請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77496完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃天偉(Tian-Wei Huang) | |
| dc.contributor.author | Ming-Hang Wu | en |
| dc.contributor.author | 吳茗航 | zh_TW |
| dc.date.accessioned | 2021-07-10T22:05:04Z | - |
| dc.date.available | 2021-07-10T22:05:04Z | - |
| dc.date.copyright | 2021-01-05 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-12-24 | |
| dc.identifier.citation | [1] “Starlink: Rain Fade – Will it Work?,” available at https://vividcomm.com/2020/09/06/starlink-rain-fade-will-it-work/ [2] Comtech EF Data, “Multi-channel satellite modems with doubletalk carrier-in-carrier,” CDM-QxL datasheet. [3] Comtech EF Data, “Broadcast satellite modem,” CDM-710 datasheet, Jul. 2014. [4] Comtech EF Data, “Satellite modems,” CDM-570L-IPEN datasheet. [5] Teledyne Paradise Datacom, “L-band satellite modem,” Quantum series PD20L datasheet. [6] Teledyne Paradise Datacom, “Dual IF/L-band satellite modem,” Q-Flex datasheet, Feb. 2019. [7] Work Microwave, “DVB-S2 modem,” SK-IP datasheet, Jun. 2019. [8] Viasat, “DVB-S2 SCPC modem,” ELiTE-S2 datasheet. [9] Comtech EF Data, “Advanced satellite modem,” CDM-425 datasheet, Jan. 2018. [10] Comtech EF Data, “Advanced satellite modem,” CDM-625A datasheet, Jan. 2018. [11] “Is the Internet of Space Technically and Economically Viable?,” available at https://www.mwrf.com/technologies/systems/article/21847102/is-the-internet-of-space-technically-and-economically-viable [12] “5G Coverage Support for Excel Bandwidth,” available at https://www.ctscorp.com/markets/5g/ [13] J. Crols and M. S. J. Steyaert, “A single-chip 900 MHz CMOS receiver front-end with a high performance low-IF topology,” IEEE J. Solid-State Circuits, vol. 30, no. 12, pp. 1483–1492, Dec. 1995. [14] C.-W. Kim and S.-G. Lee, “A 5.25-GHz image rejection RF front-end receiver with polyphase filters,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 302–304, May 2006. [15] C.-C. Meng, D.-W. Sung, and G.-W. Huang, “A 5.2-GHz GaInP/GaAs HBT double-quadrature downconverter with polyphase filters for 40-dB image rejection,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 2, pp. 59–61, Feb. 2005. [16] J.-S. Syu, C.-C. Meng, Y.-H. Teng, and H.-Y. Liao, “Large improvement in image rejection of double-quadrature dual-conversion low-IF architectures,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 7, pp. 1703–1712, July 2010. [17] T. Baras and A. F. Jacob, “Multilayer-integration of wideband LTCC image rejection mixers at K-band,” in Proc. German Microw. Conf., Mar. 2010, pp. 86–89. [18] P. K. Singh, S. Basu, K.-H. Liao, and Y.-H. Wang, “Highly integrated Ka-band sub-harmonic image-reject down-converter MMIC,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 5, pp. 305–307, May 2009. [19] J. Kim, W. Choi, Y. Park, and Y. Kwon, “60 GHz broadband image rejection receiver using varactor tuning,” in Proc. IEEE Radio Freq. Integr. Circuits Symp., May 2010, pp. 381–384. [20] Y. Ye, J. Zhang, R. Tong, and X. Sun, “A linear resistive single side-band (SSB) up-converter for E-band wireless communication,” in Proc. Int. Wireless Symp. (IWS), Mar. 2014, pp. 1–4. [21] J.-Y. Su, S.-C. Tseng, C.-C. Meng, P.-Y. Wu, Y.-T. Lee, and G.-W. Huang, “Ka/Ku-band pHEMT Gilbert mixers with polyphase and coupled-line quadrature generators,” IEEE Trans. Microw. Theory Techn., vol. 57, no. 5, pp. 1063–1073, May 2009. [22] Y.-C. Hsiao, C.-C. Meng, J.-Y. Su, S.-W. Yu, and G.-W. Huang, “16-GHz mHEMT double-quadrature Gilbert down-conversion mixer with polyphase filters,” in Proc. Int. Wireless Symp. (IWS), Apr. 2013, pp. 1–4. [23] S. E. Gunnarsson, D. Kuylenstierna, and H. Zirath, “Analysis and design of millimeter-wave FET-based image reject mixers,” IEEE Trans. Microw. Theory Techn., vol. 55, no. 10, pp. 2065–2074, Oct. 2007. [24] S. Mondal and J. Paramesh, “A reconfigurable 28-/37-GHz MMSE-adaptive hybrid-beamforming receiver for carrier aggregation and multi-standard MIMO communication,” IEEE J. Solid-State Circuits, vol. 54, no. 5, pp. 1391–1406, May 2019. [25] Radio Regulations Articles, document ITU Radio Regulations, edition of 2016 (vol. 1), accessed on Sep. 8, 2019. [Online]. Available: https://handle.itu.int/11.1004/020.1000/1.43 [26] W.-H. Lin, H.-Y. Yang, J.-H. Tsai, T.-W. Huang, and H. Wang, “1024-QAM high image rejection E-band sub-harmonic IQ modulator and transmitter in 65-nm CMOS process,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 11, pp. 3974–3985, Nov. 2013. [27] H.-Y. La and Y.-C Chiang, “A novel structure of single-side-band mixer with adopting dual-band quadrature coupler,” in Proc. IEEE Asia–Pacific Microw. Conf., Dec. 2009, pp. 701–704. [28] K. Hettak, G. A. Morin, and M. G. Stubbs, “A novel miniature multilayer MMIC CPW single sideband CPW mixer for up conversion at 44.5 GHz,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 9, pp. 606–608, Sep. 2005. [29] Y.-C. Chiang and M.-C. Ma, “Wide-band single-side band subharmonic mixer constructed with re-entrant couplers and lumped-element coupler,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 12, pp. 806–808, Dec. 2008. [30] S. Kulkarni, D. Zhao, and P. Reynaert, “Design of an optimal layout polyphase filter for millimeter-wave quadrature LO generation,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 60, no. 4, pp. 202–206, Apr. 2013. [31] J. Kaukovuori, K. Stadius, J. Ryynänen, and K. A. I. Halonen, “Analysis and design of passive polyphase filters,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 10, pp. 3023–3037, Nov. 2008. [32] 鄭創元撰,應用於K及Ka頻段之高鏡像抑制混頻器和壓控振盪器的設計與整合,國立台灣大學電信工程學研究所碩士論文,2014年7月。 [33] J.-H. Tsai, “Design of 1.2-V broadband high data-rate MMW CMOS I/Q modulator and demodulator using modified Gilbert-cell mixer,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 5, pp. 1350–1360, May 2011. [34] H. Nam, W. Lee, J. Son, and J.-D. Park, “A compact I/Q upconversion chain for a 5G wireless transmitter in 65-nm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 30, no. 3, pp. 284–287, March 2020. [35] H.-J. Wei, C.-C. Meng, T.-W. Wang, T.-L. Lo, and C.-L. Wang, “60-GHz dual-conversion down-/up-converters using Schottky diode in 0.18 μm foundry CMOS technology,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 6, pp. 1684–1698, Jun. 2012. [36] E. R. O. Convert, S. J. Mahon, J. T. Harvey, M. G. McCulloch, S. Hwang, R. G. Mould, A. P. Fattorini, R. M. Clement, and A. C. Young, “Q band up-converter,” in Proc. IEEE Int. Conf. Microw., Commun., Antennas Electron. Sys., Nov. 2011, pp. 1–3. [37] K. Hettak, T. Ross, N. Irfan, G. Morin, M. C. E. Yagoub, and J. Wight, “Highly integrated 60 GHz SSB MMIC mixer with no DC power consumption based on subharmonic LO and CPW circuits in GaAs pHEMT technology,” in Proc. 7th Eur. Microw. Integr. Circuits Conf., Oct. 2012, pp. 536–539. [38] C.-Y. Huang, K.-L. Wu, R. Hu, and C.-Y. Chang, “A 34-42 GHz single-side-band transmitter with switchable VCO/PLL in 90-nm CMOS process,” in Proc. IEEE Int. Symp. Radio-Freq. Integr. Tech. (RFIT), Aug. 2017, pp. 46–49. [39] Y.-T. Chang and H.-C. Lu, “An E-band gate-pump SSB mixer for vital signs Doppler radar,” in Proc. IEEE Int. Symp. Radio-Freq. Integr. Tech. (RFIT), Aug. 2018, pp. 1–3. [40] A. Hirai, K. Tsutsumi, and M. Shimozawa, “Image rejection mixer using tunable poly phase filter with negative feedback control and reference resistor,” in Proc. IEEE Asia–Pacific Microw. Conf., Dec. 2016, pp. 1–4. [41] J.-Y. Hsieh, T. Wang, and S.-S. Lu, “A 90-nm CMOS V-band low-power image-reject receiver front-end with high-speed auto-wake-up and gain controls,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 2, pp. 541–549, Feb. 2016. [42] 林建安撰,頻率合成器在汽車防撞雷達和SATA III的應用以及寬頻鏡像抑制降頻混波器之研製,國立台灣大學電信工程學研究所碩士論文,2014年8月。 [43] F. Behbahani, Y. Kishigami, J. Leete, and A. A. Abidi, “CMOS mixers and polyphase filters for large image rejection,” IEEE J. Solid-State Circuits, vol. 36, no. 6, pp. 873–887, Jun. 2001. [44] K.-H. Liang, H.-Y. Chang, and Y.-J. Chan, “A 0.5-7.5 GHz ultra low-voltage low-power mixer using bulk-injection method by 0.18-μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 7, pp. 531–533, Jul. 2007. [45] C. Wang and N. Y. Kim, “High-integrated and small-sized X-band image rejection down-converter MMIC using InGaP/GaAs HBT process,” Microw. Opt. Technol. Lett., vol. 53, no. 4, pp. 789–793, Apr. 2011. [46] M. Frounchi, C. Coen, C. D. Cheon, N. Lourenco, W. Williams, and J. D. Cressler, “A V-band SiGe image-reject receiver front-end for atmospheric remote sensing,” in Proc. IEEE BiCMOS and Compound Semicond. Integr. Circuits and Technol. Symp. (BCICTS), Oct. 2018, pp. 223–226. [47] S. Mondal, R. Singh, A. I. Hussein, and J. Paramesh, “A 25–30 GHz fully-connected hybrid beamforming receiver for MIMO communication,” IEEE J. Solid-State Circuits, vol. 53, no. 5, pp. 1275–1287, May 2018. [48] K.-C. Chiang, T.-C Tsai, I. Huang, J.-H. Tsai, and T.-W. Huang, “A 27-GHz transformer based power amplifier with 513.8-mW/mm2 output power density and 40.7% peak PAE in 1-V 28-nm CMOS,” in IEEE MTT-S Int. Microw. Symp. Dig., June 2019, pp.1283-1286. [49] 張天慈撰,應用於無線通訊之瓦級高功率密度變壓器功率結合式LDMOS 功率放大器之研製,國立台灣大學電信工程學研究所碩士論文,2016年7月。 [50] J. Kim et al., “A linear multi-mode CMOS power amplifier with discrete resizing and concurrent power combining structure,” IEEE J. Solid-State Circuits, vol.46, no.5, pp.1034-1048, May 2011. [51] D.A. Chan and M. Feng, “2.5 GHz CMOS power amplifier integrated with low loss matching network for WiMAX applications,” in IEEE Asia-Pacific Microwave Conference (APMC), Dec. 2009. pp.1108-1111. [52] O. Degani et al., “A 90-nm CMOS power amplifier for 802.16e (WiMAX) Applications,” IEEE Trans. Microw. Theory Techn., vol.58, no.5, pp.1431-1437, May 2010. [53] Y. Wanxin, M. Kaixue, S. Y. Kiat, “A 2-to-6GHz Class-AB power amplifier with 28.4% PAE in 65nm CMOS supporting 256QAM,” in IEEE International Solid-State Circuits Conference (ISSCC) Dig. Tech. Papers, Feb. 2015, pp.1-3 [54] D. Chowdhury, D. H. Christopher, B. D. Ofir, W. Yanjie, and M. N. Ali, “A fully integrated dual-mode highly linear 2.4 GHz CMOS power amplifier for 4G WiMax applications,” IEEE J. Solid-State Circuit, vol.44, no.12, pp.3393-3402, Dec. 2009. [55] K. Jihwan et al., “A fully-integrated high-power linear CMOS power amplifier with a parallel-series combining transformer,” IEEE J. Solid-State Circuits, vol.47, no.3, pp.599-614, March 2012. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77496 | - |
| dc.description.abstract | 本篇論文主要的目的是設計擁有148%/117% IF比例頻寬的Ka頻段免校正高鏡像抑制升頻/降頻混頻器以及40奈米橫向擴散金屬氧化物半導體(LDMOS)微型化功率放大器。 第二和第三章是兩顆分別設計於90奈米CMOS製程的Ka頻段免校正高鏡像抑制升頻/降頻混頻器。為了涵蓋衛星調變解調器(modem)其寬的操作頻率 (0.95-2.15 GHz),在IF端使用三階城堡形狀(castle-wall)的多相濾波器(polyphase filter)使振幅和相位的誤差最小化。為了本地震盪源(LO)正交信號的產生(quadrature generation)則是使用包含兩個寬邊90度耦合器(broadside 90° coupler)和一個馬遜巴倫(Marchand balun)的四路正交分波器(four-way quadrature divider)。在不用校正情況下,單邊帶(single-sideband)升頻混頻器和鏡像抑制(image-rejection)降頻混頻器,在IF頻率展示寬的鏡像抑制比頻寬(鏡像抑制比<-30 dBc),分別從0.6到4 GHz (148% IF比例頻寬) 和0.65到2.5 GHz (117% IF比例頻寬)。此外,單邊帶升頻混頻器和鏡像抑制降頻混頻器的RF頻寬(鏡像抑制比<-30 dBc)分別是27.7到33.3 GHz (18.36% RF比例頻寬)和17.1到20.6 GHz (18.5% RF比例頻寬)。這些鏡像抑制比特性能強韌地對抗(robust against)製程、電壓和溫度的變異以及蒙特卡羅模擬。 第四章是一個製作於40奈米製程的微型化、全積體化的2.5-GHz LDMOS功率放大器。由於高崩潰電壓的特性,LDMOS相較於現代標準的CMOS電晶體能提供優異的高功率密度。而電容性中和技術則被採用去改善LDMOS電晶體的穩定度以及提升最大可用增益。為了低成本微型化,變壓器被使用在我們提出的電路中,實現有效的功率結合和阻抗轉換。這個LDMOS功率放大器在2.5 GHz達到26.7 dBm的飽和輸出功率和24.24 dBm的1dB壓縮點輸出功率。在最近發表的CMOS功率放大器中,這個功率放大器在2.5 GHz展示最高的飽和輸出功率的功率密度1467mW/mm2而其緊密晶片面積是0.318 mm2。 | zh_TW |
| dc.description.abstract | The main purpose of this dissertation is to design the Ka-band calibration-free high image-rejection up/down mixers with 148%/117% fractional IF bandwidths and a 40-nm laterally diffused metal oxide semiconductor (LDMOS) miniature power amplifier (PA). In chapters 2 and 3, two Ka-band calibration-free high image-rejection up/down mixers are designed in 90-nm CMOS process. To cover the wide operating frequencies of the satellite modem (0.95-2.15 GHz), a 3-stage castle-wall polyphase filter (PPF) is used at the IF port to minimize the amplitude and phase errors. For local oscillator (LO) quadrature generation, a four-way quadrature divider composed of two broadside 90° couplers and one Marchand balun is used. The single-sideband (SSB) up mixer and image-rejection (IR) down mixer demonstrate broad IRR bandwidths at the IF frequencies (IRR<-30 dBc) from 0.6 to 4 GHz (148% fractional IF bandwidth) and from 0.65 to 2.5 GHz (117% fractional IF bandwidth), respectively, with no calibration. In addition, the RF bandwidths (IRR<-30 dBc) of the SSB up mixer is 27.7-33.3 GHz (18.36% fractional RF bandwidth), and the IR down mixer is 17.1-20.6 GHz (18.5% fractional RF bandwidth). The IRR performances are robust against process, voltage, and temperature (PVT) variations and Monte Carlo simulations. In chapter 4, a miniature fully-integrated 2.5-GHz LDMOS PA is implemented in 40-nm CMOS process. Due to the high breakdown voltage characteristic, LDMOS provides superior power density than modern standard CMOS transistor. The capacitive neutralization technique is adopted to improve stability of the LDMOS transistor while enhancing the maximum available gain. For low-cost miniaturization, the transformers are utilized in the proposed PA. Also, efficient power combining and impedance transformation can be realized. The LDMOS PA achieves saturated output power (Psat) of 26.7 dBm and OP1dB of 24.24 dBm at 2.5 GHz. With a compact chip size of 0.318 mm2, the PA demonstrates the highest Psat power area density (PAD) of 1467 mW/mm2 at 2.5 GHz among recently reported CMOS PAs. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T22:05:04Z (GMT). No. of bitstreams: 1 U0001-2212202017094100.pdf: 2919432 bytes, checksum: 6d21ff03030d28813acfb700e39d3980 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 誌謝 ii 中文摘要 iv ABSTRACT vi CONTENTS viii LIST OF FIGURES x LIST OF TABLES xv Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Literature Survey 3 1.3 Thesis Organization 4 Chapter 2 A Ka-Band Calibration-Free High Image-Rejection Up Mixer with 148% Fractional IF Bandwidth 5 2.1 Introduction 5 2.2 Circuit Design 8 2.2.1 Device Size and Bias Point Selection 8 2.2.2 PPF Design 13 2.2.3 Design of the SSB Up Mixer 20 2.3 Measurement Results 29 Chapter 3 A Ka-Band Calibration-Free High Image-Rejection Down Mixer with 117% Fractional IF Bandwidth 35 3.1 Introduction 35 3.2 Circuit Design 37 3.2.1 Device Size and Bias Point Selection 37 3.2.2 PPF Design 39 3.2.3 Design of the IR Down Mixer 42 3.3 Measurement Results 51 Chapter 4 A Miniature Fully-Integrated 2.5-GHz LDMOS Power Amplifier in 40-nm CMOS Process 57 4.1 Introduction 57 4.2 Circuit Design 59 4.2.1 Device Size and Bias Selection 59 4.2.2 Design of Power Amplifier 62 4.3 Measurement Results 65 Chapter 5 Conclusions 68 REFERENCES 70 PUBLICATION LIST 77 | |
| dc.language.iso | en | |
| dc.subject | 功率放大器 | zh_TW |
| dc.subject | 互補式金屬氧化物半導體 | zh_TW |
| dc.subject | 鏡像抑制混頻器 | zh_TW |
| dc.subject | 單邊帶混頻器 | zh_TW |
| dc.subject | 多相濾波器 | zh_TW |
| dc.subject | 橫向擴散金屬氧化物半導體 | zh_TW |
| dc.subject | polyphase filter | en |
| dc.subject | power amplifier | en |
| dc.subject | LDMOS | en |
| dc.subject | CMOS | en |
| dc.subject | image-rejection mixer | en |
| dc.subject | single-sideband mixer | en |
| dc.title | 90奈米CMOS高鏡像抑制頻率轉換器及40奈米LDMOS微型化功率放大器之研製 | zh_TW |
| dc.title | Design of 90-nm CMOS High Image-Rejection Frequency Converters and 40-nm LDMOS Miniature Power Amplifier | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 109-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 蔡政翰(Jeng-Han Tsai),楊弘源(Hong-Yuan Yang),鍾杰穎(Jie-Ying Zhong),林文傑(Wen-Jie Lin) | |
| dc.subject.keyword | 互補式金屬氧化物半導體,鏡像抑制混頻器,單邊帶混頻器,多相濾波器,橫向擴散金屬氧化物半導體,功率放大器, | zh_TW |
| dc.subject.keyword | CMOS,image-rejection mixer,single-sideband mixer,polyphase filter,LDMOS,power amplifier, | en |
| dc.relation.page | 79 | |
| dc.identifier.doi | 10.6342/NTU202004445 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-12-25 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2212202017094100.pdf 未授權公開取用 | 2.85 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
