請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77498完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡睿哲(Jui-che Tsai) | |
| dc.contributor.author | Wei-Wen Chen | en |
| dc.contributor.author | 陳韋文 | zh_TW |
| dc.date.accessioned | 2021-07-10T22:05:30Z | - |
| dc.date.available | 2021-07-10T22:05:30Z | - |
| dc.date.copyright | 2018-08-21 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-15 | |
| dc.identifier.citation | [1] H. Yu, G. Zhou, Y. Du, X. Mu, and F. S. Chau, “MEMS-Based Tunable Iris Diaphragm,” Journal of Microelectromechanical Systems, vol. 21, no. 5, pp.1136-1145, 2012.
[2] J. B. Chae, S. Park, J. H. Chang, J. Yang, and S. K. Chung, “Packaging technique for a tunable miniature liquid iris operated by electrowetting actuation,” 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), pp. 1296-1299, 2017. [3] 羅國隆、鄭惟元,電濕潤顯示器(electrowetting display)技術之近況發展,工研院顯示中心,2008。 [4] C. C. Yu, J. R. Ho, and J.-W. J Cheng, “Tunable liquid iris actuated using electrowetting effect,” Optical Engineering, vol. 53, no. 5, pp. 831-834, 2014. [5] Z. Zhou, H. Ren, and C. Mah, “Adaptive liquid crystal iris,” Japanese Journal of Applied Physics, vol. 53, no. 9, 2014. [6] B. J. Chen, C. H. Lyu, C. C. Chang, C. H. Tsai, and J. C. Tsai, “Solid-State Variable Micro Aperture with No Moving Component,” 2014 International Conference on Optical MEMS and Nanophotonics (OMN), Glasgow, United Kingdom, pp. 69-70, 2014. [7] W. C. Shih, C. H. Lyu, B. J. Chen, S. H. Yu, and J. C. Tsai, “Non-Mechanical Solid Tunable Diaphragm with a Large Optical Aperture,” 2016 International Conference on Optical MEMS and Nanophotonics (OMN), Singapore, pp. 185-186, 2016. [8] S. H. Yu, C. C. Chang, J. H. Gu, and J. C. Tsai, “Solid Non-Mechanical Discretely-Tunable Hard-Aperture Diaphragm,” Proc. 2017 International Conference on Optical MEMS and Nanophotonics (OMN), New Mexico, USA, pp. 77-78, 2017. [9] C. W. Chang, “The Effect of Temperature and Mechanical Rubbing on the Surface Free Energy of Polyimide Thin Films and the Wettability of Liquid Crystal,” Master Thesis, Department of Photonics, National Sun Yat-Sen University, 2010. [10] Toralf Scharf, Polarized light in liquid crystals and polymers, John Wiley & Sons, 2007. [11] C. Hilsum, “Electro-optic device,” UK patent 1, 442, 360, 1976. [12] L. Bouteiller, and P. L. Barny, “Polymer-dispersed liquid crystals: preparation, operation and application,” Liquid crystals, vol. 21, no. 2, pp. 157-174, 1996. [13] P. Formentín, R. Palacios, J. Ferré-Borrull, J. Pallarés, L. F. Marsal, “Polymer-dispersed liquid crystal based on E7: Morphology and characterization,” Synthetic Metals, vol. 158, no. 21, pp. 1004-1008, 2008. [14] J. Y. Tsai, “Studies of Fast Optical Recording in Dye Doped Polymer-dispersed Liquid Crystal Films,” Graduate Institute of Physics Master Thesis, National Cheng Kung University, 2002. [15] NOA65, retrieved from https://www.norlandprod.com/adhesives/noa%2065.html. [16] S. Xu, Y. Li, Y. Liu, J. Sun, H. Ren, and S. T. Wu, “Fast-Response Liquid Crystal Microlens,” Micromachines, vol. 5, no. 2, pp. 300-324, 2014. [17] C. M Chang, Y. H. Lin, V. Reshetnyak, C. H. Park, R. Manda, and S. H. Lee, “Origins of Kerr phase and orientational phase in polymer-dispersed liquid crystals,” OPTICS EXPRESS, vol. 25, no. 17, 2017. [18] B. J. Chen, “Variable Solid-State Micro Aperture Without Moving Component,” Master Thesis, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, 2015. [19] C. H. Lyu, “Design, Fabrication, and Characterization of Solid Tunable Micro Aperture,” Master Thesis, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, 2016. [20] W. C. Shih, “Non-Mechanical Solid Tunable Diaphragm with a Large Optical Aperture,” Master Thesis, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, 2016. [21] CTPC, retrieved from http://www.polychem.tw/. [22] S. H. Yu, “Design and Fabrication of the Solid Diaphragm with a Discretely Tunable Aperture,” Master Thesis, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, 2017. [23] Y. T. Wang, Y. C. Hu, W. C. Chu, and P. Z Chang, “The Fringe-Capacitance of Etching Holes for CMOS-MEMS,” Micromachines, vol. 6, no. 11, pp. 1617-1628, 2015. [24] 林芝妏、張天慈、李美英、趙治宇,高分子分散型液晶製程探討與有機溶劑摻雜,臺灣國際科學展覽會,2013。 [25] T. Kumar, and K. Verma, “A Theory Based on Conversion of RGB image to Gray image,” International Journal of Computer Applications, vol. 7, no. 2, pp. 7-10, 2010. [26] W. W. Chen, Y. L. Chen, S. H. Yu, and J. C. Tsai, “PDLC-Based Optical Aperture Tuned by the Fringing Electric Field,” Proc. 2018 International Conference on Optical MEMS and Nanophotonics (OMN), Lausanne, Switzerland, pp. 177-178, 2018. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77498 | - |
| dc.description.abstract | 本研究提出一個創新的概念來製作可連續性調變之微型固態光圈,利用邊緣電場效應原理結合高分子分散型液晶(Polymer-dispersed liquid crystal, PDLC)的特性,藉由施加不同電壓來調變光圈孔徑的大小。
在元件結構上,我們使用微影蝕刻製程在氧化銦錫(Indium Tin Oxide, ITO)玻璃基板上製作出長條形的透明電極,將兩者正交排列堆疊,利用聚二甲基矽氧烷(Polydimethylsiloxane, PDMS)模具製作間隙物(Spacer),並於其中滴入PDLC混合液並曝光固化。在光圈元件的設計中,光圈調變的機制是利用有限平行板所產生的邊緣電場效應,隨著外加電壓上升,方形區域內的液晶分子會先偏轉,外加電壓持續上升,邊緣電場影響的範圍逐漸增加,影響方形光圈周圍的液晶分子轉動,光圈的孔徑亦隨之增加。而在元件的材料方面,我們選擇PDLC來作為調變層,使用PDLC薄膜的優點在於其反應時間短、不依賴光的偏振性,故元件不需外加偏振片。PDLC的製備使用了液晶E7與高分子聚合物NOA65以重量百分比6 : 4的比例混合,而為了降低驅動電壓,在PDLC中摻雜重量百分比10%的乙醇。在量測結果方面,本論文中使用白熾燈與透鏡組搭配CMOS感光元件進行光圈影像的擷取,並將影像進行灰階轉換後,分析光圈孔徑大小與施加電壓之間的關係。最後,藉由上述實驗結果,我們驗證了邊緣電場效應結合PDLC應用於可調變微型方形光圈之可行性。 | zh_TW |
| dc.description.abstract | In this thesis, we demonstrate a novel concept of tuning a solid polymer dispersed liquid crystal (PDLC)-based optical aperture using the fringing electric field. The variable aperture size can be tuned by applied different voltage.
The modulation mechanism is the fringing field created by finite parallel-plate capacitors. As the applied voltage increases, the alignment direction of LC molecules in square region will rotate along the electric field. As the applied voltage increases continuously, the affected area of fringing field expands. As a result, the LC molecules nearby the square region rotate along the electric field gradually and the aperture size becomes larger as well. The device consists of a top and a bottom glass substrate with patterned ITO, and the PDLC sandwiched between them. PDLC is suitable for being tunable layer because it has short response time and is polarization-independent. Uncured PDLC mixture is formed with a weight ratio of E7 liquid crystal to NOA65 prepolymer of 6 : 4. In order to lower driving voltage, we mix PDLC with ethanol (weight percentage of ethanol = 10%). Next, we assemble the two ITO glass substrates; the uncured mixture is sandwiched between them and then cured to form the PDLC. Voltage can now be applied across the top and bottom electrodes to control the transparency in the region where the top and bottom electrodes overlap. Last but not least, we use incandescent white light source, lens assembly and CMOS image sensor to capture the aperture image information, and then transform image to gray scale. After that, we analyze the relationship between the applied voltage and aperture size. In summary, we prove its feasibility for PDLC variable micro square aperture by using the fringing electric field. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T22:05:30Z (GMT). No. of bitstreams: 1 ntu-107-R05941060-1.pdf: 18353993 bytes, checksum: 005240391260b9a9e384e78b33c12537 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 中文摘要 ii
ABSTRACT iii 目錄 iv 圖目錄 vi 表目錄 ix Chapter 1 緒論 1 1.1 前言 1 1.2 光圈元件簡介 1 1.3 文獻回顧 3 1.3.1 微機電刀刃結構之光圈元件 3 1.3.2 光流體結構之光圈元件 6 1.3.3 液晶結構之光圈元件 10 1.4 研究動機 14 Chapter 2 可調變光圈元件設計原理與理論分析 15 2.1 PDLC介紹 15 2.1.1 液晶簡介 15 2.1.2 PDLC基本性質 18 2.1.3 工作原理 20 2.2 可調變光圈之設計與理論分析 21 2.2.1 微型光圈製作回顧 21 2.2.2 設計概念 25 2.2.3 結構設計 27 Chapter 3 光圈元件製作 29 3.1 電極製作 29 3.2 間隙物(Spacer)製作 32 3.3 PDLC薄膜製備 36 3.4 光圈元件組裝 42 Chapter 4 可調變光圈元件量測與結果討論 43 4.1 光圈影像量測 43 4.1.1 量測系統架構 43 4.1.2 影像灰階轉換分析 44 4.2 模擬與量測結果分析 46 4.2.1 不同形狀之光圈成像模擬 46 4.2.2 不同孔徑之方形光圈比較 48 Chapter 5 結論與未來展望 54 5.1 結論 54 5.2 未來展望 56 參考文獻 57 | |
| dc.language.iso | zh-TW | |
| dc.subject | 邊緣電場效應 | zh_TW |
| dc.subject | 可調變微型光圈 | zh_TW |
| dc.subject | 高分子分散型液晶 | zh_TW |
| dc.subject | fringing field | en |
| dc.subject | tunable optical aperture | en |
| dc.subject | polymer-dispersed liquid crystal (PDLC) | en |
| dc.title | 以高分子分散型液晶製作並利用邊緣電場調控之微型固體光圈 | zh_TW |
| dc.title | Solid Micro Aperture Fabricated with the Polymer-Dispersed Liquid Crystal (PDLC) and Tuned by the Fringing Electric Field | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鍾仁傑(Ren-Jei Chung),孫家偉(Chia-Wei Sun) | |
| dc.subject.keyword | 可調變微型光圈,高分子分散型液晶,邊緣電場效應, | zh_TW |
| dc.subject.keyword | tunable optical aperture,polymer-dispersed liquid crystal (PDLC),fringing field, | en |
| dc.relation.page | 58 | |
| dc.identifier.doi | 10.6342/NTU201803630 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2018-08-16 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-R05941060-1.pdf 未授權公開取用 | 17.92 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
