Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77510
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖尉斯
dc.contributor.authorTing-Wei Changen
dc.contributor.author張庭瑋zh_TW
dc.date.accessioned2021-07-10T22:06:11Z-
dc.date.available2021-07-10T22:06:11Z-
dc.date.copyright2018-08-23
dc.date.issued2018
dc.date.submitted2018-08-15
dc.identifier.citation1. Khan, I.; Saeed, K.; Khan, I., Nanoparticles: Properties, applications and    toxicities. Arab. J. Chem. 2017.
2. Austin, L. A.; Mackey, M. A.; Dreaden, E. C.; El-Sayed, M. A., The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery. Arch. Toxicol. 2014, 88 (7), 1391-1417.
3. Huang, X.; Jain, P. K.; EI-Sayed, I. H.; El-Sayed, M. A.., Determination of the Minimum Temperature Required for Selective Photothermal Destruction of Cancer Cells with the Use of Immunotargeted Gold Nanoparticles. Photochem. Photobiol. 2006, 82 (2), 412-417.
4. Jacobs, H. O.; Whitesides, G. M., Submicrometer Patterning of Charge in Thin-Film Electrets. Science 2001, 291 (5509), 1763-1766.
5. Park, I.; Ko, S. H.; Pan, H.; Grigoropoulos, C. P.; Pisano, A. P.; J., Fréchet, J. M.; Lee, E. S.; Jeong, J. H., Nanoscale Patterning and Electronics on Flexible Substrate by Direct Nanoimprinting of Metallic Nanoparticles. Adv. Mater. 2008, 20 (3), 489-496.
6. Zheng, G.; Kaefer, K.; Mourdikoudis, S.; Polavarapu, L.; Vaz, B.; Cartmell, S. E.; Bouleghlimat, A.; Buurma, N. J.; Yate, L.; de Lera, Á. R.; Liz-Marzán, L. M.; Pastoriza-Santos, I.; Pérez-Juste, J., Palladium Nanoparticle-Loaded Cellulose Paper: A Highly Efficient, Robust, and Recyclable Self-Assembled Composite Catalytic System. J. Phys. Chem. Lett. 2015, 6 (2), 230-238.
7. Xiao, Q.; Sarina, S.; Jaatinen, E.; Jia, J.; Arnold, D. P.; Liu, H.; Zhu, H., Efficient photocatalytic Suzuki cross-coupling reactions on Au-Pd alloy nanoparticles under visible light irradiation. Green Chem. 2014, 16 (9), 4272-4285.
8. Tee, S. Y.; Teng, C. P.; Ye, E., Metal nanostructures for non-enzymatic glucose sensing. Mater. Sci. and Eng., C 2017, 70, 1018-1030.
9. Wadell, C.; Syrenova, S.; Langhammer, C., Plasmonic Hydrogen Sensing with Nanostructured Metal Hydrides. ACS Nano 2014, 8 (12), 11925-11940.
10. Stokes, D. L.; Vo-Dinh, T., Development of an integrated single-fiber SERS sensor. Sens. Actuators B Chem. 2000, 69 (1), 28-36.
11. Rae, S. I.; Khan, I., Surface enhanced Raman spectroscopy (SERS) sensors for gas analysis. Analyst 2010, 135 (6), 1365-1369.
12. Fleischmann, M.; Hendra, P. J.; McQuillan, A. J., Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26 (2), 163-166.
13. Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Itzkan, I.; Dasari, R. R.; Feld, M. S., Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS). Phys. Rev. Lett. 1997, 78 (9), 1667-1670.
14. Le Ru, E. C.; Blackie, E.; Meyer, M.; Etchegoin, P. G., Surface Enhanced Raman Scattering Enhancement Factors:  A Comprehensive Study. J. Phys. Chem. C 2007, 111 (37), 13794-13803.
15. Kontoyannis, C. G.; Bouropoulos, N. C.; Koutsoukos, P. G., Raman spectroscopy: A tool for the quantitative analysis of mineral components of solid mixtures. The case of calcium oxalate monohydrate and hydroxyapatite. Vib. Spectrosc. 1997, 15 (1), 53-60.
16. Owyoung, A., Sensitivity limitations for CW stimulated Raman spectroscopy. Opt. Commun. 1977, 22 (3), 323-328.
17. Le Ru, E. C.; Meyer, M.; Etchegoin, P. G., Proof of Single-Molecule Sensitivity in Surface Enhanced Raman Scattering (SERS) by Means of a Two-Analyte Technique. J. Phys. Chem. B 2006, 110 (4), 1944-1948.
18. Nie, S.; Emory, S. R., Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science 1997, 275 (5303), 1102-1106.
19. Xu, Z.; Jiang, J.; Wang, X.; Han, K.; Ameen, A.; Khan, I.; Chang, T.-W.; Liu, G. L., Large-area, uniform and low-cost dual-mode plasmonic naked-eye colorimetry and SERS sensor with handheld Raman spectrometer. Nanoscale 2016, 8 (11), 6162-6172.
20. Yang, J.; Palla, M.; Bosco, F. G.; Rindzevicius, T.; Alstrøm, T. S.; Schmidt, M. S.; Boisen, A.; Ju, J.; Lin, Q., Surface-enhanced Raman spectroscopy based quantitative bioassay on aptamer-functionalized nanopillars using large-area Raman mapping. ACS Nano 2013, 7 (6), 5350-5359.
21. Pallaoro, A.; Hoonejani, M. R.; Braun, G. B.; Meinhart, C. D.; Moskovits, M., Rapid identification by surface-enhanced Raman spectroscopy of cancer cells at low concentrations flowing in a microfluidic channel. ACS Nano 2015, 9 (4), 4328-4336.
22. Yamamoto, Y. S.; Ozaki, Y.; Itoh, T., Recent progress and frontiers in the electromagnetic mechanism of surface-enhanced Raman scattering. J. Photochem. Photobiol. C: Photochem. Rev. 2014, 21, 81-104.
23. Sebastian, S., Surface‐Enhanced Raman Spectroscopy: Concepts and Chemical Applications. Angew. Chem. Int. Ed. 2014, 53 (19), 4756-4795.
24. Israelsen, N. D.; Hanson, C.; Vargis, E., Nanoparticle Properties and Synthesis Effects on Surface-Enhanced Raman Scattering Enhancement Factor: An Introduction. ScientificWorldJournal 2015, 2015, 12.
25. Alonso-González, P.; Albella, P.; Schnell, M.; Chen, J.; Huth, F.; García-Etxarri, A.; Casanova, F.; Golmar, F.; Arzubiaga, L.; Hueso, L., Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots. Nat. Commun. 2012, 3, 684.
26. Hutter, E.; Fendler, J. H., Exploitation of localized surface plasmon resonance. Adv. Mater. 2004, 16 (19), 1685-1706.
27. Xu, H.; Aizpurua, J.; Käll, M.; Apell, P., Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Physi. Rev. E 2000, 62 (3), 4318-4324.
28. Zeman, E. J.; Schatz, G. C., An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium. J. Phys. Chem. 1987, 91 (3), 634-643.
29. Tian, Z.-Q.; Ren, B.; Wu, D.-Y., Surface-Enhanced Raman Scattering:  From Noble to Transition Metals and from Rough Surfaces to Ordered Nanostructures. J. Phys. Chem. B 2002, 106 (37), 9463-9483.
30. Wu, D.-Y.; Liu, X.-M.; Duan, S.; Xu, X.; Ren, B.; Lin, S.-H.; Tian, Z.-Q., Chemical Enhancement Effects in SERS Spectra:  A Quantum Chemical Study of Pyridine Interacting with Copper, Silver, Gold and Platinum Metals. J. Phys. Chem. C 2008, 112 (11), 4195-4204.
31. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C., The Optical Properties of Metal Nanoparticles:  The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B 2003, 107 (3), 668-677.
32. Braun, G.; Pavel, I.; Morrill, A. R.; Seferos, D. S.; Bazan, G. C.; Reich, N. O.; Moskovits, M., Chemically Patterned Microspheres for Controlled Nanoparticle Assembly in the Construction of SERS Hot Spots. J. Am. Chem. Soc. 2007, 129 (25), 7760-7761.
33. Braun, G. B.; Lee, S. J.; Laurence, T.; Fera, N.; Fabris, L.; Bazan, G. C.; Moskovits, M.; Reich, N. O., Generalized Approach to SERS-Active Nanomaterials via Controlled Nanoparticle Linking, Polymer Encapsulation, and Small-Molecule Infusion. J. Phys. Chem. C 2009, 113 (31), 13622-13629.
34. Bui, M.-P. N.; Lee, S.; Han, K. N.; Pham, X.-H.; Li, C. A.; Choo, J.; Seong, G. H., Electrochemical patterning of gold nanoparticles on transparent single-walled carbon nanotube films. Chem. Comm. 2009, (37), 5549-5551.
35. Kahl, M.; Voges, E.; Kostrewa, S.; Viets, C.; Hill, W., Periodically structured metallic substrates for SERS. Sens. Actuators B Chem. 1998, 51 (1), 285-291.
36. Haynes, C. L.; Van Duyne, R. P., Nanosphere Lithography:  A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics. J. Phys. Chem. B 2001, 105 (24), 5599-5611.
37. Biswas, A.; Bayer, I. S.; Biris, A. S.; Wang, T.; Dervishi, E.; Faupel, F., Advances in top–down and bottom–up surface nanofabrication: Techniques, applications & future prospects. Adv. Colloid Interface Sci. 2012, 170 (1), 2-27.
38. Wang, W.; Jiang, Y.; Liao, Y.; Tian, M.; Zou, H.; Zhang, L., Fabrication of silver-coated silica microspheres through mussel-inspired surface functionalization. J. Colloid Interface Sci. 2011, 358 (2), 567-574.
39. Lu, Y.; Mei, Y.; Schrinner, M.; Ballauff, M.; Möller, M. W.; Breu, J., In situ formation of Ag nanoparticles in spherical polyacrylic acid brushes by UV irradiation. J. Phys. Chem. C 2007, 111 (21), 7676-7681.
40. Guo, Q.; Ghadiri, R.; Weigel, T.; Aumann, A.; Gurevich, E. L.; Esen, C.; Medenbach, O.; Cheng, W.; Chichkov, B.; Ostendorf, A., Comparison of in situ and ex situ methods for synthesis of two-photon polymerization polymer nanocomposites. Polymers 2014, 6 (7), 2037-2050.
41. Zhai, W.-L.; Li, D.-W.; Qu, L.-L.; Fossey, J. S.; Long, Y.-T., Multiple depositions of Ag nanoparticles on chemically modified agarose films for surface-enhanced Raman spectroscopy. Nanoscale 2012, 4 (1), 137-142.
42. Choma, J.; Dziura, A.; Jamioła, D.; Nyga, P.; Jaroniec, M., Preparation and properties of silica–gold core–shell particles. Colloids Surf. A Physicochem. Eng. Asp. 2011, 373 (1), 167-171.
43. Zhao, K.; Zhao, J.; Wu, C.; Zhang, S.; Deng, Z.; Hu, X.; Chen, M.; Peng, B., Fabrication of silver-decorated sulfonated polystyrene microspheres for surface-enhanced Raman scattering and antibacterial applications. RSC Adv. 2015, 5 (85), 69543-69554.
44. Pham, X.-H.; Hahm, E.; Kim, H.-M.; Shim, S.; Kim, T.; Jeong, D.; Lee, Y.-S.; Jun, B.-H., Silver Nanoparticle-Embedded Thin Silica-Coated Graphene Oxide as an SERS Substrate. Nanomaterials 2016, 6 (10), 176.
45. Tsoutsi, D.; Montenegro, J. M.; Dommershausen, F.; Koert, U.; Liz-Marzán, L. M.; Parak, W. J.; Alvarez-Puebla, R. A., Quantitative Surface-Enhanced Raman Scattering Ultradetection of Atomic Inorganic Ions: The Case of Chloride. ACS Nano 2011, 5 (9), 7539-7546.
46. Decher, G., Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites. Science 1997, 277 (5330), 1232-1237.
47. Polte, J., Fundamental growth principles of colloidal metal nanoparticles - a new perspective. CrystEngComm 2015, 17 (36), 6809-6830.
48. Svirachev, D.; Tabaliov, N., Plasma treatment of polymer surfaces in different gases. Bulg. J. Phys. 2005, 32 (1), 22-23.
49. Siow, K. S.; Britcher, L.; Kumar, S.; Griesser, H. J., Plasma methods for the generation of chemically reactive surfaces for biomolecule immobilization and cell colonization‐a review. Plasma Process. Polym. 2006, 3 (6‐7), 392-418.
50. Slepička, P.; Kasálková, N. S.; Stránská, E.; Bačáková, L.; Švorčík, V., Surface characterization of plasma treated polymers for applications as biocompatible carriers. Express Polym. Lett. 2013, 7 (6), 535-545.
51. Deegan, R. D.; Bakajin, O.; Dupont, T. F.; Huber, G.; Nagel, S. R.; Witten, T. A., Capillary flow as the cause of ring stains from dried liquid drops. Nature 1997, 389 (6653), 827-829.
52. Deegan, R. D., Pattern formation in drying drops. Phys. Rev. E 2000, 61 (1), 475.
53. Liao, W.-S.; Chen, X.; Chen, J.; Cremer, P. S., Templating water stains for nanolithography. Nano Lett. 2007, 7 (8), 2452-2458.
54. Enoch, K.; Younan, X.; Xiao‐Mei, Z.; M., W. G., Solvent‐assisted microcontact molding: A convenient method for fabricating three‐dimensional structures on surfaces of polymers. Adv. Mater. 1997, 9 (8), 651-654.
55. Fu, C. Y.; Kho, K. W.; Wenda, D. G.; Olivo, M. In Development of Au/Ag substrate with alternating nanosphere array for SERS-based biosensing, European Conference on Biomedical Optics 2011, p. 80900B.
56. Wang, H. H.; Liu, C. Y.; Wu, S. B.; Liu, N. W.; Peng, C. Y.; Chan, T. H.; Hsu, C. F.; Wang, J. K.; Wang, Y. L., Highly raman‐enhancing substrates based on silver nanoparticle arrays with tunable sub‐10 nm gaps. Adv. Mater. 2006, 18 (4), 491-495.
57. Gunnarsson, L.; Bjerneld, E.; Xu, H.; Petronis, S.; Kasemo, B.; Käll, M., Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering. Appl. Phys. Lett. 2001, 78 (6), 802-804.
58. Im, H.; Bantz, K. C.; Lee, S. H.; Johnson, T. W.; Haynes, C. L.; Oh, S. H., Self‐Assembled Plasmonic Nanoring Cavity Arrays for SERS and LSPR Biosensing. Adv. Mater. 2013, 25 (19), 2678-2685.
59. Liu, Y.-J.; Zhang, Z.-Y.; Zhao, Q.; Zhao, Y.-P., Revisiting the separation dependent surface enhanced Raman scattering. Appl. Phys. Lett. 2008, 93 (17), 173106-3.
60. McMahon, J. M.; Gray, S. K.; Schatz, G. C., Fundamental behavior of electric field enhancements in the gaps between closely spaced nanostructures. Phys. Rev. B 2011, 83 (11), 115428.
61. Michaels, A. M.; Nirmal, M.; Brus, L. E., Surface Enhanced Raman Spectroscopy of Individual Rhodamine 6G Molecules on Large Ag Nanocrystals. J. Am. Chem. Soc. 1999, 121 (43), 9932-9939.
62. Zhao, J.; Jensen, L.; Sung, J.; Zou, S.; Schatz, G. C.; Van Duyne, R. P., Interaction of Plasmon and Molecular Resonances for Rhodamine 6G Adsorbed on Silver Nanoparticles. J. Am. Chem. Soc. 2007, 129 (24), 7647-7656.
63. Denis, P.; Siliu, T.; Melek, E.; Henry, D.; Svetlana, S., In situ SERS study of Rhodamine 6G adsorbed on individually immobilized Ag nanoparticles. J. Raman Spectrosc. 2006, 37 (7), 762-770.
64. Watanabe, H.; Hayazawa, N.; Inouye, Y.; Kawata, S., DFT Vibrational Calculations of Rhodamine 6G Adsorbed on Silver:  Analysis of Tip-Enhanced Raman Spectroscopy. J. Phys. Chem. B 2005, 109 (11), 5012-5020.
65. Jasse, B.; Chao, R. S.; Koenig, J. L., Laser Raman scattering in uniaxially oriented atactic polystyrene. J. Polym. Sci. Polym. Phys. Ed. 1978, 16 (12), 2157-2169.
66. Deng, S.; Fan, H. M.; Zhang, X.; Loh, K. P.; Cheng, C. L.; Sow, C. H.; Foo, Y. L., An effective surface-enhanced Raman scattering template based on a Ag nanocluster–ZnO nanowire array. Nanotechnology 2009, 20 (17), 175705.
67. Yaw, F. C.; Wei, K. K.; S., D. U.; Yu, K. Z.; Olivo, M., Enhancement in SERS intensity with hierarchical nanostructures by bimetallic deposition approach. J. Raman Spectrosc. 2012, 43 (8), 977-985.
68. Cheng, C.; Yan, B.; Wong, S. M.; Li, X.; Zhou, W.; Yu, T.; Shen, Z.; Yu, H.; Fan, H. J., Fabrication and SERS Performance of Silver-Nanoparticle-Decorated Si/ZnO Nanotrees in Ordered Arrays. ACS Appl. Mater. Interfaces 2010, 2 (7), 1824-1828.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77510-
dc.description.abstract斷鍵-成核-長晶法為一項操作方便、省時、步驟簡易之獨特技術,不需經由繁複的分子修飾過程,即可快速合成出大量且具高均勻度之金屬奈米粒子鑲嵌於大多數的高分子基材上。本項研究中,銀奈米粒子可藉由斷鍵-成核-長晶法以原位還原方式鑲嵌於聚苯乙烯球表面,製作出大面積分佈之銀奈米粒子於三維結構二維聚苯乙烯球陣列。本研究中所選用之聚苯乙烯球為合成奈米粒子之基材,先以溶劑自然揮發的方式自組裝排列於一基板上,形成大面積之六方最密堆積陣列後,再以氧氣電漿活化聚苯乙烯球表面,之後浸入前驅物硝酸銀溶液中,經加熱反應後即可合成大量且均勻分佈的銀奈米粒子於聚苯乙烯球表面。本實驗發現,在氧氣電漿活化時間為30 s、硝酸銀濃度為20 mM、加熱反應時間為90分鐘下,即可得到密度約1328 N/μm2及尺寸約18 nm的銀奈米粒子分佈於聚苯乙烯球表面。此外,這些修飾於聚苯乙烯球表面之銀奈米粒子亦可被作為晶種,經由還原劑添加的步驟,還原溶液中既有的銀離子堆積在原有的晶種上,以形成較大尺寸之奈米粒子。隨著調控硝酸銀濃度、還原劑檸檬酸鈉濃度以及加熱反應時間,便可有效地控制銀奈米粒子的尺寸及密度。在硝酸銀濃度為3 mM、檸檬酸鈉濃度為15 mM及加熱反應40 min實驗條件下,可得到尺寸約為120 nm之銀奈米粒子於三維結構二維聚苯乙烯球陣列,本研究中將此銀奈米粒子鑲嵌之聚苯乙烯球陣列應用於表面增強拉曼散射光譜,發現隨著不同尺寸及密度變化下,可得到一系列拉曼訊號增強變化的趨勢。接著在變化趨勢中找到能得到最大訊號增強效果的奈米結構,將其檢測極低濃度的R6G分子,經由本研究重新定義之增強因子(Enhancement factor, EF)修正公式計算出此奈米結構的正確EF值,可達到約為109倍之極高增強倍率。zh_TW
dc.description.abstractBreak-seed-growth process is a robust and facile method to fabricate highly uniform and numerous metal nanoparticles decorating on polymer surfaces without the need of complicated molecule modification. In this study, monodispersed silver nanoparticles are in situ synthesized and decorated on the surface of polystyrene spheres by this break-seed-growth process. Highly ordered sphere arrays are first self-assembled with a hexagonal close-packed arrangement over a large area on a supporting substrate. Through O2 plasma treatments, uniform and large amounts of silver seed nanoparticles embedded into the activated polystyrene surface are obtained without adding any reducing agent and stabilizing molecule. A density of 1328 N/μm2 and size of 18 nm Ag nanoparticles are obtained under the condition of 30 s of O2 plasma, 20 mM of AgNO3 concentration and 90 min of metal ion solution incubation time. After the formation of silver seeds, the nanoparticle size subsequently becomes larger by adding reducing agents in the particle growth stage. The size and density of silver nanoparticles can be controlled by altering experimental conditions in our fabrication method and a trend of surface enhanced Raman signal on this nanoparticle array is obtained. The structure giving the highest Raman signal enhancement was utilized to detect an extremely low concentration of Rhodamine 6G, and a superiorly high enhancement factor of about 109 is achieved.en
dc.description.provenanceMade available in DSpace on 2021-07-10T22:06:11Z (GMT). No. of bitstreams: 1
ntu-107-R05223176-1.pdf: 4696614 bytes, checksum: 89928ec889cb5339188ac8467187008c (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
目錄 v
圖目錄 viii
表目錄 xii
縮寫表 xiii
第一章 緒論 1
1.1 前言 1
1.2 SERS基本原理介紹. 2
1.3 SERS基材製備技術. 4
1.3.1 金屬奈米膠體粒子. 4
1.3.2 金屬奈米粒子固定在固體基板上. 7
1.3.2.1 由上而下製程技術 7
1.3.2.2 由下而上製程技術 11
1.3.2.4 斷鍵成核長晶法 15
第二章 實驗材料與方法 18
2.1 實驗藥品 18
2.2 實驗材料 19
2.3 實驗儀器 20
2.4 實驗步驟 21
2.4.1 高分子聚合物層製備 21
2.4.2 清洗聚苯乙烯球的懸浮液 22
2.4.3 製備聚苯乙烯球陣列 22
2.4.4 製備銀奈米粒子鑲嵌之聚苯乙烯球陣列 23
2.4.5 UV/Vis光譜儀分析鑑定 27
2.4.6 SERS光譜之應用 28
第三章 結果與討論 29
3.1 實驗流程 29
3.2 聚苯乙烯球懸浮液濃度、介面活性劑濃度與光阻劑濃度之探討 30
3.2.1 光阻劑濃度對於聚苯乙烯球陣列之影響探討 30
3.2.2 調控聚苯乙烯球懸浮液濃度對於聚苯乙烯球陣列之排列影響探討 32
3.2.3 介面活性劑QS-15濃度對於聚苯乙烯球陣列排列影響探討 33
3.3 前驅物濃度、氧氣電漿活化時間與加熱反應時間探討 35
3.3.1 氧氣電漿活化時間對於合成銀奈米粒子於基材表面之影響 36
3.3.2 硝酸銀濃度對於合成銀奈米粒子於基材表面之影響 39
3.3.3 加熱反應時間對於合成銀奈米粒子於基材表面之影響 42
3.4 還原劑與銀奈米粒子尺寸、密度變化之結果討論 44
3.4.1 不同濃度之硝酸銀對於合成的銀奈米粒子尺寸及密度之影響探討 44
3.4.2 不同濃度之檸檬酸鈉對於合成的銀奈米粒子尺寸及密度之影響探討 48
3.4.3 不同加熱反應時間對於合成的銀奈米粒子尺寸及密度之影響探討 50
3.4.4 聚苯乙烯球陣列及銀奈米粒子穩固性測試 52
3.5 奈米結構之性質鑑定 53
3.5.1 能量色散X光光譜儀分析 (Energy-Dispersive X-ray spectroscopy, EDS) 53
3.5.2 UV/Vis光譜儀分析 55
3.6 SERS之應用 56
3.6.1 不同濃度之硝酸銀得到的奈米結構應用於SERS之結果探討 56
3.6.2 不同濃度之檸檬酸鈉得到的奈米結構應用於SERS之結果探討 58
3.6.3 不同加熱反應時間得到的奈米結構應用於SERS之結果探討 60
3.6.4 對於R6G分子之偵測極限探討 62
3.6.5 增強因子 (Enhancement Factor, EF)公式計算 64
3.6.6 不同濃度之硝酸銀得到的奈米結構EF值比較 67
3.6.7 不同濃度之檸檬酸鈉得到的奈米結構EF值比較 69
3.6.8 不同加熱反應時間得到的奈米結構EF值比較 71
第四章 結論 74
第五章 參考文獻 75
dc.language.isozh-TW
dc.subject銀奈米粒子zh_TW
dc.subject表面增強拉曼散射zh_TW
dc.subject表面增強拉曼散射zh_TW
dc.subject斷鍵成核長晶法zh_TW
dc.subject聚苯乙烯球陣列zh_TW
dc.subject銀奈米粒子zh_TW
dc.subject斷鍵成核長晶法zh_TW
dc.subject聚苯乙烯球陣列zh_TW
dc.subjectpolystyrene sphere arraysen
dc.subjectSERSen
dc.subjectbreak-seed-growth processen
dc.subjectpolystyrene sphere arraysen
dc.subjectsilver nanoparticleen
dc.subjectSERSen
dc.subjectbreak-seed-growth processen
dc.subjectsilver nanoparticleen
dc.title銀奈米粒子鑲嵌之聚苯乙烯球陣列於表面增強拉曼散射光譜之應用zh_TW
dc.titleSilver Nanoparticle Decorated Polystyrene Sphere Arrays for Surface Enhanced Raman Scatteringen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王宗興,戴桓青,詹益慈
dc.subject.keyword銀奈米粒子,聚苯乙烯球陣列,斷鍵成核長晶法,表面增強拉曼散射,zh_TW
dc.subject.keywordsilver nanoparticle,polystyrene sphere arrays,break-seed-growth process,SERS,en
dc.relation.page85
dc.identifier.doi10.6342/NTU201803474
dc.rights.note未授權
dc.date.accepted2018-08-15
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-107-R05223176-1.pdf
  未授權公開取用
4.59 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved