請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77488
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蔡睿哲 | |
dc.contributor.author | Yu-Fan Chen | en |
dc.contributor.author | 陳昱帆 | zh_TW |
dc.date.accessioned | 2021-07-10T22:04:32Z | - |
dc.date.available | 2021-07-10T22:04:32Z | - |
dc.date.copyright | 2018-08-21 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-08-16 | |
dc.identifier.citation | [1] 陳昱帆, “三葉草型微機電可調變Corner Cube Retro-reflector (CCR)光學回射器,” 國立臺灣大學光電工程學研究所, 碩士論文, 2011.
[2] Hua, H., Gao, C., and Rolland, J. P., “Imaging properties of retro-reflective materials used in head-mounted projective displays (HMPDs)” International Society for Optics and Photonics on International Society for Optics and Photonics in Helmet-and Head-Mounted Displays VII, Vol. 4711, pp. 194-202, August 2002. [3] Austin, R. L. and Schultz, R. J., “Guide to Retroreflection Safety Principles and Retrorereflective Measurements,” Gamma Scientific, 2002. [4] Degnan, J. J., “A tutorial on retroreflectors and arrays for SLR,” In International Technical Laser Workshop, November 2012. [5] O’Brien, D. C., Faulkner, G. E., and Edwards, D. J., “Optical properties of a retroreflecting sheet,” Applied Optics, Vol. 38(19), pp. 4137-4144, 1999. [6] Kim, H. and Lee, B., “Optimal design of retroreflection corner-cube sheets by geometric optics analysis,” Optical Engineering, Vol. 46(9), pp. 094002, 2007. [7] Moon, E., Park, S. W., Chung, H., Lee, J. Y., Bae, C., Kim, J. W., Paek, J. and Kim, H., “Truncated corner cubes with near-perfect retroreflection efficiency,” Applied Optics, Vol. 53(33), pp. 7972-7978, 2014. [8] Eckhardt, H. D., “Simple model of corner reflector phenomena,” Applied Optics, Vol. 10(7), pp. 1559-1566, 1971. [9] Nishioka, M., Inoue, S., and Sakai, K., “Retroreflective properties calculating method based on geometrical-optics analysis - performance evaluation of solar retroreflectors,” Journal of Environmental Engineering (Transaction of AIJ), Vol. 73(633), pp. 1249-1254, 2008. [10] Brinksmeier, E., Gläbe, R., and Flucke, C., “Manufacturing of molds for replication of micro cube corner retroreflectors,” Production Engineering, Vol. 2(1), pp. 33-38, 2008. [11] Lou, Y., Wang, H., Liu, Q., Shi, Y., and He, S., “Analysis and fabrication of corner cube array based on laser direct writing technology,” Applied Optics, Vol. 49(29), pp. 5567-5574, 2010. [12] Zhu, X., Hsu, V. S., and Kahn, J. M., “Optical modeling of MEMS corner cube retroreflectors with misalignment and nonflatness,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 8(1), pp. 26-32, 2002. [13] Fuss, P., Moussu, C., Da Cunha, P., and Strandmoe, S., “Study of the diffraction by the corner cube,” International Society for Optics and Photonics on Optical Design and Engineering III, Vol. 7100, pp. 710015, September 2008. [14] Player, M. A., “Polarization properties of a cube-corner reflector,” Journal of Modern Optics, Vol. 35(11), pp. 1813-1820, 1988. [15] Liu, J. and Azzam, R. M. A., “Polarization properties of corner-cube retroreflectors: theory and experiment,” Applied Optics, Vol. 36(7), pp. 1553-1559, 1997. [16] Scholl, M. S., “Ray trace through a corner-cube retroreflector with complex reflection coefficients,” Journal of the Optical Society of America A (JOSA A), Vol. 12(7), pp. 1589-1592, 1995. [17] Nair, R. and Goossen, K. W., “Effect of face separation in corner-cube reflectors,” Optical Engineering, Vol. 48(12), pp. 123003, 2009. [18] Handerek, V. A. and Laycock, L. C., “Feasibility of retroreflective free-space optical communication using retroreflectors with very wide field of view,” International Society for Optics and Photonics In Advanced Free-Space Optical Communications Techniques and Technologies, Vol. 5614, pp. 1-10, December 2004. [19] Seward, G. H. and Cort, P. S., “Measurement and characterization of angular reflectance for cube-corners and microspheres,” Optical Engineering, Vol. 38(1), pp. 164-170, 1999. [20] Suway, J. A. and Welcher, J., “Quantifying Retroreflective DOT-C2 Tape Performance using a Retroreflectometer,” SAE Technical Paper, No. 2015-01-1429, 2015. [21] Warneke, B. A., and Pister, K. S., “An ultra-low energy microcontroller for smart dust wireless sensor networks,” 2004 IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, pp. 316-317, February 2004. [22] Chu, P. B., Lo, N. R., Berg, E. C., and Pister, K. S., “Optical communication using micro corner cube reflectors,” In Proceedings of the 1997 10th Annual International Workshop on Micro Electro Mechanical Systems (MEMS '97), pp. 350-355, January 1997. [23] Lee, D. H., and Park, J. Y., “Piezo-electrically actuated micro corner cube retroreflector (CCR) for free-space optical communication applications,” Journal of Electrical Engineering and Technology, 5(2), 337-341, 2010. [24] Park, J. C., Park, J. Y., Won, J. Y., Kim, D. H., and Park, J., “Silicon bulkmicromachined piezoelectrically actuated corner cube retroflector,” 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS 2011) , pp. 1578-1581, June 2011. [25] Park, J., Won, J., Kim, D., Jo, M. S., and Park, J. Y., “Piezoelectrically operated MEMS corner cube retroreflector for optical communications,” Journal of Micromechanics and Microengineering, Vol. 22(5), pp. 055007, 2012. [26] Park, J. and Park, J. Y., “A bulk-micromachined corner cube retroreflector with piezoelectric micro-cantilevers,” Micro and Nano Systems Letters, Vol. 1(1), pp. 7, 2013. [27] Hong, Y. K., Syms, R. R. A., Pister, K. S. J., and Zhou, L. X., “Corner cube reflectors by surface tension self-assembly,” IEEE/LEOS Optical MEMS, pp. 22-26, 2004. [28] Hong, Y. K., Syms, R. R. A., Pister, K. S. J., and Zhou, L. X., “Design, fabrication and test of self-assembled optical corner cube reflectors,” Journal of Micromechanics and Microengineering, Vol. 15(3), pp. 663-672, 2005. [29] Hong, Y. K. and Syms, R. R. A., “Stability of surface tension self-assembled 3D MOEMS,” Sensors and Actuators A: Physical, Vol. 127(2), pp. 381-391, 2006. [30] Shaar, N. S., Barbastathis, G., and Livermore, C., “Cascaded mechanical alignment for assembling 3D MEMS,” 2008 IEEE 21st International Conference on Micro Electro Mechanical Systems (MEMS 2008), pp. 1064-1068, Tucson, Arizona, USA, January 2008. [31] Yuan, J., Chang, S., Li, S., and Zhang, Y., “Design and fabrication of micro-cube-corner array retro-reflectors,” Optics Communications, Vol. 209(1-3), pp. 75-83, 2002. [32] Jolic, K. I., Ghantasala, M. K., and Harvey, E. C., “Excimer laser machining of corner cube structures,” Journal of Micromechanics and Microengineering, Vol. 14(2004), pp. 388-397, 2003. [33] Wang, X., Giovannini, M., Xing, Y., Kang, M., and Ehmann, K., “Fabrication and tribological behaviors of corner-cube-like dimple arrays produced by laser surface texturing on medical needles,” Tribology International, Vol. 92, pp. 553-558, 2015. [34] Flucke, C., Gläbe, R., and Brinksmeier, E., “Diamond Micro Chiselling of Molding Inserts for Optical Micro Structures”. In Proceedings of the 23th ASPE Annual Meeting and 12th ICPE, Portland, October 2008. [35] Brinksmeier, E., Gläbe, R., and Schönemann, L., “Diamond micro chiseling of large-scale retroreflective arrays,” Precision Engineering, Vol. 36(4), pp. 650-657, 2012. [36] Brinksmeier, E., Gläbe, R., and Schönemann, L., “Review on diamond-machining processes for the generation of functional surface structures,” CIRP Journal of Manufacturing Science and Technology, Vol. 5(1), pp. 1-7, 2012. [37] Schönemann, L. and Preuß, W., “Mold Structuring by Diamond Machining,” Fabrication of Complex Optical Components, Springer, Berlin, Heidelberg, pp. 53-66, 2013. [38] Brinksmeier, E. and Schönemann, L., “Generation of discontinuous microstructures by diamond micro chiseling,” CIRP Annals-Manufacturing Technology, Vol. 63(1), pp. 49-52, 2014. [39] Milliken, N., Hamilton, B., Hussein, S., Tutunea-Fatan, O. R., and Bordatchev, E., “Enhanced bidirectional ultraprecise single point inverted cutting of right triangular prismatic retroreflectors,” Precision Engineering, Vol. 52, pp. 158-169, 2017. [40] Hussein, S., Hamilton, B., Tutunea-Fatan, O. R., and Bordatchev, E., “Novel retroreflective micro-optical structure for automotive lighting applications,” SAE International Journal of Passenger Cars-Mechanical Systems, Vol. 9(2016-01-1407), pp. 497-506, 2016. [41] Lee, Y. M., Toda, M., Esashi, M., and Ono, T., “Micro wishbone interferometer for Fourier transform infrared spectrometry,” Journal of Micromechanics and Microengineering, Vol. 21(6), pp. 065039, 2011. [42] Li, W., Zhai, Y., Yi, P., and Zhang, Y., “Fabrication of micro-pyramid arrays on PETG films by roll-to-roll hot embossing,” Microelectronic Engineering, Vol. 164, pp. 100-107, 2016. [43] Vasquez, D. J., and Judy, J. W., “Zero-power magnetometers with remote optical interrogation,” 2004 17th IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2004), pp. 109-112, 2004. [44] Vasquez, D. J. and Judy, J. W., “Optically-interrogated zero-power MEMS magnetometer,” Journal of Microelectromechanical Systems, Vol. 16(2), pp. 336-343, 2004. [45] Zhou, L., Pister, K. S., and Kahn, J. M., “Assembled corner-cube retroreflector quadruplet,” 2002 5th IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2002), pp. 556-559, January 2002. [46] Zhou, L., Kahn, J. M., and Pister, K. S., “Corner-cube retroreflectors based on structure-assisted assembly for free-space optical communication,” Journal of Microelectromechanical Systems, Vol. 12(3), pp. 233-242, 2003. [47] Chu, T. S., Huang, L. S., Chang, C. Y., Chang, C. S., Ye, W. F., Wen, M. H., and Yang, C. C., “A new addressable corner micromirror array for free-space optical applications,” 2002 IEEE/LEOS International Conference on Optical MEMS: Conference Digest, pp. 45-46, Lugano, Switzerland, August 2002. [48] Chang, C. S., Chu, T. S., Huang, L. S., Chang, C. Y., Zeng, S. Y., Wen, M. H., and Yen, Y. K., “A novel addressable switching micro corner cube array for free-space optical applications,” 2003 IEEE 6th Annual International Conference on Micro Electro Mechanical Systems (MEMS-03), pp. 279-282, Kyoto, Japan, January 2003. [49] Rabinovich, W. S., Gilbreath, G. C., Goetz, P. G., Mahon, R., Katzer, D. S., Ikossi-Anastasiou, K., Binari, S., Meehan, T. J., Ferraro, M., Sokolsky, I., Vasquez, J. A., and Vilcheck M. J., “InGaAs multiple quantum well modulating retro-reflector for free-space optical communications,” International Society for Optics and Photonics on Free-Space Laser Communication and Laser Imaging, Vol. 4489, pp. 190-202, January 2002. [50] Rabinovich, W. S., Mahon, R., Burris, H. R., Gilbreath, G. C., Goetz, P. G., Moore, C. I., Stell, M. F., Vilcheck, M. J., Witkowsky, J. L., Swingen, L., Suite, M. R., Oh, E. S., and Koplow, J., “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Optical Engineering, Vol. 44(5), pp. 056001, 2005. [51] Goetz, P. G., Rabinovich, W. S., Gilbreath, G. C., Mahon, R., Ferraro, M. S., Swingen, L., Walters, R. J., Messenger, S. R., Wasiczko, L. M., Murphy, J., Creamer, N. G., Burris, H. R., Stell, M. F., Moore, C. I., Binari, S. C., and Katzer, D. S., “Multiple quantum well based modulating retroreflectors for inter-and intra-spacecraft communication,” International Society for Optics and Photonics on Photonics for Space Environments XI, Vol. 6308, pp. 63080A, August 2006. [52] Salas, A. G., Stupl, J., and Mason, J., “Modulating retro-reflectors: technology, link budgets and applications,” 63rd International Astronautical Congress, Naples, Italy, 2012. [53] Kilaru, M. K., Cumby, B., and Heikenfeld, J., “Electrowetting retroreflectors: Scalable and wide-spectrum modulation between corner cube and scattering reflection,” Applied Physics Letters, Vol. 94(4), pp. 041108, 2009. [54] Kilaru, M. K., Yang, J., and Heikenfeld, J., “Advanced characterization of electrowetting retroreflectors,” Optics Express, Vol. 17(20), pp. 17563-17569, 2009. [55] Park, S. and Lee, S. K., “Micro-optical pattern-based selective transmission mechanism,” Applied Optics, Vol. 55(9), pp. 2457-2462, 2016. [56] Baillieul, J. and Bifano, T., “Devices and Control Strategies for AD HOC Optical Communications Networks,” Boston University, 2016. [57] Chan, T. K. and Ford, J. E., “Retroreflecting optical modulator using an MEMS deformable micromirror array,” Journal of Lightwave Technology, Vol. 24(1), pp. 516-525, 2006. [58] Kedia, S., Samson, S., and Bach, L., “Total Internal Reflection-Based Free Space Optical Communication System,” Journal of Microelectromechanical Systems, Vol. 24(5), pp. 1632-1641, 2015. [59] http://www.mntechglobal.com/ [60] Kahn, J. M., Katz, R. H., and Pister, K. S., “Next century challenges: mobile networking for “Smart Dust”,” In Proceedings of the 5th Annual ACM/IEEE International Conference on Mobile Computing and Networking, pp. 271-278, August 1999. [61] Atwood, B., Warneke, B., and Pister, K. S., “Preliminary circuits for smart dust,” 2000 Southwest Symposium on Mixed-Signal Design (SSMSD), pp. 87-92, 2000. [62] Warneke, B., Atwood, B., and Pister, K. S., “Preliminary smart dust mote,” In Hot Chips, Vol. 12, No. 1, 2000. [63] Kahn, J. M., Katz, R. H., and Pister, K. S., “Emerging challenges: Mobile networking for “smart dust”,” Journal of Communications and Networks, Vol. 2(3), pp. 188-196, 2000. [64] Warneke, B., Last, M., Liebowitz, B., and Pister, K. S., “Smart dust: Communicating with a cubic-millimeter computer,” Computer, Vol. 34(1), pp. 44-51, 2001. [65] Moon, G. B., Park, C. G., and Lee, J. G., “Optical communication method using CCR,” 2008 International Conference on Control, Automation and Systems (ICCAS), pp. 744-748, October 2008. [66] Milanović, V., Kasturi, A., Siu, N., Radojičić, M., and Su, Y., ““MEMSeye” for optical 3D tracking and imaging applications,” 2011 16th International on Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), pp. 1895-1898, June 2011. [67] Milanović, V., Siu, N., Kasturi, A., Radojičić, M., and Su, Y., “MEMSEye for optical 3D position and orientation measurement,” International Society for Optics and Photonics on MOEMS and Miniaturized Systems X, Vol. 7930, pp. 79300U, February 2011. [68] Arnon, S., Dolev, S., Kat, R., and Kedar, D., “Searching for a lion in the desert: optics-based acquisition algorithms for wireless sensor networks,” ACM SIGMOBILE Mobile Computing and Communications Review, Vol. 12(4), pp. 32-42, 2009. [69] Pesci, A. and Teza, G., “Terrestrial laser scanner and retro‐reflective targets: an experiment for anomalous effects investigation,” International Journal of Remote Sensing, Vol. 29(19), pp. 5749-5765, 2008. [70] Sheard, B. S., Heinzel, G., Danzmann, K., Shaddock, D. A., Klipstein, W. M., and Folkner, W. M., “Intersatellite laser ranging instrument for the GRACE follow-on mission,” Journal of Geodesy, Vol. 86(12), pp. 1083-1095, 2012. [71] Ward, R. L., Fleddermann, R., Francis, S., Mow-Lowry, C., Wuchenich, D., Elliot, M., Gilles, F., Herding, M., Nicklaus, K., Brown, J., Burke, J., Dligatch, S., Farrant, D., Green, K., Seckold, J., Blundell, M., Brister, R., Smith, C., Danzmann, K., Heinzel, G., Sch¨utze, D., Sheard, B. S., Klipstein, W., McClelland, D. E., and Shaddock, D. A., “The design and construction of a prototype lateral-transfer retro-reflector for inter-satellite laser ranging,” Classical and Quantum Gravity, Vol. 31(9), pp. 095015, 2014. [72] Wei, R., Zhang, X., Zhou, J., and Zhou, S., “Designs of multipass optical configurations based on the use of a cube corner retroreflector in the interferometer,” Applied Optics, Vol. 50(12), pp. 1673-1681, 2011. [73] Haschberger, P., Tank, V., and Lanzl, F., “Michelson interferometer with a rotating retroreflector: investigations on special features,” Infrared Physics, Vol. 31(4), pp. 351-360, 1991. [74] Lee, Y. M., Toda, M., Esashi, M., and Ono, T., “Micro wishbone interferometer for Fourier transform infrared spectrometry,” Journal of Micromechanics and Microengineering, Vol. 21(6), pp. 065039, 2011. [75] Tanahashi, T., Toda, M., Miyashita, H., and Ono, T., “Miniature Fourier transform infrared spectrometer for middle infrared wavelength range,” 2013 Transducers and Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS and EUROSENSORS XXVII), pp. 2509-2512, June 2013. [76] Fu, D., Walker, K. A., Sung, K., Boone, C. D., Soucy, M. A., and Bernath, P. F., “The portable atmospheric research interferometric spectrometer for the infrared, PARIS-IR,” Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 103(2), pp. 362-370, 2007. [77] Inami, M., Kawakami, N., and Tachi, S., “Optical camouflage using retro-reflective projection technology,” In Proceedings of the 2nd IEEE/ACM International Symposium on Mixed and Augmented Reality, pp. 348, October 2003. [78] Soomro, S. R. and Urey, H., “Design, fabrication and characterization of transparent retro-reflective screen,” Optics Express, Vol. 24(21), pp. 24232-24241, 2016. [79] Van, D. N., Mashita, T., Kiyokawa, K., & Takemura, H. “Subjective Image Quality Assessment of a Wide-view Head Mounted Projective Display with a Semi-transparent Retro-reflective Screen,” In Proceedings of the 21st International Conference on Artificial Reality and Telexistence (ICAT 2011), pp. 22-27, Osaka, Japan, November 2011. [80] Hua, H., Brown, L. D., and Gao, C., “SCAPE: supporting stereoscopic collaboration in augmented and projective environments,” IEEE Computer Graphics and Applications, Vol. 24(1), pp. 66-75, 2004. [81] Hua, H., Gao, C., Biocca, F., and Rolland, J. P., “An ultra-light and compact design and implementation of head-mounted projective displays,” Proceedings IEEE Virtual Reality 2001, pp. 175-182, March 2001. [82] Hua, H., Gao, C., Brown, L. D., Ahuja, N., and Rolland, J. P., “Using a head-mounted projective display in interactive augmented environments,” Proceedings of the IEEE and ACM International Symposium on Augmented Reality (ISAR'01), pp. 217-223, 2001. [83] Hua, H., Gao, C., Brown, L. D., Ahuja, N., and Rolland, J. P., “A testbed for precise registration, natural occlusion and interaction in an augmented environment using a head-mounted projective display (HMPD),” Proceedings IEEE Virtual Reality 2002, pp. 81-89, 2002. [84] Hua, H. and Gao, C., “A polarized head-mounted projective display,” In Proceedings of the 4th IEEE/ACM International Symposium on Mixed and Augmented Reality, pp. 32-35, October 2005. [85] Nishioka, M., Farnham, C., Nabeshima, M., and Nakao, M. “NUMERICAL STUDY ON SPECULAR SOLAR REFLECTORS AIMED AT INCREASING SOLAR REFLECTIVITY OF BUILDING ENVELOPE,” Proceedings of BS2013: 13th Conference of International Building Performance Simulation Association, pp. 3041-3046, Chambéry, France, August 2013. [86] Han, Y., Taylor, J. E., and Pisello, A. L., “Toward mitigating urban heat island effects: Investigating the thermal-energy impact of bio-inspired retro-reflective building envelopes in dense urban settings,” Energy and Buildings, Vol. 102, pp. 380-389, 2015. [87] Ichinose, M., Inoue, T., and Nagahama, T., “Effect of retro-reflecting transparent window on anthropogenic urban heat balance,” Energy and Buildings, Vol. 157, pp. 157-165, 2017. [88] Harima, T. and Nagahama, T., “Evaluation methods for retroreflectors and quantitative analysis of near-infrared upward reflective solar control window film—Part I: Theory and evaluation methods,” Solar Energy, Vol. 148, pp. 177-192, 2017. [89] Harima, T., and Nagahama, T., “Evaluation methods for retroreflectors and quantitative analysis of near-infrared upward reflective solar control window film—Part II: Optical properties evaluation and verification results” Solar Energy, Vol. 148, pp. 164-176, 2017. [90] https://www.engineersedge.com/surface_finish.htm [91] Chen, Y. F., Yang, B. J., and Tsai, J. C., “Surface-micromachined MEMS tunable three-leaf trefoil-type corner cube retro-reflector for free-space optical applications,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 21(4), pp. 123-129, 2015. [92] http://toshi.iis.u-tokyo.ac.jp/toshilab/?Research [93] Hsu, V. S., Kahn, J. M., and Pister, K. S. J., “MEMS corner cube retroreflectors for free-space optical communications,” University of California Publication, pp. 1-53, 1999. [94] Chen, Y. F., Chang, H. T., Chen, B. J., and Tsai, J. C., “Surface-micromachined MEMS corner cube retro-reflector array,” 2013 International Conference on Optical MEMS and Nanophotonics (OMN), pp. 105-106, August 2013. [95] Calignano, F., Manfredi, D., Ambrosio, E. P., Biamino, S., Lombardi, M., Atzeni, E., Salmi, A., Minetola, P., Iuliano, L., and Fino, P., “Overview on additive manufacturing technologies,” Proceedings of the IEEE, Vol. 105(4), pp. 593-612, 2017. [96] Ultimaker, B. V. (2015). Ultimaker 2: makes easy even easier. [97] http://www.sylreflex.com/index.php?lang=tw [98] https://www.youtube.com/watch?v=3RdwKWXnbrM [99] P. Shore and P. Morantz, “Ultra-precision: enabling our future,” Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Vol. 370(1973), pp. 3993-4014, 2012. [100] Sommer, C. and Sommer, S., “Complete EDM Handbook: Wire EDM, RAM EDM, Small Hole EDM; Practical Information for Designers, Engineers, Machinists, Tool and Die Makers, Mold Makers and Others in the Metal Machining Fields,” Advance Publ., 2005. [101] Chen, Y. F., Wang, Y. H., and Tsai, J. C., “Study of wire electrical discharge machined folded-up corner cube retroreflector with a tunable cantilever beam,” Optical Engineering, 57(3), 035104, 2018. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77488 | - |
dc.description.abstract | 在本論文中,以微機電系統製程、三維列印成型、精密製造之三大技術製作可調變立方角回射器元件與陣列。
在微機電系統製程技術方面,首先設計三葉草型可調變立方角回射器元件,展示單顆立方角回射器元件的動態調變,並同時驗證以驅動鏡面破壞正交性作為訊號傳輸之可行性。其次,設計了蜈蚣型可調變立方角回射器元件,展示立方角回射器元件彼此可以相互倚靠、站立,形成1 × N的回射器陣列。接著,設計具有調變功能之旋轉驅動鏡面的1 × 3蝙蝠型可調變立方角回射器陣列,同時更進一步提出了N × N蝙蝠型可調變立方角回射器陣列之組裝概念。 在三維列印成型技術方面,以熱壓法製作可調變立方角回射器陣列,其製程步驟包括了:以市售反光片Arylic CCR作為母模,利用鑄模蠟翻成Wax CCR,經脫蠟鑄造後產生Metal CCR,經研磨、拋光後,以熱壓法對Printed CCR模型加壓加熱,最後,將經表面修飾的立方角回射器陣列翻模成PDMS CCR。此外,單獨針對熔融沉積成型的試片進行表面修飾實驗,其中包括了收縮率、反射率與表面粗糙度等數據量測。 在精密製造技術方面,首先設計以銑削加工製作的3D CCR,此3D CCR乃由數顆立方塊塔與對應之底座所組成。其次,設計以線切割加工製作的2D CCR,此2D CCR乃二維平面圖案經凹摺組裝後形成三維立體結構之可調變立方角回射器元件;過程中先以有限元素法對元件進行應力集中與結構力之靜態分析,同時也進行模態振形與簡諧激振之動態分析,接著利用光追跡軟體計算元件之回射效率;最後,將三種厚度(0.3、0.1、0.07 mm)的金屬鋼板加工製作成元件,組裝後並量測元件之正交性與回射效率。 | zh_TW |
dc.description.abstract | In this dissertation, tunable corner cube retro-reflector (CCR) arrays fabricated by three methods of micro-electro-mechanica system (MEMS), three-dimensional (3D) printing, and precision machining technologies are presented.
In MEMS field, firstly, a Clover CCR is developed. The dynamic modulation of a MEMS switchable single CCR is demonstrated and it can be used as the CCR tuning mechanism to break its orthogonality, making it possible to change on or off state of the CCR. Secondly, a Centipede CCR has been demonstrated that shows CCRs lean against each other and lining up the CCRs side by side to form a 1 × N array becomes possible. Thirdly, a 1 3 surface-micromachined of Bat CCR is designed. Tunability can be achieved by employing a drivable mirror as one of the CCR’s three mirrors. A novel idea of assembling an N N CCR array is also proposed. In 3D printing field, a new fabrication to create CCR arrays by means of heating and pressing method is invented. Test specimens for reforming surfaces of fused deposition modeling (FDM) parts are investigated, and experiment data including shrinkage, reflectivity, and surface roughness is measured. In precision machining field, firstly, a milling machining 3D CCR is developed. Secondly, a wire electrical discharge machining (EDM) 2D CCR suspended on a cantilever beam are demonstrated. Static and dynamic mechanical modeling and optical ray tracing are performed. The displacement and tilt angle of the cantilever tip versus applied force and the retro-reflection efficiency versus tilt angle are calculated. Finally, CCR devices with three thicknesses (0.3, 0.1, and 0.07 mm) are tested; the orthogonality and optical efficiencies are measured. | en |
dc.description.provenance | Made available in DSpace on 2021-07-10T22:04:32Z (GMT). No. of bitstreams: 1 ntu-107-D00941008-1.pdf: 20672043 bytes, checksum: 54ea048cbd39bc8268970865d358127c (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 論文口試委員審定書 i
誌謝 ii 中文摘要 iii ABSTRACT iv 目錄 v 圖目錄 vii 表目錄 xiv Chapter 1 緒論 1 1.1 前言 1 1.2 文獻回顧I (立方角回射器) 2 1.2.1 光學回射 2 1.2.2 元件特性 3 1.2.3 製作組裝 7 1.2.4 調變機制 13 1.2.5 應用領域 17 1.3 文獻回顧II (表面粗糙度) 24 Chapter 2 立方角回射器之元件特性與光學模擬 25 2.1 立方角回射器元件之開口方向 25 2.2 立方角回射器元件之正交性 27 Chapter 3 以微機電系統製程技術製作可調變之立方角回射器元件 30 3.1 微機電系統製程簡介與研究動機 30 3.2 可調變立方角回射器元件之設計概念 31 3.2.1 第一代:三葉草型(Clover CCR)、蜈蚣型(Centipede CCR) 31 3.2.2 第二代:蝙蝠型(Bat CCR) 36 3.3 小結 43 Chapter 4 以三維列印成型技術製作可調變之立方角回射器陣列 44 4.1 三維列印成型簡介與研究動機 44 4.2 熔融沉積成型之表面修飾處理 45 4.2.1 前處理:繪圖與列印之實體模型 45 4.2.2 中處理:熱壓凸模之材料與加工 52 4.2.3 後處理:表面修飾後之特性量測 59 4.3 可調變立方角回射器陣列之製作流程 65 4.4 小結 69 Chapter 5 以精密製造技術製作可調變之立方角回射器陣列 71 5.1 精密製造簡介與研究動機 71 5.2 可調變立方角回射器元件之加工組裝 72 5.2.1 三維立體結構:3D CCR (Milling CCR) 72 5.2.2 二維平面模型:2D CCR (Wire EDM CCR) 75 5.3 小結 88 Chapter 6 結論 89 6.1 章節回顧 89 6.2 研究心得 91 REFERENCES 95 BIOGRAPHY 105 PUBLICATIONS 106 | |
dc.language.iso | zh-TW | |
dc.title | 以微機電製程、三維列印成型、精密製造三種技術製作可調變立方角回射器與其陣列 | zh_TW |
dc.title | Tunable Corner Cube Retro-Reflector and Arrays Fabricated by MEMS, 3D Printing, and Precision Machining Technologies | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 孫家偉,鍾仁傑,蔡孟燦,莊競程 | |
dc.subject.keyword | 立方角回射器,回射效率,微機電系統製程,三維列印成型,精密製造, | zh_TW |
dc.subject.keyword | corner cube retro-reflector (CCR),retro-reflective efficiency,micro-electro-mechanical systems (MEMS),3D printing,precision machining, | en |
dc.relation.page | 106 | |
dc.identifier.doi | 10.6342/NTU201803815 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2018-08-16 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-D00941008-1.pdf 目前未授權公開取用 | 20.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。