Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77502
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林泰元zh_TW
dc.contributor.author許毓珊zh_TW
dc.contributor.authorYu-Shan Hsuen
dc.date.accessioned2021-07-10T22:05:43Z-
dc.date.available2024-02-28-
dc.date.copyright2018-10-09-
dc.date.issued2018-
dc.date.submitted2002-01-01-
dc.identifier.citation1. Paolo Bianco, P.G.R.a.P.J.S., Mesenchymal Stem Cells: Revisiting History, Concepts, and Assays. Cell Stem Cell, 2008. 2(4): p. 313-319.
2. Dominici, M.L.B.K., et al. , Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. . Cytotherapy, 2006. 8.(4 (2006)): p. 315-317.
3. Hofmann, T.G., R.A. Boomsma, and D.L. Geenen, Mesenchymal Stem Cells Secrete Multiple Cytokines That Promote Angiogenesis and Have Contrasting Effects on Chemotaxis and Apoptosis. PLoS ONE, 2012. 7(4).
4. Ma, S., N. Xie, W. Li, B. Yuan, Y. Shi, and Y. Wang, Immunobiology of mesenchymal stem cells. Cell Death Differ, 2014. 21(2): p. 216-25.
5. Sibov, T.T., P. Severino, L.C. Marti, L.F. Pavon, D.M. Oliveira, P.R. Tobo, A.H. Campos, A.T. Paes, E. Amaro, L. F Gamarra, and C.A. Moreira-Filho, Mesenchymal stem cells from umbilical cord blood: parameters for isolation, characterization and adipogenic differentiation. Cytotechnology, 2012. 64(5): p. 511-521.
6. Pelekanos, R.A., V.S. Sardesai, K. Futrega, W.B. Lott, M. Kuhn, and M.R. Doran, Isolation and Expansion of Mesenchymal Stem/Stromal Cells Derived from Human Placenta Tissue. J Vis Exp, 2016(112).
7. Patricia A. Zuk, M.Z., Peter Ashjian, Daniel A. De Ugarte, Jerry I. Huang, Hiroshi Mizuno, Zeni C. Alfonso, John K. Fraser, Prosper Benhaim, and Marc H. Hedrick, Human adipose tissue is a source of multipotent stem cells.pdf. Molecular Biology of the Cell, 2002. Vol. 13: p. 4279–4295.
8. In 't Anker PS, S.S., Kleijburg-van der Keur C, Noort WA, Claas FH, Willemze R, Fibbe WE, Kanhai HH., Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood., 2003. 102(4): p. 1548-9.
9. Bosch P, M.D., Lee JY, Cummins J, Shuler T, Ghivizzani TC, Evans T, Robbins TD, Huard., Osteoprogenitor cells within skeletal muscle. J Orthop Res, 2000. 18(6): p. 933-44.
10. Young HE, S.T., Bray RA, Hudson J, Floyd JA, Hawkins K, Thomas K, Austin T, Edwards C, Cuzzourt J, Duenzl M, Lucas PA, Black AC Jr., Human reserve pluripotent mesenchymal stem cells are present in the connective tissues of skeletal muscle and dermis derived from fetal, adult, and geriatric donors. Anat Rec., 2001. 264(1): p. 51-62.
11. Chow, K., J.P. Fessel, S. Kaoriihida, E.P. Schmidt, C. Gaskill, D. Alvarez, B. Graham, D.G. Harrison, D.H. Wagner, Jr., E. Nozik-Grayck, J.D. West, D.J. Klemm, and S.M. Majka, Dysfunctional resident lung mesenchymal stem cells contribute to pulmonary microvascular remodeling. Pulm Circ, 2013. 3(1): p. 31-49.
12. Soleimani, M. and S. Nadri, A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. Nature Protocols, 2009. 4(1): p. 102-106.
13. Tsuji, Y.F.P.D.H.N.D.S.I.H.T.K.K., Human Placenta-Derived Cells Have Mesenchymal Stem:Progenitor Cell Potential. Stem Cells 2004. 22: p. 649–658.
14. Miao, Z., J. Jin, L. Chen, J. Zhu, W. Huang, J. Zhao, H. Qian, and X. Zhang, Isolation of mesenchymal stem cells from human placenta: Comparison with human bone marrow mesenchymal stem cells. Cell Biology International, 2006. 30(9): p. 681-687.
15. Su, L.J., M.S. Wu, Y.Y. Hui, B.M. Chang, L. Pan, P.C. Hsu, Y.T. Chen, H.N. Ho, Y.H. Huang, T.Y. Ling, H.H. Hsu, and H.C. Chang, Fluorescent nanodiamonds enable quantitative tracking of human mesenchymal stem cells in miniature pigs. Sci Rep, 2017. 7: p. 45607.
16. Abdi, R., P. Fiorina, C.N. Adra, M. Atkinson, and M.H. Sayegh, Immunomodulation by Mesenchymal Stem Cells: A Potential Therapeutic Strategy for Type 1 Diabetes. Diabetes, 2008. 57(7): p. 1759-1767.
17. Yagi, H., A. Soto-Gutierrez, B. Parekkadan, Y. Kitagawa, R.G. Tompkins, N. Kobayashi, and M.L. Yarmush, Mesenchymal stem cells: Mechanisms of immunomodulation and homing. Cell Transplant, 2010. 19(6): p. 667-79.
18. Tang, J., Q. Xie, G. Pan, J. Wang, and M. Wang, Mesenchymal stem cells participate in angiogenesis and improve heart function in rat model of myocardial ischemia with reperfusion. European Journal of Cardio-Thoracic Surgery, 2006. 30(2): p. 353-361.
19. Watt, S.M., F. Gullo, M. van der Garde, D. Markeson, R. Camicia, C.P. Khoo, and J.J. Zwaginga, The angiogenic properties of mesenchymal stem/stromal cells and their therapeutic potential. British Medical Bulletin, 2013. 108(1): p. 25-53.
20. Oswald J, B.S., Jørgensen B, Feldmann S, Ehninger G, Bornhäuser M, Werner C., Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells, 2004. 22(3): p. 377-84.
21. Kinnaird, T., Marrow-Derived Stromal Cells Express Genes Encoding a Broad Spectrum of Arteriogenic Cytokines and Promote In Vitro and In Vivo Arteriogenesis Through Paracrine Mechanisms. Circulation Research, 2004. 94(5): p. 678-685.
22. Kachgal, S. and A.J. Putnam, Mesenchymal stem cells from adipose and bone marrow promote angiogenesis via distinct cytokine and protease expression mechanisms. Angiogenesis, 2011. 14(1): p. 47-59.
23. Zhou, B., G. Tsaknakis, K.E. Coldwell, C.P. Khoo, M.G. Roubelakis, C.H. Chang, E. Pepperell, and S.M. Watt, A novel function for the haemopoietic supportive murine bone marrow MS-5 mesenchymal stromal cell line in promoting human vasculogenesis and angiogenesis. Br J Haematol, 2012. 157(3): p. 299-311.
24. Xia, X., Q. Tao, Q. Ma, H. Chen, J. Wang, and H. Yu, Growth Hormone-Releasing Hormone and Its Analogues: Significance for MSCs-Mediated Angiogenesis. Stem Cells Int, 2016. 2016: p. 8737589.
25. Nuschke, A., Activity of mesenchymal stem cells in therapies for chronic skin wound healing. Organogenesis, 2013. 10(1): p. 29-37.
26. Hsuan, Y.C., C.H. Lin, C.P. Chang, and M.T. Lin, Mesenchymal stem cell-based treatments for stroke, neural trauma, and heat stroke. Brain Behav, 2016. 6(10): p. e00526.
27. Il-Kwon Ko, B.-S.K., Mesenchymal Stem Cells for Treatment of Myocardial Infarction. International Journal of Stem Cells, 2008. 1(1): p. 49-54.
28. Liang, L., Z. Li, T. Ma, Z. Han, W. Du, J. Geng, H. Jia, M. Zhao, J. Wang, B. Zhang, J. Feng, L. Zhao, A. Rupin, Y. Wang, and Z.C. Han, Transplantation of Human Placenta-Derived Mesenchymal Stem Cells Alleviates Critical Limb Ischemia in Diabetic Nude Rats. Cell Transplantation, 2017. 26(1): p. 45-61.
29. Adams, R.H. and K. Alitalo, Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol, 2007. 8(6): p. 464-78.
30. Carmeliet, P., Angiogenesis in health and disease. Nature Medicine, 2003. 9: p. 653–660.
31. Peter Carmeliet, R.K.J., Angiogenesis in cancer and other diseases. Nature, 2000. 407(14): p. 249-257.
32. Carmeliet, P., Angiogenesis in health and disease. Nature medicine, 2003. 9(6): p. 653-660.
33. Reynolds, L.P.K., S. D.; Redmer, D. A., Angiogenesis in the female reproductive system. FASEBJ, 1992. 6: p. 886-892.
34. Okonkwo, U. and L. DiPietro, Diabetes and Wound Angiogenesis. International Journal of Molecular Sciences, 2017. 18(7).
35. Martin, A., M.R. Komada, and D.C. Sane, Abnormal angiogenesis in diabetes mellitus. Medicinal Research Reviews, 2003. 23(2): p. 117-145.
36. Organization, W.H., Global report on diabetes. 2016: World Health Organization.
37. Organization, W.H., Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia. report of a WHO/IDF consultation., 2006.
38. Thiruvoipati, T., Peripheral artery disease in patients with diabetes: Epidemiology, mechanisms, and outcomes. World Journal of Diabetes, 2015. 6(7).
39. Talia N. Crawford, D.V.A., III, John B. Kerrison and Eric P. Jablon, Diabetic Retinopathy and Angiogenesis. Current Diabetes Reviews,, 2009. 5: p. 8-13.
40. Michael J. Fowler, M., Microvascular and Macrovascular Complications of Diabetes. CliniCal Diabetes, 2008. 26(2): p. 77-82.
41. Sena, C.M., A.M. Pereira, and R. Seiça, Endothelial dysfunction — A major mediator of diabetic vascular disease. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2013. 1832(12): p. 2216-2231.
42. Brownlee, M., Biochemistry and molecular cell biology of diabetic complications. Nature, 2001. 414: p. 813-820.
43. Tabit, C.E., W.B. Chung, N.M. Hamburg, and J.A. Vita, Endothelial dysfunction in diabetes mellitus: molecular mechanisms and clinical implications. Rev Endocr Metab Disord, 2010. 11(1): p. 61-74.
44. Lipinski, B., Pathophysiology of oxidative stress in diabetes mellitus. J. Diabetes its Complications, 2001. 15(4): p. 203-210.
45. Asmat, U., K. Abad, and K. Ismail, Diabetes mellitus and oxidative stress—A concise review. Saudi Pharmaceutical Journal, 2016. 24(5): p. 547-553.
46. L.A. Pham-Huy, H.H., C. Pham-Huy, Free Radicals, Antioxidants in Disease and Health. IJBS, 2008. 4(2): p. 89-96.
47. Taha, H., K. Skrzypek, I. Guevara, A. Nigisch, S. Mustafa, A. Grochot-Przeczek, P. Ferdek, H. Was, J. Kotlinowski, M. Kozakowska, A. Balcerczyk, L. Muchova, L. Vitek, G. Weigel, J. Dulak, and A. Jozkowicz, Role of Heme Oxygenase-1 in Human Endothelial Cells: Lesson From the Promoter Allelic Variants. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010. 30(8): p. 1634-1641.
48. Abraham, N.G., R. Rezzani, L. Rodella, A. Kruger, D. Taller, G. Li Volti, A.I. Goodman, and A. Kappas, Overexpression of human heme oxygenase-1 attenuates endothelial cell sloughing in experimental diabetes. American Journal of Physiology-Heart and Circulatory Physiology, 2004. 287(6): p. H2468-H2477.
49. Brownlee, M., The Pathobiology of Diabetic Complications. DIABETES, 2004. 54.
50. Lerman, O.Z., R.D. Galiano, M. Armour, J.P. Levine, and G.C. Gurtner, Cellular Dysfunction in the Diabetic Fibroblast. The American Journal of Pathology, 2003. 162(1): p. 303-312.
51. Maruyama, K., J. Asai, M. Ii, T. Thorne, D.W. Losordo, and P.A. D'Amore, Decreased Macrophage Number and Activation Lead to Reduced Lymphatic Vessel Formation and Contribute to Impaired Diabetic Wound Healing. The American Journal of Pathology, 2007. 170(4): p. 1178-1191.
52. Pinedo, H.M.W.V.a.H.M., Possible molecular mechanisms involved in the toxicity of angiogenesis inhibition. Nat Rev Cancer, 2007. 7(6): p. 475-85.
53. Niiyama, H., N.F. Huang, M.D. Rollins, and J.P. Cooke, Murine model of hindlimb ischemia. J Vis Exp, 2009(23).
54. Shen, W.C., C.J. Liang, V.C. Wu, S.H. Wang, G.H. Young, I.R. Lai, C.L. Chien, S.M. Wang, K.D. Wu, and Y.L. Chen, Endothelial progenitor cells derived from Wharton's jelly of the umbilical cord reduces ischemia-induced hind limb injury in diabetic mice by inducing HIF-1alpha/IL-8 expression. Stem Cells Dev, 2013. 22(9): p. 1408-18.
55. Patel, H., J. Chen, K.C. Das, and M. Kavdia, Hyperglycemia induces differential change in oxidative stress at gene expression and functional levels in HUVEC and HMVEC. Cardiovascular diabetology, 2013. 12(1): p. 142.
56. Simons, M., E. Gordon, and L. Claesson-Welsh, Mechanisms and regulation of endothelial VEGF receptor signalling. Nat Rev Mol Cell Biol, 2016. 17(10): p. 611-25.
57. Sheng, J. and Z. Xu, Three decades of research on angiogenin: a review and perspective. Acta Biochimica et Biophysica Sinica, 2016. 48(5): p. 399-410.
58. JOACHIM OSWALD, S.B., BIRGITTE JØRGENSEN, SILVIA FELDMANN, GERHARD EHNINGER, MARTIN BORNHÄUSER, CARSTEN WERNER, Mesenchymal Stem Cells Can Be Differentiated Into Endothelial Cells In Vitro. Stem Cells, 2004. 22(3): p. 376-384.
59. Chen, L., Y. Xu, J. Zhao, Z. Zhang, R. Yang, J. Xie, X. Liu, and S. Qi, Conditioned medium from hypoxic bone marrow-derived mesenchymal stem cells enhances wound healing in mice. PLoS One, 2014. 9(4): p. e96161.
60. Li, S., X. Wang, J. Li, J. Zhang, F. Zhang, J. Hu, Y. Qi, B. Yan, and Q. Li, Advances in the Treatment of Ischemic Diseases by Mesenchymal Stem Cells. Stem Cells International, 2016. 2016: p. 1-11.
61. Das M, S.I., Koka PS, Adult mesenchymal stem cells and their potency in the cell-based therapy. J Stem Cells, 2013. 8(1): p. 1-16.
62. Cao, Y., X. Gang, C. Sun, and G. Wang, Mesenchymal Stem Cells Improve Healing of Diabetic Foot Ulcer. J Diabetes Res, 2017. 2017: p. 9328347.
63. Wu, K.K. and Y. Huan, Streptozotocin-Induced Diabetic Models in Mice and Rats, in Current Protocols in Pharmacology. 2008.
64. Elliot, S., T.C. Wikramanayake, I. Jozic, and M. Tomic-Canic, A Modeling Conundrum: Murine Models for Cutaneous Wound Healing. J Invest Dermatol, 2018. 138(4): p. 736-740.
65. Yan, J., G. Tie, B. Park, Y. Yan, P.T. Nowicki, and L.M. Messina, Recovery from hind limb ischemia is less effective in type 2 than in type 1 diabetic mice: roles of endothelial nitric oxide synthase and endothelial progenitor cells. J Vasc Surg, 2009. 50(6): p. 1412-22.
66. Iwase, T., N. Nagaya, T. Fujii, T. Itoh, S. Murakami, T. Matsumoto, K. Kangawa, and S. Kitamura, Comparison of angiogenic potency between mesenchymal stem cells and mononuclear cells in a rat model of hindlimb ischemia. Cardiovasc Res, 2005. 66(3): p. 543-51.
67. Jeon, Y.-J., J. Kim, J.H. Cho, H.-M. Chung, and J.-I. Chae, Comparative Analysis of Human Mesenchymal Stem Cells Derived From Bone Marrow, Placenta, and Adipose Tissue as Sources of Cell Therapy. Journal of Cellular Biochemistry, 2016. 117(5): p. 1112-1125.
68. Ofir, R., Placenta derived Adherent Stromal Cells for the Treatment of Critical Limb Ischemia (CLI)-Lessons from first Clinical Trial. Placenta, 2011. 32: p. S329-S330.
69. Prather, W.R., A. Toren, M. Meiron, R. Ofir, C. Tschope, and E.M. Horwitz, The role of placental-derived adherent stromal cell (PLX-PAD) in the treatment of critical limb ischemia. Cytotherapy, 2009. 11(4): p. 427-34.
70. Shibuya, M., Vascular endothelial growth factor and its receptor system: physiological functions in angiogenesis and pathological roles in various diseases. J Biochem, 2013. 153(1): p. 13-9.
71. Koch, S. and L. Claesson-Welsh, Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb Perspect Med, 2012. 2(7): p. a006502.
72. Lee, S., S.M. Jilani, G.V. Nikolova, D. Carpizo, and M.L. Iruela-Arispe, Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J Cell Biol, 2005. 169(4): p. 681-91.
73. Kawamura, H., X. Li, K. Goishi, L.A. van Meeteren, L. Jakobsson, S. Cebe-Suarez, A. Shimizu, D. Edholm, K. Ballmer-Hofer, L. Kjellen, M. Klagsbrun, and L. Claesson-Welsh, Neuropilin-1 in regulation of VEGF-induced activation of p38MAPK and endothelial cell organization. Blood, 2008. 112(9): p. 3638-49.
74. Robinson, S.D., L.E. Reynolds, V. Kostourou, A.R. Reynolds, R.G. da Silva, B. Tavora, M. Baker, J.F. Marshall, and K.M. Hodivala-Dilke, Alphav beta3 integrin limits the contribution of neuropilin-1 to vascular endothelial growth factor-induced angiogenesis. J Biol Chem, 2009. 284(49): p. 33966-81.
75. Lee, S., T.T. Chen, C.L. Barber, M.C. Jordan, J. Murdock, S. Desai, N. Ferrara, A. Nagy, K.P. Roos, and M.L. Iruela-Arispe, Autocrine VEGF Signaling Is Required for Vascular Homeostasis. Cell, 2007. 130(4): p. 691-703.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77502-
dc.description.abstract糖尿病(Diabetes Mellitus, DM)是全球十大死亡原因之一。根據台灣衛生福利部國民健康署的統計,台灣約有200萬名DM患者,2016年有9,960名患者死於DM。2016年人口增加了4.5%。根據統計,15-25%的糖尿病患者在其一生中患有糖尿病足潰瘍(Diabetic Foot Ulcer, DFU)。 DFU被認為是發病過程中最主要的問題,也是DM患者住院的主要原因。迄今為止,由於糖尿病導致正常的血管新生受損,大量DM患者需要截肢,造成嚴重的併發症。在過往的研究中,間葉細胞(Mesenchymal stromal cells, MSCs)已被廣泛研究為再生醫學的理想細胞來源,能透過旁泌作用(paracrine effect),促進血管新生。越來越多的證據表明,MSCs移植可以加速傷口閉合,改善臨床症狀,避免截肢。在我們的研究中,我們成功地從人類胎盤蛻膜中分離出一種間葉細胞,命名為胎盤絨毛膜蛻膜間葉細胞(placenta choriodecidual-derived mesenchymal stromal cells, pcMSCs)。.透過使用由pcMSCs和人類臍靜脈內皮細胞(human umbilical vein endothelial cells, HUVEC)組成的共同培養系統(transwell system),我們發現pcMSCs改善了HUVEC在血管形成(tube formation)的能力,增加VEGFR2和VEGF的表現。此外,給予pcMSCs可以延緩後肢壞死,降低缺血性小鼠模型肢體截肢率。因此,我們推論,pcMSCs能夠促進血管生成能力,並且在DFU動物模式中擁有治療效果。 pcMSCs提供了可獲得的細胞來源以及有效的治療。zh_TW
dc.description.abstractDiabetes mellitus (DM) is one of top the 10 causes of death worldwide. According to the statistics of the Health Promotion Administration, Ministry of Health and Welfare, Taiwan, there are about 2 million DM patients in Taiwan, and 9,960 patients died from DM in 2016. The population increased 4.5% in year 2016 compared to the number in 2015. In generally, 15-25% of diabetic patients are suffered from diabetic foot ulcer (DFU) during their life-time. DFU is considered to be the major issue of morbidity and the leading cause of hospitalization for DM patients. To date, a significant number of DM patients required amputations due to a complex result of impaired angiogenesis. Therefore, DFU is not only a patient problem but also a major health care concern throughout the world. In recent studies, mesenchymal stem cells (MSCs) have been reported to be an ideal cell source for regenerative therapy with no ethical issues, played an important role in DFU. Growing evidence has demonstrated that MSCs transplantation could accelerate wound closure, ameliorate clinical parameters, and avoid amputation. In our studies, we have successfully isolated a type of MSCs from human placenta decidal membranes, named pcMSCs. By using a co-culture system consisting of pcMSCs and human umbilical vein endothelial cells (HUVECs), we found that pcMSCs improved the ability of tube formation in HUVEC and upregulated VEGF and VEGFR2 expression. Furthermore, the administration of pcMSCs could retard the necrosis of hind limb and reduce the rate of limb amputation in ischemic murine model. Thus, our study showed the potential therapeutic effects of cell therapy in DFU animal model and the pro-angiogenesis ability of pcMSCs. The application of pcMSCs provided an effective treatment and an accessible cell source for the application in cell-based therapies.en
dc.description.provenanceMade available in DSpace on 2021-07-10T22:05:43Z (GMT). No. of bitstreams: 1
ntu-107-R05443021-1.pdf: 2327886 bytes, checksum: 29cd0e8818573821b92f0fd634e3cb04 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsContents
摘要 iv
Abstract v
Chapter 1 Introduction 1
1.1 Mesenchymal stem/stromal cells (MSCs) 2
1.2 Placenta choriodecidual-derived mesenchymal stromal cells (pcMSCs) 3
1.3 The pro-angiogenic ability of MSCs 4
1.4 Angiogenesis 5
1.5 Diabetes mellitus (DM) 6
1.6 Endothelial dysfunction in diabetes 7
1.7 Impaired angiogenesis in Diabetes mellitus (DM) 10
1.8 Aims of study 10
Chapter 2 Materials and methods 12
2.1 Animals 13
2.2 Human placenta choriodecidual-derived mesenchymal stromal/stem cells (pcMSCs) 13
2.3 Culture of human umbilical vein endothelial cells (HUVECs) 15
2.4 Hyperglycemia-impaired cell model 15
2.5 Tube formation assay 16
2.6 Quantitative real time PCR 16
2.7 Western blot 17
2.8 Data analysis 18
Chapter 3 Results 19
3.1 The gene expression of VEGFR2 was downregulated in HUVEC after high glucose exposure for 7 days. 20
3.2 Administration of pcMSCs rescued the hyperglycemia-downregulated VEGFR2 gene expression. 20
3.3 The pcMSCs treatment enhanced the gene expression of VEGF in HUVEC 21
3.4 The pcMSCs improved the angiogenesis ability of hyperglycemia-impaired HUVEC in tube formation 22
3.5 The survival rate of hyperglycemia-impaired HUVEC was rescued by pcMSCs administration 23
3.6 The gene expressions of pro-angiogenic factors in pcMSCs were upregulated after stimulation of hyperglycemia and co-culturing with HUVEC 24
3.7 The pcMSCs treatment improved the outcomes in ischemia murine model 25
Chapter 4 Discussion and conclusion 27
Chapter 5 Figures and legends 34
Figure 1. Gene expression levels in HUVEC after 1, 3, 5, 7 days of high glucose exposure 36
Figure 2. pcMSCs rescued the hyperglycemia-downregulated VEGFR2 gene expression 38
Figure 3. The pcMSCs treatment enhanced the gene expression of VEGF in HUVEC 41
Figure 4. pcMSCs improved the angiogenesis ability of hyperglycemia-impaired HUVEC in tube formation 44
Figure 5. The survival rate of hyperglycemia-impaired HUVEC was rescued by pcMSCs administration in WST assay 46
Figure 6. The gene expression of pro-angiogenic factors in pcMSCs 48
Figure 7. The gene expression of pro-angiogenic growth factors in pcMSCs 51
Figure 8. The gene expression of inflammatory cytokines in pcMSCs 53
Figure 9. The BALB/c strain was most suitable for establishing the critical limb ischemia murine model 55
Figure 10. The pcMSCs treatment improved the outcomes in ischemia murine model 58
Table 1. Real time PCR human primer sequences 59
Chapter 6 References 61
-
dc.language.isoen-
dc.title人類胎盤絨毛膜蛻膜間葉細胞對於高糖受損內皮細胞與後肢缺血模式之血管新生的療效探討zh_TW
dc.titleThe Therapeutic effects of Placenta-choriodecidual Derived Mesenchymal Stromal Cells (pcMSCs) on Angiogenesis in Hyperglycemia-impaired Endothelial Cells and Hind Limb Ischemia Murine Modelen
dc.typeThesis-
dc.date.schoolyear106-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃德富;黃彥華;陳文彬;楊鎧鍵zh_TW
dc.contributor.oralexamcommittee;;;en
dc.subject.keyword糖尿病,胎盤絨毛膜蛻膜間葉細胞,內皮細胞,糖尿病後肢缺血,高血糖,zh_TW
dc.subject.keywordDiabetes mellitus,Placenta choriodecidual-derived mesenchymal stromal cells,Endothelial cells,Diabetic hind limb ischemia,hyperglycemia,en
dc.relation.page67-
dc.identifier.doi10.6342/NTU201803586-
dc.rights.note未授權-
dc.date.accepted2018-08-16-
dc.contributor.author-college醫學院-
dc.contributor.author-dept藥理學研究所-
顯示於系所單位:藥理學科所

文件中的檔案:
檔案 大小格式 
ntu-106-2.pdf
  目前未授權公開取用
2.27 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved