase delta. Mol Cell Biol 26, 2490-2500. Chen, Y.F., Lu, C.Y., Lin, Y.C., Yu, T.Y., Chang, C.P., Li, J.R., Li, H.W., and Lin, J.J. (2016). Modulation of yeast telomerase activity by Cdc13 and Est1 in vitro. Sci Rep 6, 34104. Dandjinou, A.T., Levesque, N., Larose, S., Lucier, J.F., Abou Elela, S., and Wellinger, R.J. (2004). A phylogenetically based secondary structure for the yeast telomerase RNA. Curr Biol 14, 1148-1158. Eugster, A., Lanzuolo, C., Bonneton, M., Luciano, P., Pollice, A., Pulitzer, J.F., Stegberg, E., Berthiau, A.S., Forstemann, K., Corda, Y., et al. (2006). The finger subdomain of yeast telomerase cooperates with Pif1p to limit telomere elongation. Nat Struct Mol Biol 13, 734-739. Foury, F., and Kolodynski, J. (1983). pif mutation blocks recombination between mitochondrial rho+ and rho- genomes having tandemly arrayed repeat units in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 80, 5345-5349. Gal, J., Schnell, R., Szekeres, S., and Kalman, M. (1999). Directional cloning of native PCR products with preformed sticky ends (autosticky PCR). Mol Gen Genet 260, 569-573. Galletto, R., and Tomko, E.J. (2013). Translocation of Saccharomyces cerevisiae Pif1 helicase monomers on single-stranded DNA. Nucleic Acids Res 41, 4613-4627. Gao, H., Cervantes, R.B., Mandell, E.K., Otero, J.H., and Lundblad, V. (2007). RPA-like proteins mediate yeast telomere function. Nat Struct Mol Biol 14, 208-214. Garvik, B., Carson, M., and Hartwell, L. (1995). Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint. Mol Cell Biol 15, 6128-6138. Grandin, N., Damon, C., and Charbonneau, M. (2001). Ten1 functions in telomere end protection and length regulation in association with Stn1 and Cdc13. EMBO J 20, 1173-1183. Grandin, N., Reed, S.I., and Charbonneau, M. (1997). Stn1, a new Saccharomyces cerevisiae protein, is implicated in telomere size regulation in association with Cdc13. Genes Dev 11, 512-527. Hughes, T.R., Evans, S.K., Weilbaecher, R.G., and Lundblad, V. (2000a). The Est3 protein is a subunit of yeast telomerase. Curr Biol 10, 809-812. Hughes, T.R., Weilbaecher, R.G., Walterscheid, M., and Lundblad, V. (2000b). Identification of the single-strand telomeric DNA binding domain of the Saccharomyces cerevisiae Cdc13 protein. Proc Natl Acad Sci U S A 97, 6457-6462. Jorgensen, P., Edgington, N.P., Schneider, B.L., Rupes, I., Tyers, M., and Futcher, B. (2007). The size of the nucleus increases as yeast cells grow. Mol Biol Cell 18, 3523-3532. Kulak, N.A., Pichler, G., Paron, I., Nagaraj, N., and Mann, M. (2014). Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells. Nat Methods 11, 319-324. Lahaye, A., Stahl, H., Thines-Sempoux, D., and Foury, F. (1991). PIF1: a DNA helicase in yeast mitochondria. EMBO J 10, 997-1007. Lendvay, T.S., Morris, D.K., Sah, J., Balasubramanian, B., and Lundblad, V. (1996). Senescence mutants of Saccharomyces cerevisiae with a defect in telomere replication identify three additional EST genes. Genetics 144, 1399-1412. Li, J.R., Yu, T.Y., Chien, I.C., Lu, C.Y., Lin, J.J., and Li, H.W. (2014). Pif1 regulates telomere length by preferentially removing telomerase from long telomere ends. Nucleic Acids Res 42, 8527-8536. Li, S., Makovets, S., Matsuguchi, T., Blethrow, J.D., Shokat, K.M., and Blackburn, E.H. (2009). Cdk1-dependent phosphorylation of Cdc13 coordinates telomere elongation during cell-cycle progression. Cell 136, 50-61. Lin, J.J., and Zakian, V.A. (1996). The Saccharomyces CDC13 protein is a single-strand TG1-3 telomeric DNA-binding protein in vitro that affects telomere behavior in vivo. Proc Natl Acad Sci U S A 93, 13760-13765. Makovets, S., and Blackburn, E.H. (2009). DNA damage signalling prevents deleterious telomere addition at DNA breaks. Nat Cell Biol 11, 1383-1386. Marcand, S., Brevet, V., Mann, C., and Gilson, E. (2000). Cell cycle restriction of telomere elongation. Curr Biol 10, 487-490. McClintock, B. (1941). The Stability of Broken Ends of Chromosomes in Zea Mays. Genetics 26, 234-282. Myung, K., Chen, C., and Kolodner, R.D. (2001). Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae. Nature 411, 1073-1076. Nugent, C.I., Hughes, T.R., Lue, N.F., and Lundblad, V. (1996). Cdc13p: a single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance. Science 274, 249-252. Olovnikov, A.M. (1973). A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol 41, 181-190. Phillips, J.A., Chan, A., Paeschke, K., and Zakian, V.A. (2015). The pif1 helicase, a negative regulator of telomerase, acts preferentially at long telomeres. PLoS Genet 11, e1005186. Powell, C.D., Quain, D.E., and Smart, K.A. (2003). Chitin scar breaks in aged Saccharomyces cerevisiae. Microbiology 149, 3129-3137. Price, C.M., Boltz, K.A., Chaiken, M.F., Stewart, J.A., Beilstein, M.A., and Shippen, D.E. (2010). Evolution of CST function in telomere maintenance. Cell Cycle 9, 3157-3165. Puglisi, A., Bianchi, A., Lemmens, L., Damay, P., and Shore, D. (2008). Distinct roles for yeast Stn1 in telomere capping and telomerase inhibition. EMBO J 27, 2328-2339. Qi, H., and Zakian, V.A. (2000). The Saccharomyces telomere-binding protein Cdc13p interacts with both the catalytic subunit of DNA polymerase alpha and the telomerase-associated est1 protein. Genes Dev 14, 1777-1788. Ramanagoudr-Bhojappa, R., Chib, S., Byrd, A.K., Aarattuthodiyil, S., Pandey, M., Patel, S.S., and Raney, K.D. (2013). Yeast Pif1 helicase exhibits a one-base-pair stepping mechanism for unwinding duplex DNA. J Biol Chem 288, 16185-16195. Schulz, V.P., and Zakian, V.A. (1994). The saccharomyces PIF1 DNA helicase inhibits telomere elongation and de novo telomere formation. Cell 76, 145-155. Shampay, J., Szostak, J.W., and Blackburn, E.H. (1984). DNA sequences of telomeres maintained in yeast. Nature 310, 154-157. Smith, J.R., and Pereira-Smith, O.M. (1996). Replicative senescence: implications for in vivo aging and tumor suppression. Science 273, 63-67. Sun, J., Yang, Y., Wan, K., Mao, N., Yu, T.Y., Lin, Y.C., DeZwaan, D.C., Freeman, B.C., Lin, J.J., Lue, N.F., et al. (2011). Structural bases of dimerization of yeast telomere protein Cdc13 and its interaction with the catalytic subunit of DNA polymerase alpha. Cell Res 21, 258-274. Taggart, A.K., Teng, S.C., and Zakian, V.A. (2002). Est1p as a cell cycle-regulated activator of telomere-bound telomerase. Science 297, 1023-1026. Teixeira, M.T., Arneric, M., Sperisen, P., and Lingner, J. (2004). Telomere length homeostasis is achieved via a switch between telomerase- extendible and -nonextendible states. Cell 117, 323-335. Tseng, S.F., Lin, J.J., and Teng, S.C. (2006). The telomerase-recruitment domain of the telomere binding protein Cdc13 is regulated by Mec1p/Tel1p-dependent phosphorylation. Nucleic Acids Res 34, 6327-6336. Vega, L.R., Phillips, J.A., Thornton, B.R., Benanti, J.A., Onigbanjo, M.T., Toczyski, D.P., and Zakian, V.A. (2007). Sensitivity of yeast strains with long G-tails to levels of telomere-bound telomerase. PLoS Genet 3, e105. Wellinger, R.J., and Zakian, V.A. (2012). Everything you ever wanted to know about Saccharomyces cerevisiae telomeres: beginning to end. Genetics 191, 1073-1105. Woldringh, C.L., Huls, P.G., and Vischer, N.O. (1993). Volume growth of daughter and parent cells during the cell cycle of Saccharomyces cerevisiae a/alpha as determined by image cytometry. J Bacteriol 175, 3174-3181. Wu, Y., and Zakian, V.A. (2011). The telomeric Cdc13 protein interacts directly with the telomerase subunit Est1 to bring it to telomeric DNA ends in vitro. Proc Natl Acad Sci U S A 108, 20362-20369. Zakian, V.A. (1995). Telomeres: beginning to understand the end. Science 270, 1601-1607. Zappulla, D.C., and Cech, T.R. (2004). Yeast telomerase RNA: a flexible scaffold for protein subunits. Proc Natl Acad Sci U S A 101, 10024-10029. Zhou, J., Monson, E.K., Teng, S.C., Schulz, V.P., and Zakian, V.A. (2000). Pif1p helicase, a catalytic inhibitor of telomerase in yeast. Science 289, 771-774. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77512 | - |
| dc.description.abstract | 端粒為含有較高比例鳥糞嘌呤的重複性序列,位於染色體的末端能幫助維持染色體的穩定性。端粒酶為一種核糖核蛋白(ribonucleoprotein),可以在在端粒的末端進行延長以維持端粒的長度。調節端粒酶活性的主要機制之一是通過端粒相關蛋白(telomere-associated proteins)之間的相互作用,進而去影響端粒酶在端粒上的可及性(accessibility)。在本篇研究中,分析了兩種端粒相關蛋白Pif1和Cdc13在端粒酶活性中的作用。Cdc13為單股端粒序列的結合蛋白,Cdc13與單股端粒的結合會抑制端粒酶的活性。通過與端粒酶相關蛋白Est1的相互作用,端粒酶活性受到Cdc13抑制的現象可以獲得緩解,因此得知Cdc13與端粒末端的結合在調節端粒酶活性中扮演相當重要的角色。Pif1為5’到3’的解螺旋酶,能將端粒酶從端粒上移除導致端粒酶活性受到抑制。Cdc13和Pif1都參與調控端粒酶活性,然而這兩種蛋白質如何在端粒上協調彼此在調控端粒酶活性上的功能目前仍尚不清楚。為解決這個問題,我們利用凝膠電泳分析(electrophoretic-mobility shift assay, EMSA)以及單分子栓球實驗(single-molecule tether particle motion, TPM)兩種in vitro系統。我們成功地利用大腸桿菌系統以及sf21昆蟲細胞系統分別純化出Cdc13重組蛋白和Pif1重組蛋白。結果顯示Pif1能夠移除位於單股端粒序列上Cdc13,且Pif1移除Cdc13的活性需要ATP和解旋酶活性。此結果不僅與Pif1解旋酶擁有轉位酶活性(translocase activity)的概念一致,也提出了Pif1有助於Cdc13置換的可能,進一步提供了一個新的調節端粒酶活性的機制。 | zh_TW |
| dc.description.abstract | Telomeres are G-rich repetitive sequences that cap the ends of chromosomes and help to maintain chromosomal integrity. Telomerase is a ribonucleoprotein that synthesizes telomeric repeats to help maintaining the length of telomeres. Controlling the accessibility of telomerase to telomeres by the interaction of telomere-associated proteins is one of the primary regulatory mechanism of telomerase activity. In this study, the roles of two telomere-associated proteins, Pif1 and Cdc13, in telomerase activity is analyzed. Cdc13 is a single-stranded telomeric DNA binding protein. Binding of Cdc13 to telomeric DNA inhibits telomerase activity. Through the interaction with Est1, a telomerase associated protein, the telomerase inhibitory activity can be rescued. Therefore, binding of Cdc13 onto telomere end plays an important role in regulating telomerase activity. Pif1 is a ATP-dependent 5’ to 3’ helicase. It also removes telomerase from telomere to inhibit telomerase activity. Both Cdc13 and Pif1 are involved in regulating telomerase activity, however, it is not clear how these two proteins coordinate their function on telomeres. Here I used both electrophoretic-mobility shift assay (EMSA) and single-molecule tether particle motion (TPM) systems to address this question in vitro. Recombinant Cdc13 and Pif1 were expressed and isolated from sf21 insect cells and E. coli, respectively. I found Pif1 is capable of removing Cdc13 from telomeric DNA. The Cdc13-removing activity of Pif1 requires both ATP and helicase activity. The results are consistent with a general notion that a Pif1 helicase also processes translocase activity. Moreover, the results suggest that Pif1 might contribute to Cdc13 displacement to further regulate telomerase activity. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T22:06:17Z (GMT). No. of bitstreams: 1 ntu-107-R05442014-1.pdf: 2475043 bytes, checksum: 1ab9cab7b54367a75687d8e9836dae72 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員審訂書
謝辭 i 中文摘要 ii Abstract iii Contents v List of Tables vi List of Figures vi Introduction 1 Materials and Methods 9 Results 30 Discussion 40 Reference 46 Tables 51 Figures 54 | - |
| dc.language.iso | en | - |
| dc.subject | 端粒 | zh_TW |
| dc.subject | 端粒結合蛋白 | zh_TW |
| dc.subject | 端粒?活性調控 | zh_TW |
| dc.subject | telomerase activity | en |
| dc.subject | telomere | en |
| dc.subject | telomere-associated protein | en |
| dc.subject | Cdc13 | en |
| dc.subject | Pif1 | en |
| dc.title | 探討端粒結合蛋白Pif1和Cdc13的交互作用及在端粒酶活性調控上扮演的角色 | zh_TW |
| dc.title | Investigating the regulation of telomerase activity by telomere-associated proteins, Pif1 and Cdc13 in vitro | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 106-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 鄧述諄;冀宏源 | zh_TW |
| dc.contributor.oralexamcommittee | ;; | en |
| dc.subject.keyword | 端粒,端粒結合蛋白,端粒?活性調控, | zh_TW |
| dc.subject.keyword | telomere,telomere-associated protein,Cdc13,Pif1,telomerase activity, | en |
| dc.relation.page | 64 | - |
| dc.identifier.doi | 10.6342/NTU201803440 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2018-08-15 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | - |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-2.pdf 未授權公開取用 | 2.42 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
