請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77509完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 朱士維(Shi-Wei Chu) | |
| dc.contributor.author | Chiao Huang | en |
| dc.contributor.author | 黃喬 | zh_TW |
| dc.date.accessioned | 2021-07-10T22:06:08Z | - |
| dc.date.available | 2021-07-10T22:06:08Z | - |
| dc.date.copyright | 2018-08-24 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-15 | |
| dc.identifier.citation | Ahrens, M.B., Orger, M.B., Robson, D.N., Li, J.M., and Keller, P.J. (2013). Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat. Methods 10, 413-420.
Akerboom, J., Carreras Calderón, N., Tian, L., Wabnig, S., Prigge, M., Tolö, J., Gordus, A., Orger, M.B., Severi, K.E., and Macklin, J.J. (2013). Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Front. Mol. Neurosci. 6, 2. Alivisatos, A.P., Chun, M., Church, G.M., Greenspan, R.J., Roukes, M.L., and Yuste, R. (2012). The brain activity map project and the challenge of functional connectomics. Neuron 74, 970-974. Bargmann, C.I., and Marder, E. (2013). From the connectome to brain function. Nat. Methods 10, 483-490. Bellen, H.J., Tong, C., and Tsuda, H. (2010). 100 years of Drosophila research and its impact on vertebrate neuroscience: a history lesson for the future. Nature Reviews Neuroscience 11, 514-522. Biggs, D.S., and Andrews, M. (1997). Acceleration of iterative image restoration algorithms. Appl. Opt. 36, 1766-1775. Botcherby, E.J., Smith, C.W., Kohl, M.M., Débarre, D., Booth, M.J., Juškaitis, R., Paulsen, O., and Wilson, T. (2012). Aberration-free three-dimensional multiphoton imaging of neuronal activity at kHz rates. Proc. Natl. Acad. Sci. U.S.A. 109, 2919-2924. Bovetti, S., Moretti, C., Zucca, S., Dal Maschio, M., Bonifazi, P., and Fellin, T. (2017). Simultaneous high-speed imaging and optogenetic inhibition in the intact mouse brain. Sci. Rep. 7, 40041. Brini, M., Calì, T., Ottolini, D., and Carafoli, E. (2014). Neuronal calcium signaling: function and dysfunction. Cellular and molecular life sciences 71, 2787-2814. Castanares, M., Stuart, G.J., and Daria, V. (2018). Holographic Functional Calcium Imaging of Neuronal Circuit Activity. In Advanced Optical Methods for Brain Imaging. F.-J. Kao, G. Keiser, and A. Gogoi, eds. (Singapore: Springer Singapore), pp. 143-165. Chen, D., Du, W., Liu, Y., Liu, W., Kuznetsov, A., Mendez, F.E., Philipson, L.H., and Ismagilov, R.F. (2008). The chemistrode: a droplet-based microfluidic device for stimulation and recording with high temporal, spatial, and chemical resolution. Proc. Natl. Acad. Sci. U.S.A. 105, 16843-16848. Chen, T.-W., Wardill, T.J., Sun, Y., Pulver, S.R., Renninger, S.L., Baohan, A., Schreiter, E.R., Kerr, R.A., Orger, M.B., and Jayaraman, V. (2013). Ultra-sensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295-300. Chiang, A.-S., Lin, C.-Y., Chuang, C.-C., Chang, H.-M., Hsieh, C.-H., Yeh, C.-W., Shih, C.-T., Wu, J.-J., Wang, G.-T., and Chen, Y.-C. (2011). Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution. Curr. Biol. 21, 1-11. Conchello, J.-A., and Lichtman, J.W. (2005). Optical sectioning microscopy. Nat. Methods 2, 920-931. Dal Maschio, M., Donovan, J.C., Helmbrecht, T.O., and Baier, H. (2017). Linking neurons to network function and behavior by two-photon holographic optogenetics and volumetric imaging. Neuron 94, 774-789. Deisseroth, K. (2011). Optogenetics. Nat. Methods 8, 26-29. Denk, W., Strickler, J.H., and Webb, W.W. (1990). Two-photon laser scanning fluorescence microscopy. Science 248, 73-76. Dugué, G.P., Akemann, W., and Knöpfel, T. (2012). A comprehensive concept of optogenetics. In Progress in brain research (Elsevier), pp. 1-28. Duocastella, M., Sun, B., and Arnold, C.B. (2012). Simultaneous imaging of multiple focal planes for three-dimensional microscopy using ultra-high-speed adaptive optics. J. Biomed. Opt. 17, 1-3. Duocastella, M., Vicidomini, G., and Diaspro, A. (2014). Simultaneous multiplane confocal microscopy using acoustic tunable lenses. Opt. Express 22, 19293-19301. Emiliani, V., Cohen, A.E., Deisseroth, K., and Häusser, M. (2015). All-optical interrogation of neural circuits. J. Neurosci. 35, 13917-13926. Göbel, W., Kampa, B.M., and Helmchen, F. (2007). Imaging cellular network dynamics in three dimensions using fast 3D laser scanning. Nat. Methods 4, 73-79. Göppert‐Mayer, M. (1931). Über elementarakte mit zwei quantensprüngen. Annalen der Physik 401, 273-294. Gerits, A., and Vanduffel, W. (2013). Optogenetics in primates: a shining future? Trends in Genetics 29, 403-411. Goense, J., Bohraus, Y., and Logothetis, N.K. (2016). fMRI at high spatial resolution: implications for BOLD-models. Frontiers in computational neuroscience 10, 1-13. Grewe, B.F., Voigt, F.F., van’t Hoff, M., and Helmchen, F. (2011). Fast two-layer two-photon imaging of neuronal cell populations using an electrically tunable lens. Biomed. Opt. Express 2, 2035-2046. Grienberger, C., and Konnerth, A. (2012). Imaging calcium in neurons. Neuron 73, 862-885. Häusser, M. (2014). Optogenetics: the age of light. Nat. Methods 11, 1012-1014. Hampel, S., and Seeds, A.M. (2017). Targeted manipulation of neuronal activity in behaving adult flies. In Decoding Neural Circuit Structure and Function (Springer), pp. 191-222. Hanisch, R.J., White, R.L., and Gilliland, R.L. (1996). Deconvolution of Hubbles Space Telescope images and spectra. In Deconvolution of images and spectra (Academic Press, Inc.), pp. 310-360. Helmchen, F., and Denk, W. (2005). Deep tissue two-photon microscopy. Nat. Methods 2, 932-940. Hernandez, O., Papagiakoumou, E., Tanese, D., Fidelin, K., Wyart, C., and Emiliani, V. (2016). Three-dimensional spatiotemporal focusing of holographic patterns. Nature communications 7, 1-10. Holmes, T.J., Bhattacharyya, S., Cooper, J.A., Hanzel, D., Krishnamurthi, V., Lin, W.-c., Roysam, B., Szarowski, D.H., and Turner, J.N. (1995). Light microscopic images reconstructed by maximum likelihood deconvolution. In Handbook of biological confocal microscopy (Springer), pp. 389-402. Hsu, K.-J., Li, K.-Y., Lin, Y.-Y., Chiang, A.-S., and Chu, S.-W. (2017). Optimizing depth-of-field extension in optical sectioning microscopy techniques using a fast focus-tunable lens. Opt. Express 25, 16783-16794. Ji, N., Freeman, J., and Smith, S.L. (2016). Technologies for imaging neural activity in large volumes. Nat. Neurosci. 19, 1154-1164. Kim, S.G., Richter, W., and Uǧurbil, K. (1997). Limitations of temporal resolution in functional MRI. Magnetic resonance in medicine 37, 631-636. Klapoetke, N.C., Murata, Y., Kim, S.S., Pulver, S.R., Birdsey-Benson, A., Cho, Y.K., Morimoto, T.K., Chuong, A.S., Carpenter, E.J., and Tian, Z. (2014). Independent optical excitation of distinct neural populations. Nat. Methods 11, 338-346. Kong, L., Tang, J., Little, J.P., Yu, Y., Lämmermann, T., Lin, C.P., Germain, R.N., and Cui, M. (2015). Continuous volumetric imaging via an optical phase-locked ultrasound lens. Nat. Methods 12, 759-762. Lütcke, H., Gerhard, F., Zenke, F., Gerstner, W., and Helmchen, F. (2013). Inference of neuronal network spike dynamics and topology from calcium imaging data. Front. Neural. Circuits 7, 201. Lauterbach, M.A., Ronzitti, E., Sternberg, J.R., Wyart, C., and Emiliani, V. (2015). Fast calcium imaging with optical sectioning via HiLo microscopy. PLoS One 10, 1-13. Lichtman, J.W., and Sanes, J.R. (2008). Ome sweet ome: what can the genome tell us about the connectome? Curr. Opin. Neurobiol. 18, 346-353. Lim, D., Chu, K.K., and Mertz, J. (2008). Wide-field fluorescence sectioning with hybrid speckle and uniform-illumination microscopy. Optics letters 33, 1819-1821. Lim, D., Ford, T.N., Chu, K.K., and Mertz, J. (2011). Optically sectioned in vivo imaging with speckle illumination HiLo microscopy. J. Biomed. Opt. 16, 016014. Lin, H.-H., Chu, L.-A., Fu, T.-F., Dickson, B.J., and Chiang, A.-S. (2013). Parallel neural pathways mediate CO2 avoidance responses in Drosophila. Science 340, 1338-1341. Lin, J.Y. (2012). Optogenetic excitation of neurons with channelrhodopsins: light instrumentation, expression systems, and channelrhodopsin variants. In Progress in brain research (Elsevier), pp. 29-47. Lodish, H., Berk, A., Zipursky, S.L., Matsudaira, P., Baltimore, D., and Darnell, J. (2003). Molecular cell biology 5th edition. (Freeman). Mancuso, J.J., Kim, J., Lee, S., Tsuda, S., Chow, N.B., and Augustine, G.J. (2011). Optogenetic probing of functional brain circuitry. Exp. Physiol. 96, 26-33. Mertz, J. (2011). Optical sectioning microscopy with planar or structured illumination. Nat. Methods 8, 811-819. Meyer, F. (1994). Topographic distance and watershed lines. Signal processing 38, 113-125. Miesenböck, G. (2009). The optogenetic catechism. Science 326, 395-399. Miri, A., Daie, K., Burdine, R.D., Aksay, E., and Tank, D.W. (2011). Regression-based identification of behavior-encoding neurons during large-scale optical imaging of neural activity at cellular resolution. J. Neurophysiol. 105, 964-980. Nakai, J., Ohkura, M., and Imoto, K. (2001). A high signal-to-noise Ca 2+ probe composed of a single green fluorescent protein. Nature biotechnology 19, 137-141. Olivier, N., Mermillod-Blondin, A., Arnold, C.B., and Beaurepaire, E. (2009). Two-photon microscopy with simultaneous standard and extended depth of field using a tunable acoustic gradient-index lens. Optics letters 34, 1684-1686. Olsen, S.R., and Wilson, R.I. (2008). Cracking neural circuits in a tiny brain: new approaches for understanding the neural circuitry of Drosophila. Trends Neurosci. 31, 512-520. Omoto, J.J., Keleş, M.F., Nguyen, B.-C.M., Bolanos, C., Lovick, J.K., Frye, M.A., and Hartenstein, V. (2017). Visual input to the Drosophila central complex by developmentally and functionally distinct neuronal populations. Curr. Biol. 27, 1098-1110. Oron, D., Papagiakoumou, E., Anselmi, F., and Emiliani, V. (2012). Two-photon optogenetics. In Progress in brain research (Elsevier), pp. 119-143. Pégard, N.C., Mardinly, A.R., Oldenburg, I.A., Sridharan, S., Waller, L., and Adesnik, H. (2017). Three-dimensional scanless holographic optogenetics with temporal focusing (3D-SHOT). Nature Communications 8, 1228. Packer, A.M., Roska, B., and Häusser, M. (2013). Targeting neurons and photons for optogenetics. Nat. Neurosci. 16, 805-815. Packer, A.M., Russell, L.E., Dalgleish, H.W., and Häusser, M. (2015). Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo. Nat. Methods 12, 140-146. Papagiakoumou, E. (2013). Optical developments for optogenetics. Biol. Cell 105, 443-464. Papagiakoumou, E., Anselmi, F., Bègue, A., De Sars, V., Glückstad, J., Isacoff, E.Y., and Emiliani, V. (2010). Scanless two-photon excitation of channelrhodopsin-2. Nat. Methods 7, 848-854. Pepperkok, R., Squire, A., Geley, S., and Bastiaens, P.I. (1999). Simultaneous detection of multiple green fluorescent proteins in live cells by fluorescence lifetime imaging microscopy. Curr. Biol. 9, 269-274. Pereda, A.E. (2014). Electrical synapses and their functional interactions with chemical synapses. Nature Reviews Neuroscience 15, 250-263. Peron, S., and Svoboda, K. (2011). From cudgel to scalpel: toward precise neural control with optogenetics. Nat. Methods 8, 30-34. Peterka, D.S., Takahashi, H., and Yuste, R. (2011). Imaging voltage in neurons. Neuron 69, 9-21. Petreanu, L., Huber, D., Sobczyk, A., and Svoboda, K. (2007). Channelrhodopsin-2–assisted circuit mapping of long-range callosal projections. Nat. Neurosci. 10. Piazza, S., Bianchini, P., Sheppard, C., Diaspro, A., and Duocastella, M. (2018). Enhanced volumetric imaging in 2‐photon microscopy via acoustic lens beam shaping. Journal of biophotonics 11, 1-11. Qasim, M., Baptiste, D.J., and Ullah, H. (2017). Optogenetics: A cellular photoactivation method and its applications in biomedical sciences. system 4, 5. Reddy, G.D., Kelleher, K., Fink, R., and Saggau, P. (2008). Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity. Nat. Neurosci. 11, 713-720. Rickgauer, J.P., Deisseroth, K., and Tank, D.W. (2014). Simultaneous cellular-resolution optical perturbation and imaging of place cell firing fields. Nat. Neurosci. 17, 1816-1824. Rickgauer, J.P., and Tank, D.W. (2009). Two-photon excitation of channelrhodopsin-2 at saturation. Proc. Natl. Acad. Sci. U.S.A. 106, 15025-15030. Scanziani, M., and Häusser, M. (2009). Electrophysiology in the age of light. Nature 461, 930-939. Schrödel, T., Prevedel, R., Aumayr, K., Zimmer, M., and Vaziri, A. (2013). Brain-wide 3D imaging of neuronal activity in Caenorhabditis elegans with sculpted light. Nat. Methods 10, 1013-1020. Seelig, J.D., and Jayaraman, V. (2013). Feature detection and orientation tuning in the Drosophila central complex. Nature 503, 262-266. Shiozaki, H.M., and Kazama, H. (2017). Parallel encoding of recent visual experience and self-motion during navigation in Drosophila. Nat. Neurosci. 20, 1-9. Sullivan, S.Z., Muir, R.D., Newman, J.A., Carlsen, M.S., Sreehari, S., Doerge, C., Begue, N.J., Everly, R.M., Bouman, C.A., and Simpson, G.J. (2014). High frame-rate multichannel beam-scanning microscopy based on Lissajous trajectories. Opt. Express 22, 24224-24234. Sun, Y., Nern, A., Franconville, R., Dana, H., Schreiter, E.R., Looger, L.L., Svoboda, K., Kim, D.S., Hermundstad, A.M., and Jayaraman, V. (2017). Neural signatures of dynamic stimulus selection in Drosophila. Nat. Neurosci. 20, 1-10. Takemura, S.-y., Bharioke, A., Lu, Z., Nern, A., Vitaladevuni, S., Rivlin, P.K., Katz, W.T., Olbris, D.J., Plaza, S.M., and Winston, P. (2013). A visual motion detection circuit suggested by Drosophila connectomics. Nature 500, 175-181. Tian, L., Akerboom, J., Schreiter, E.R., and Looger, L.L. (2012). Neural activity imaging with genetically encoded calcium indicators. In Progress in brain research (Elsevier), pp. 79-94. Timaeus, L., Geid, L., and Hummel, T. (2017). A topographic visual pathway into the central brain of Drosophila. bioRxiv, 183707. Truong, T.V., Supatto, W., Koos, D.S., Choi, J.M., and Fraser, S.E. (2011). Deep and fast live imaging with two-photon scanned light-sheet microscopy. Nat. Methods 8, 757-760. Tseng, Q., Duchemin-Pelletier, E., Deshiere, A., Balland, M., Guillou, H., Filhol, O., and Théry, M. (2012). Spatial organization of the extracellular matrix regulates cell–cell junction positioning. Proc. Natl. Acad. Sci. U.S.A. 109, 1506-1511. Voie, A., Burns, D., and Spelman, F. (1993). Orthogonal‐plane fluorescence optical sectioning: Three‐dimensional imaging of macroscopic biological specimens. J. Microsc. 170, 229-236. Walsh, V., and Cowey, A. (2000). Transcranial magnetic stimulation and cognitive neuroscience. Nature Reviews Neuroscience 1, 73-79. Wang, H., Peca, J., Matsuzaki, M., Matsuzaki, K., Noguchi, J., Qiu, L., Wang, D., Zhang, F., Boyden, E., and Deisseroth, K. (2007). High-speed mapping of synaptic connectivity using photostimulation in Channelrhodopsin-2 transgenic mice. Proc. Natl. Acad. Sci. U.S.A. 104, 8143-8148. Wilson, N.R., Runyan, C.A., Wang, F.L., and Sur, M. (2012). Division and subtraction by distinct cortical inhibitory networks in vivo. Nature 488, 343-348. Yamaguchi, S., Desplan, C., and Heisenberg, M. (2010). Contribution of photoreceptor subtypes to spectral wavelength preference in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 107, 5634-5639. Yang, K.-P. (2016). The Application of All-Optical Physiology and Volumetric Imaging Microscopy in Drosophila Neuroscience Research. Master Thesis, National Taiwan University, 1-97. Yang, W., Carrillo-Reid, L., Bando, Y., Peterka, D.S., and Yuste, R. (2018). Simultaneous two-photon imaging and two-photon optogenetics of cortical circuits in three dimensions. eLife 7, 1-21. Yang, W., Miller, J.-e.K., Carrillo-Reid, L., Pnevmatikakis, E., Paninski, L., Yuste, R., and Peterka, D.S. (2016). Simultaneous multi-plane imaging of neural circuits. Neuron 89, 269-284. Yang, W., and Yuste, R. (2017). In vivo imaging of neural activity. Nat. Methods 14, 349-359. Zhang, F., Vierock, J., Yizhar, O., Fenno, L.E., Tsunoda, S., Kianianmomeni, A., Prigge, M., Berndt, A., Cushman, J., and Polle, J. (2011). The microbial opsin family of optogenetic tools. Cell 147, 1446-1457. Zipfel, W.R., Williams, R.M., and Webb, W.W. (2003). Nonlinear magic: multiphoton microscopy in the biosciences. Nature biotechnology 21, 1369-1377. Zong, W., Zhao, J., Chen, X., Lin, Y., Ren, H., Zhang, Y., Fan, M., Zhou, Z., Cheng, H., and Sun, Y. (2015). Large-field high-resolution two-photon digital scanned light-sheet microscopy. Cell research 25, 254. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77509 | - |
| dc.description.abstract | 大腦的運作由其複雜的腦神經網絡聯結所掌控。雖然藉由電子、光學顯微鏡,科學家可以解析出結構上相連接的神經,但想要全面性地解讀神經網絡的功能,我們仍然需要瞭解神經之間功能上的聯結特性,包括反應時間順序、類型以及強度等資訊。
神經藉由傳遞電訊號作為溝通的橋樑,因此,透過刺激上游神經,並記錄下游神經的反應,我們可以瞭解神經群之間的功能性聯結。由於神經細胞空間尺度在微米等級、訊號傳遞的時間也在毫秒尺度,我們必需使用高空間/時間解析度的技術來進行功能性聯結的研究。 傳統上,科學家會藉由電生理的方法,以微米大小的電極對神經進行刺激和記錄。這種方法提供了相當優異的訊噪比及微秒等級時間解析度,然而,這種方法不但具有侵入性,也不適用於在空間上密集分布的神經群。相較之下,全光學式生理學以光對神經進行激發和紀錄,除了具有非侵入性的優勢,也提供了次微米/毫秒等級的空間/時間解析,因此非常適合用於觀察活體的神經網路聯結。 雖然過去已發展出許多全光學式生理學 ── 包含刺激和紀錄的技術,但記錄端幾乎都只限於單一深度的影像擷取。由於神經間的聯結分布於三維空間,其中的訊號傳遞十分快速,因此,勢必需要將全光學式生理學與快速三維影像顯微技術結合。在本篇論文中,藉由結合可調式聲光折射率梯度透鏡,我們建立了雙光子快速體積紀錄系統,並與單光子點刺激系統結合,提供了一個可進行三維空間全光學式生理學研究的平台。 此平台以應用於探討活體果蠅視覺神經路徑(anterior visual pathway, MED→AOTU→BU) 的功能性聯結作為例子,藉由刺激連接MED與AOTU單一單元區域(AOTUil)內的上游神經,與觀察連接AOTU與BU之下游神經的反應,建構出三維空間中AOTUil與BU中密集分佈的單元結構 (microglomeruli) 之功能性聯結圖譜。 綜上所述,此全光學式生理學平台提供了非侵入性、精準刺激,及高時間/空間解析度體積紀錄的優勢,對於研究活體腦神經功能性聯結而言,是相當強而有力的新工具。 | zh_TW |
| dc.description.abstract | How the brain works is based on its complex connection map in neuron networks, i.e. connectome. Although structural connection among neurons can be unraveled by anatomical analysis, to fully understand the function of the circuit, it is essential to investigate their functional connection properties, including temporal sequence, type, as well as interaction strength of the connections
Function of neuron circuit is based on the electrical signals transmitted among interconnected neurons. To investigate this, it is critical to stimulate upstream neurons and recording their downstream counterparts. Due to the small size (~μm) and fast response (ms~sec) of the neurons, stimulation/recording tools with high spatiotemporal resolution are critical. Electrophysiology, which stimulates and records neuron signal through microelectrodes, provides micron and microsecond spatiotemporal resolution with high signal to noise ratio, and have long been used as a golden standard for neuron functional connection study. However, it is an invasive method and it is hard to interrogate multiple densely packed neurons. In contrast, all-optical physiology, which uses light to stimulate and record neurons, is an emerging tool allowing study of multiple neurons non-invasively with submicron and millisecond spatiotemporal resolution. Although several all-optical physiology platforms, including stimulation and recording techniques, have been demonstrated, the recording designs are mostly limited to single-depth imaging. Due to 3D distribution and fast responses of neurons, integrating high-speed volumetric imaging in all-optical physiology setup is highly desired. In this thesis, by using a tunable acoustic gradient-index lens, which is a fast axial scanning device, two-photon 3D recording is achieved. Combining with single-photon stimulation, a three-dimensional all-optical physiology platform is constructed. The usefulness of the platform is demonstrated on in-vivo functional connection study of Drosophila anterior visual pathway (MED→AOTU→BU). By stimulation on upstream neurons (MT neurons, MED→AOTU) in a single sub-unit of AOTU (AOTUil), the responses in corresponding downstream neurons (TB neurons, AOTU→BU) can be fully observed in 3D, unraveling the functional connection coding between AOTU and tens of BU microglomeruli, which are tiny subunits with 2-3 micron diameter and densely packed in ~ 35 μm × 35 μm × 40 μm volume. In summary, with high spatiotemporal resolution volumetric recording and precise stimulation, this work paves the way toward non-invasive investigation on 3D brain functional connectome in-vivo. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T22:06:08Z (GMT). No. of bitstreams: 1 ntu-107-R05245016-1.pdf: 3477824 bytes, checksum: 96079c00daac712aaa0a1360a231d53b (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員審定書 #
中文摘要 i ABSTRACT iii CONTNETS v LIST OF FIGURES viii LIST OF TABLES ix Chapter 1 Introduction 1 1.1 Brain connectome – anatomical connection and functional properties 1 1.2 Study functional connectivity: stimulation and recording neuron signaling 2 1.2.1 Neuron signaling 2 1.2.2 Stimulation and recording methods 6 1.3 All-optical physiology: optical stimulation and recording 10 1.3.1 Optical stimulation strategies 10 1.3.2 Optical recording strategies: toward fast volumetric recording 12 1.3.3 Combination of optical stimulation and fast volumetric recording 15 1.4 Model animal -- Drosophila melanogaster 17 1.5 Aim 18 Chapter 2 All-optical physiology: stimulation and recording 19 2.1 Optogenetic tools: actuators and sensors 20 2.2 Single-photon stimulation 23 2.3 Two-photon recording (imaging) 24 2.4 Fast volumetric imaging with tunable acoustic gradient refractive index (TAG) Lens 26 Chapter 3 Experimental methods 28 3.1 System setup 28 3.2 System optical specification 30 3.2.1 Point-spread-function of stimulation laser 30 3.2.2 Point-spread-function of recording laser 31 3.2.3 Fast volumetric recording range in z-direction 33 3.3 Sample preparation 34 3.4 All-optical physiology in living Drosophila 35 3.5 Functional images analysis 36 3.5.1 Microglomeruli and neuron fibers extraction 36 3.5.2 BU subdomains identification and alignment of different flies 39 3.5.3 Identifying activated microglomeruli by generalized linear model 42 Chapter 4 Results: Three-dimensional all-optical physiology in living Drosophila brains 44 4.1 All-optical physiology in Anterior Visual Pathway (AVP) 44 4.1.1 Structure of AVP and optogenetic expression 44 4.1.2 Validity of all-optical interrogation and precision of stimulation 47 4.2 Optical stimulation and single-section/volumetric recording 49 4.2.1 Optical stimulation and single-section recording 49 4.2.2 Optical stimulation and volumetric recording (3D-AOP) 51 Chapter 5 Discussions 55 5.1 Comparison with other techniques 55 5.2 Current limitations and upgrade of the system 57 5.3 Other applications of the system 61 Chapter 6 Conclusions 62 REFERENCE # | |
| dc.language.iso | en | |
| dc.subject | 可變焦透鏡 | zh_TW |
| dc.subject | 高速影像擷取 | zh_TW |
| dc.subject | 雙光子顯微術 | zh_TW |
| dc.subject | 全光學式生理學 | zh_TW |
| dc.subject | 腦神經功能性連結網絡 | zh_TW |
| dc.subject | 可變焦透鏡 | zh_TW |
| dc.subject | 高速影像擷取 | zh_TW |
| dc.subject | 雙光子顯微術 | zh_TW |
| dc.subject | 腦神經功能性連結網絡 | zh_TW |
| dc.subject | 全光學式生理學 | zh_TW |
| dc.subject | two-photon microscopy | en |
| dc.subject | brain functional connectome | en |
| dc.subject | focus tunable lens | en |
| dc.subject | high-speed imaging | en |
| dc.subject | two-photon microscopy | en |
| dc.subject | All-optical physiology | en |
| dc.subject | brain functional connectome | en |
| dc.subject | focus tunable lens | en |
| dc.subject | high-speed imaging | en |
| dc.subject | All-optical physiology | en |
| dc.title | 全光學式生理學與快速三維影像顯微技術於果蠅腦神經功能性連結研究之應用 | zh_TW |
| dc.title | All-Optical Physiology with Fast Volumetric Imaging Microscopy Applied in Drosophila Brain Neuron Functional Connection Study | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 江安世(Ann-Shyn Chiang),林彥穎(Yen-Yin Lin),朱麗安(Li-An Chu),林耿慧(Keng-Hui Lin) | |
| dc.subject.keyword | 全光學式生理學,雙光子顯微術,高速影像擷取,可變焦透鏡,腦神經功能性連結網絡, | zh_TW |
| dc.subject.keyword | All-optical physiology,two-photon microscopy,high-speed imaging,focus tunable lens,brain functional connectome, | en |
| dc.relation.page | 71 | |
| dc.identifier.doi | 10.6342/NTU201803442 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2018-08-15 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 應用物理研究所 | zh_TW |
| 顯示於系所單位: | 應用物理研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-R05245016-1.pdf 未授權公開取用 | 3.4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
