Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77507Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 陳怡然(Yi-Jan Chen) | |
| dc.contributor.author | Yi-Ju Yang | en |
| dc.contributor.author | 楊易儒 | zh_TW |
| dc.date.accessioned | 2021-07-10T22:06:01Z | - |
| dc.date.available | 2021-07-10T22:06:01Z | - |
| dc.date.copyright | 2020-12-31 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-12-22 | |
| dc.identifier.citation | [1] N. Tesla, “Apparatus for transmitting electrical energy,” U.S. Patent 1119732, Dec. 1,1914. [2] C.A. Balanis, Antenna Theory: Analysis and Design, 2nd ed., Wiley, New York, 1997, pp149-151 and pp.405-422. [3] A. Ashry, K. Sharaf, and M. Ibrahim, “A simple and accurate model for RFID rectifier,” IEEE Syst. J., vol. 2, no. 4, pp. 520–524, Dec. 2008. [4] K. Kotani, A. Sasaki and T. Ito, “High-efficiency differential-Drive CMOS rectifier for UHF RFIDs, ” IEEE J. Solid-State Circuits, vol. 44, no. 11, pp. 3011-3018, Nov. 2009. [5] J. Yi, W.-H. Ki, and C.-Y. Tsui, “Analysis and design strategy of UHF micro-power CMOS rectifiers for micro-sensor and RFID applications,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 1, pp. 153–166, Jan. 2007. [6] P. T. Theilmann, C. D. Presti, D. J. Kelly, and P. M. Asbeck, “A μW complementary bridge rectifier with near zero turn-on voltage in SOS CMOS for wireless power supplies,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 9, pp. 2111–2124, Sep. 2012. [7] Masuch, J.,Delgado-Restituto M., Milosevic D. ,and Baltus P.,“Co-integration of an RF energy harvesterinto a 2.4 GHz transceiver” IEEE J. Solid-State Circuits, vol. 48, no. 7, pp.1565-1574, Mar. 2014. [8] M. Stoopman, S. Keyrouz, H. J. Visser, K. Philips, and W. A. Serdijn, “Co-design of a CMOS rectifier and small loop antenna for highly sensitive RF energy harvesters,” IEEE J. Solid-State Circuits, vol. 49, no. 3, pp. 622-634, Mar. 2014. [9] Z. Hameed and K. Moez, “A 3.2 V -15 dBm adaptive threshold-voltage compensated RF energy harvester in 130 nm CMOS,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 62, no. 4, pp. 948–956, Apr. 2015. [10] J. Kang, S. Rao, P. Chiang, and A. Natarajan, “Design and optimization of area-constrained Wirelessly Powered CMOS UWB SoC for localization applications,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 4, pp. 1042–1054, Apr. 2016. [11] J. Wang, Y. Jiang, J. Dijkhuis, G. Dolmans, H. Gao, and P. G. M. Baltus, “A 900 MHz RF energy harvesting system in 40 nm CMOS technology with efficiency peaking at 47% and higher than 30% over a 22 dB wide input power range.” in Proc. 43rd IEEE Eur. Solid State Circuits Conf., pp. 299–302, Sep. 2017. [12] M. Mansour, Mashiro Ichihashi, “Wide-band and efficiency-improved 0.18um CMOS RF differential rectifier for wireless energy harvesting,”in Proc. Asia-Pacfic Micro. Conf. (APMC) , Mar. 2019, pp. 141–143. [13] G. Chong et al., “CMOS cross-coupled differential-drive rectifier in subthreshold operation for ambient RF energy harvesting-model and analysis,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 66, no. 12, pp. 1942–1946, Dec. 2019. [14] H. Liu., X. Liu, Y. Sun, Z. Jian and A. Babakhani., “A 915-MHz far-field energy harvester with −22-dBm sensitivity and 3-V output voltage based on antenna-and- rectifier codesign,” IEEE Microw. Wireless Comp. Lett., vol. 29, no. 8, pp. 557-559, Aug. 2019. [15] T. Thierry, F. Ludivine, O. Laurent, and V. Valerie, “COTS-based modules for far-field radio frequency energy harvesting at 900 MHz and 2.4 GHz,” in Proc. of IEEE International New Circuits and Systems Conference (NEWCAS), Paris, France, Jun. 2013. [16] A. Y.-S. Jou, H. Pajouhi, R. Azadegan, and S. Mohammadi, “A CMOS integrated rectenna for implantable applications,” in Proc IEEE MTT-S Int. Microw. Symp. Dig., pp. 1–3, May 2016. [17] D. Belo, D. C. Ribeiro, P. Pinho, and N. B. Carvalho, “A selective, tracking, and power adaptive far-field wireless power transfer system,” IEEE Trans. Microw. Theory Techn., vol. 67, no. 9, pp. 3856–3866, Sep. 2019. [18] B. Yang, X. Chen, J. Chu, and N. Shinohara, “A 5.8-GHz phased array system using power-variable phase-controlled magnetrons for wireless power transfer,” IEEE Trans. Microw. Theory Techn., Early Access, Jul. 2020. [19] N. Takabayashi, N. Shinohara, J. Chu, and N. Shinohara, “Rectification improvement with flat-topped beams on 2.45-GHz rectenna arrays,” IEEE Trans. Microw. Theory Techn., vol. 68, no. 3, pp. 1151–1163, Dec. 2019. [20] R. Ludwig, and P. Bretchko, RF Circuit Design: Theory and Applications, 2nd ed. Pearson, pp.540-542,2009. [21] Michael J. Bailey. PHEMT Devices Offer High Power Density and Efficiency. Microwaves RF, 36:61, Feb. 1997. [22] T. Reveyrand, “Multiport conversions between S, Z, Y, H, ABCD, and T parameters,” in Proc International Workshop on Integrated Nonlinear Microwave and Millimetre-wave Circuits (INMMIC). IEEE, Jul. 2018, pp. 1–3. [23] D. A. Frickey, “Conversions between S, Z, Y, H, ABCD, and T parameters which are valid for complex source and load impedances,” IEEE Trans. Microw. Theory Techn , vol. 42, no. 2, pp. 205–211, Feb. 1994. [24] G. Antonini, A. C. Scogna, and O. A., “Equivalent circuit extraction for an SMA connector,” in Proc. Progress Electromagn. Res. Symp., pp. 61–64, Mar. 2004. [25] K. Kotani and T. Ito, “High efficiency CMOS rectifier circuit with self-Vth-cancellation and power regulation functions for UHF RFIDs,” in Proc. IEEE Asian Solid-State Circuits Conf. (ASSCC), pp. 119–122, Nov. 2007. [26] K. Kotani, A. Sasaki, and T. Ito, ‘‘High-efficiency differential-drive CMOS rectifier for UHF RFIDs,’’ IEEE J. Solid-State Circuits, vol. 44, no. 11, pp. 3011–3018, Nov. 2009. [27] A. Facen and A. Boni, “Power supply generation in CMOS passive UHF RFID tags”, in Proc. 2nd Conf. Ph.D. Research in Microelectronics and Electronics, pp. 33-36, Jun. 2006. [28] AVAGO, ATF511P8: https://docs.broadcom.com/doc/AV02-3620EN [29] S. Liu, M. Liu, S. Yang, C. Ma and X. Zhu, “A novel design Methodology for high-efficiency current-mode and voltage-mode class-E power amplifiers in wireless power transfer systems,” IEEE Trans. Power Electronics, vol. 32, no. 6, pp. 4514-4523, Jun. 2017. [30] X. Li, Y. Lu, M. Huang, and R. P. Martins, “A 2.4-GHz mid-field CMOS wireless power receiver achieving 46% maximum PCE and 163-mW output power,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 67, no. 2, pp. 360–364, Feb. 2020. [31] Z. Zeng et al., “A reconfigurable rectifier with optimal loading point determination for RF energy harvesting from -22 dBm to -2 dBm,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 67, no. 1, pp. 87–91, Feb. 2019. [32] H. Gao, M. Matters-Kammerer, D. Milosevic, J.-P.M.G. Linnartz and P. Baltus, “A design of 2.4 GHz rectifier in 65nm CMOS with 31% efficiency, ” IEEE 20th Symp. Commun. and Veh. Technology in the Benelux (SCVT), pp. 1-4, Nov. 2013. [33] W. W. Lau, and L. Siek., “2.45 GHz wide input range CMOS rectifier for RF energy harvesting,” IEEE Wireless Power Transfer Conf. (WPTC), Taipei, Taiwan, pp. 1-4, Mar. 2017. [34] N. Bayasi, T. Tekeste, H. Saleh, B. Mohammad, A. Khandoker, and M. Ismail, “Low-power ECG-based processor for predicting ventricular arrhythmia,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 24, no. 5, pp. 1962-1974, May. 2016. [35] H. S. Markandeya and K. Roy, “Low-power system for detection of symptomatic patterns in audio biological signals,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 24, no. 8, pp. 2679-2688, Aug. 2016. [36] H. Kim et al., “A configurable and low-power mixed signal SoC for portable ECG monitoring applications,” IEEE Trans. Biomed. Circuits Syst., vol. 8, no. 2, pp. 257-267, Apr. 2014. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77507 | - |
| dc.description.abstract | 本論文主旨是完成遠距離無線充電系統,完成功率放大器透過天線經能量傳到整流器中最後向功率損耗低的裝置進行充電。 本論文主要分為三個部分,第一部分為設計射頻功率放大器,採用增強模式高電子移動率製成的電晶體(E-pHEMT)製作,在印刷電路板(Printed Circuit Board,PCB)上透過SMD元件做匹配,單級的功率放大器量測結果,當輸入功率17 dBm時,最佳功率附加效率為53.5%,輸出功率為26.15 dBm。藉由威爾金森功率分配器(Wilkinson Power Divider)接上四個相同架構的射頻功率放大器,做成兩級功率放大器。量測結果為在3.6 V供應電壓以及單頻(CW)在2.4 GHz時,當輸入功率為13 dBm時,整體最佳功率附加效率為49%,此時的整體輸出功率約為31.5 dBm。 第二部分是設計射頻整流器,採用90奈米 CMOS製成實現,面積約為0.65×0.45 〖'mm' 〗^'2' 。根據量測結果,在2.4 GHz下,輸入功率為-6 dBm以及0 dBm時,最佳能量轉換效率分別有31.9%以及42.6%,其直流電壓約有1.15 V以及1.62 V。 第三部分則是將前兩部分的功率放大器以及整流器全部整合再一起並實現遠距離無線充電,發射端使用的是4×1的陣列天線,增益值為10 dBi,面積為7×28 cm^2,接收端使用的是1×1的陣列天線,增益值5 dBi,面積為7×7 cm^2。當距離在0.3公尺至3公尺時,經由弗里斯傳輸方程推算,該操作頻率下的空氣損耗,公式算出來的與量測出來的是接近的。當發射端的輸出功率為30.5 dBm時,1.2公尺時的接收功率為0.6 dBm,此時整流出來的電壓為1.62 V,能量轉換效率為35.4%;3公尺時的接收功率為-6.6 dBm,此時整流出來的電壓為1.15 V,能量轉換效率為26.5%。 | zh_TW |
| dc.description.abstract | The main purpose of the dissertation is to complete the Far-Field wireless power charging system. The Radio-Frequency power amplifier amplifies the signal and transmits to the rectifier by antennas. Finally, the received Radio-Frequency power will be rectified from RF signal into DC signal and charge the low power consumption devices. This thesis is divided into three parts. The first part is to design a power amplifier using the enhanced-pseudomorphic-high-electron-mobility-transistor with the SMD components on the PCB. The measurement results of the peak power added efficiency is 53.5 % and output power is 26.15 dBm under a supply voltage 3.6 V at 2.4 GHz. Four identical power amplifiers combined by a wilkison power divider forms a two stage power amplifier. The measurement results of the peak total power added efficiency is 49 % and the total output power is 31.5 dBm under a supply voltage 3.6 V at 2.4 GHz. The second part is to design a rectifier in 90 nm CMOS technology The chip area is 0.65×0.45 〖'mm' 〗^'2' . According to the measurement results, the power conversion efficiencies are 31.9 % and 43 % and the output voltages are 1.15 V and1.62 V with the input power under -6 dBm and 0 dBm, respectively, at 2.4 GHz. The third part reports the Far-field wireless power charging systems. The gain of the 4×1 transmitting antenna is 10 dBi and the size is 7×28 cm^2.The gain of the 1×1 receiving antenna is 5 dBi and the size is 7×7 cm^2. The free space loss is calculated with the Friis transmission equation at operating frequency and distance. The measured results are close to the theoretical values at the distance from 0.3 m to 3 m. When the output power of the transmitter is 30.5 dBm, the received power at 1.2 meters is 0.6 dBm, the rectified output voltage is 1.62 V, and the power conversion efficiency is 35.4%. The received power at 3 meters is -6.6 dBm, the rectified output voltage is 1.15 V, and the power conversion efficiency is 26.5%. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T22:06:01Z (GMT). No. of bitstreams: 1 U0001-2212202012510900.pdf: 8475443 bytes, checksum: a5f9e5ce2eb29d53ee3cffc2726a7f46 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 摘要 i ABSTRACT ii 目錄 iii 圖目錄 vi 表目錄 xiii 第一章 序論 1 1.1 研究背景與研究動機 1 1.2 文獻回顧 2 1.2.1 整流器文獻回顧 2 1.2.2 無線充電文獻回顧 17 1.3 論文架構與貢獻 28 第二章 無線充電系統 29 2.1 無線充電系統介紹 29 2.2 無線充電系統設計 30 第三章 射頻功率放大器 34 3.1 射頻功率放大器介紹 34 3.1.1 線性功率放大器 37 3.1.2 非線性功率放大器 38 3.2 元件選擇及特性 39 3.3 功率放大器設計 40 3.3.1 功率放大器之負載位移量測 40 3.3.2 去嵌入式(De-embedding)簡介 45 3.3.3 功率放大器設計 50 3.3.4 一路分為四路之威爾金森功率分配器 53 3.4 量測結果 57 3.4.1 功率放大器量測結果 57 3.4.2 發射端系統量測結果 62 第四章 90 nm CMOS 交叉耦合整流器 66 4.1 簡介 66 4.2 整流器電路架構 67 4.2.1 半波整流器 67 4.2.2 全波整流器 68 4.2.3 倍壓整流器 69 4.2.4 交叉耦合整流器 71 4.3 交叉耦合整流器電路設計 74 4.3.1 電路模擬 74 4.3.2 晶片佈局 86 4.4 量測結果 88 4.4.1 印刷電路板設計 88 4.4.2 量測環境設定 90 4.4.3 量測結果 92 4.5 討論 95 第五章 無線充電系統之量測結果 98 第六章 結論 108 參考文獻 110 | |
| dc.language.iso | zh-TW | |
| dc.subject | ISM頻段 | zh_TW |
| dc.subject | 天線 | zh_TW |
| dc.subject | 弗里斯傳輸方程 | zh_TW |
| dc.subject | 威爾金森功率分配器 | zh_TW |
| dc.subject | 整流器 | zh_TW |
| dc.subject | 射頻功率放大器 | zh_TW |
| dc.subject | 無線充電電路 | zh_TW |
| dc.subject | Friis Equation | en |
| dc.subject | Wireless charging system | en |
| dc.subject | Radio-Frequency Power Amplifier | en |
| dc.subject | Wilkinson power divider | en |
| dc.subject | Rectifier | en |
| dc.subject | Antenna | en |
| dc.subject | ISM band | en |
| dc.title | 遠距離無線充電系統之射頻功率放大器與射頻整流器 | zh_TW |
| dc.title | Development of Radio Frequency Power Amplifier and Rectifier for Far-field Wireless Power Charging System | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 109-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳瑞北(Ruey-Beei Wu),黃天偉(Tian-Wei Huang) | |
| dc.subject.keyword | ISM頻段,無線充電電路,射頻功率放大器,威爾金森功率分配器,整流器,天線,弗里斯傳輸方程, | zh_TW |
| dc.subject.keyword | ISM band,Wireless charging system,Radio-Frequency Power Amplifier,Wilkinson power divider,Rectifier,Antenna,Friis Equation, | en |
| dc.relation.page | 114 | |
| dc.identifier.doi | 10.6342/NTU202004443 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-12-23 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| Appears in Collections: | 電信工程學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| U0001-2212202012510900.pdf Restricted Access | 8.28 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
