請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77485完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 阮雪芬(Hsueh-Fen Juan) | |
| dc.contributor.author | Chiao-Hui Hsieh | en |
| dc.contributor.author | 謝巧慧 | zh_TW |
| dc.date.accessioned | 2021-07-10T22:04:22Z | - |
| dc.date.available | 2021-07-10T22:04:22Z | - |
| dc.date.copyright | 2020-12-31 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-12-24 | |
| dc.identifier.citation | 1. Vollmer, K. et al. Radical Surgery Improves Survival in Patients with Stage 4 Neuroblastoma. World J. Surg. 42, 1877–1884 (2017). 2. Shim, K. S. et al. Seasonal trends of diagnosis of childhood malignant diseases and viral prevalence in South Korea. Cancer Epidemiol. 51, 118–124 (2017). 3. Klijanienko, J. et al. GATA3 differential expression in neuroblastoma and nephroblastoma. Cancer Cytopathol. 126, 215-216 (2017). 4. Hero, B. et al. Genomic Profiles of Neuroblastoma Associated With Opsoclonus Myoclonus Syndrome. J. Pediatr. Hematol. Oncol. 40, 92-98 (2017) 5. Neuroblastoma-Symptoms and causes-Mayo Clinic. Available at: https://www.mayoclinic.org/diseases-conditions/neuroblastoma/symptoms-causes/syc-20351017. 6. Hoehner, J. C. et al. A developmental model of neuroblastoma: differentiating stroma-poor tumors’ progress along an extra-adrenal chromaffin lineage. Lab. Invest. 75, 659–75 (1996). 7. Maris, J. M. et al. Recent Advances in Neuroblastoma. N. Engl. J. Med. 362, 2202–2211 (2010). 8. Friedman, G. K. et al. Changing trends of research and treatment in infant neuroblastoma. Pediatr. Blood Cancer 49, 1060–1065 (2007). 9. Schleiermacher, G. . et al. Recent insights into the biology of neuroblastoma. Int. J. Cancer 135, 2249–2261 (2014). 10. Murphy, J. M. et al. Salvage rates after progression of high-risk neuroblastoma with a soft tissue mass. J. Pediatr. Surg. 51, 285–8 (2016). 11. Matthay, K. K. et al. Neuroblastoma. Nat. Rev. Dis. Prim. 2, 16078 (2016). 12. Hassan, T. et al. Target Therapy in Neuroblastoma. in Neuroblastoma - Current State and Recent Updates, chapter 4 (2017). 13. Matthay, K. K. et al.Promising Therapeutic Targets in Neuroblastoma. Clin. Cancer Res. 18, 2740–2753 (2012). 14. Duong, C. et al. Novel targeted therapy for neuroblastoma: silencing the MXD3 gene using siRNA. Pediatr. Res. 82, 527–535 (2017). 15. Baudino, T. A. et al. Targeted Cancer Therapy: The Next Generation of Cancer Treatment. Curr. Drug Discov. Technol. 12, 3–20 (2015). 16. Padma, V. V. et al. An overview of targeted cancer therapy. BioMedicine 5, 19 (2015). 17. Huang, C. T. et al. Therapeutic targeting of non-oncogene dependencies in high-risk neuroblastoma. Clin. Cancer Res. 25, 4063–4078 (2019). 18. Wierstra, I. et al. The transcription factor FOXM1 (Forkhead box M1): Proliferation-specific expression, transcription factor function, target genes, mouse models, and normal biological roles. in Advances in Cancer Research 118, 97–398 (2013). 19. Vandekeere, S. et al. Serine Synthesis via PHGDH Is Essential for Heme Production in Endothelial Cells. Cell Metab. 28, 537-587 (2018). 20. Samanta, D. et al. PHGDH Expression Is Required for Mitochondrial Redox Homeostasis, Breast Cancer Stem Cell Maintenance, and Lung Metastasis. Cancer Res. 76, 4430–42 (2016). 21. Locasale, J. W. et al. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat. Genet. 43, 869–874 (2011). 22. Mullarky, E. et al. PHGDH amplification and altered glucose metabolism in human melanoma. Pigment Cell Melanoma Res. 24, 1112–1115 (2011). 23. Zhang, B. et al. PHGDH Defines a Metabolic Subtype in Lung Adenocarcinomas with Poor Prognosis. Cell Rep. 19, 2289–2303 (2017). 24. Nagarajan, A. et al. Oncogene-directed alterations in cancer cell metabolism. Trends in cancer 2, 365–377 (2016). 25. Kim, S. K. et al. Differential Expression of Enzymes Associated with Serine/Glycine Metabolism in Different Breast Cancer Subtypes. PLoS One 9, e101004 (2014). 26. Mattaini, K. R. et al. The importance of serine metabolism in cancer. J. Cell Biol. 214, 249–57 (2016). 27. Wang, G. et al. Molecular docking for drug discovery and development: A widely used approach but far from perfect. Future Medicinal Chemistry 8, (2016). 28. Hassan, M. et al. Molecular Docking and Dynamic Simulation of AZD3293 and Solanezumab Effects Against BACE1 to Treat Alzheimer’s Disease. Front. Comput. Neurosci. 12, 34 (2018). 29. Ajmal Ali, M. et al. Molecular docking and molecular dynamics simulation of anticancer active ligand ‘3,5,7,3′,5′-pentahydroxy-flavanonol-3-O-α-L-rhamnopyranoside’ from Bauhinia strychnifolia Craib to the cyclin-dependent protein kinase. J. King Saud Univ. - Sci. 32, 891–895 (2020). 30. Sethi, A. et al. Molecular Docking in Modern Drug Discovery: Principles and Recent Applications. Chapter in Drug Discovery and Development - New Advances (2020). 31. Li, C. et al. Homoharringtonine exhibits potent anti-tumor effect and modulates DNA epigenome in acute myeloid leukemia by targeting SP1/TET1/5hmC. Haematologica 105, 148–160 (2020). 32. Bhat, M. et al. Targeting the translation machinery in cancer. Nature Reviews Drug Discovery 14, 261–278 (2015). 33. Gandhi, V. et al. Omacetaxine: A protein translation inhibitor for treatment of chronic myelogenous leukemia. Clinical Cancer Research 20, 1735–1740 (2014). 34. Nazha, A. et al. Omacetaxine mepesuccinate (synribo)-newly launched in chronic myeloid leukemia. Expert Opin. Pharmacother. 14, 1977–1986 (2013). 35. Kim, S. K. et al. Differential expression of enzymes associated with serine/glycine metabolism in different breast cancer subtypes. PLoS One 9, 101004 (2014). 36. Luo, C. Y. et al. Homoharringtonine: A new treatment option for myeloid leukemia. Hematology 9, 259–270 (2004). 37. Cao, W. et al. Homoharringtonine induces apoptosis and inhibits STAT3 via IL-6/JAK1/STAT3 signal pathway in Gefitinib-resistant lung cancer cells. Sci. Rep 5, 0847 (2015). 38. Yakhni, M. et al. Homoharringtonine, an approved anti-leukemia drug, suppresses triple negative breast cancer growth through a rapid reduction of anti-apoptotic protein abundance. Am. J. Cancer Res. 9, 1043 (2019). 39. Morris, G. M. et al. Software news and updates AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785–2791 (2009). 40. Otwinowski, Z. et al. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997). 41. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007). 42. Adams, P. D. et al. PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. Sect. D Biol. Crystallogr. 66, 213–221 (2010). 43. Venkatachalam, C. M. et al. LigandFit: A novel method for the shape-directed rapid docking of ligands to protein active sites. J. Mol. Graph. Model. 21, 289–307 (2003). 44. Kantarjian, H. et al. Effectiveness of homoharringtonine (omacetaxine mepesuccinate) for treatment of acute myeloid leukemia: A meta-analysis of Chinese studies. Clinical Lymphoma, Myeloma and Leukemia 15, 13–21 (2015). 45. Weng, T. Y. et al. Homoharringtonine induced immune alteration for an Efficient Anti-tumor Response in Mouse Models of Non-small Cell Lung Adenocarcinoma Expressing Kras Mutation. Sci. Rep. 8, 8216 (2018). 46. Howard, T. P. et al. Rhabdoid Tumors Are Sensitive to the Protein-Translation Inhibitor Homoharringtonine. Clin. Cancer Res. 26, 4995–5006 (2020). 47. Pettersen, E. F. et al. UCSF Chimera - A visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004). 48. Palmer, A. C. et al. Opposing effects of target overexpression reveal drug mechanisms. Nat. Commun. 5, 1–8 (2014). 49. Locasale, J. W. et al. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat. Genet. 43, 869–874 (2011). 50. Boroughs, L. K. et al. Metabolic pathways promoting cancer cell survival and growth. Nat. Cell Biol. 17, 351–9 (2015). 51. Liberti, M.V. et al. The Warburg Effect: How Does it Benefit Cancer Cells? Trends Biochem. Sci. 41, 211–218 (2016). 52. VanderHeiden, M. G. et al. Understanding the Intersections between Metabolism and Cancer Biology. Cell 168, 657–669 (2017). 53. DeBerardinis, R. J. et al. Fundamentals of cancer metabolism. Sci. Adv. 2, e1600200 (2016). 54. Pavlova, N. N. et al. The Emerging Hallmarks of Cancer Metabolism. Cell Metabolism 23, 27–47 (2016). 55. DeBerardinis, R. J. et al. Brick by brick: metabolism and tumor cell growth. Curr. Opin. Genet. Dev. 18, 54–61 (2008). 56. Amelio, I. et al. Serine and glycine metabolism in cancer. Trends Biochem. Sci. 39, 191–8 (2014). 57. Labuschagne, C. F. et al. Serine, but Not Glycine, Supports One-Carbon Metabolism and Proliferation of Cancer Cells. Cell Rep. 7, 1248–1258 (2014). 58. Cantor, J. R. et al. Cancer Cell Metabolism: One Hallmark, Many Faces E-mail alerts Cancer Cell Metabolism: One Hallmark, Many Faces. Cancer Discov.2, 881–98 (2012) 59. Locasale, J. W. et al. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat. Rev. Cancer 13, 572–83 (2013). 60. Luo, J. et al. Cancer’s sweet tooth for serine. Breast Cancer Res. 13, 317 (2011). 61. Possemato, R. et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476, 346–350 (2011). 62. Ou, Y. et al. p53 Protein-mediated regulation of phosphoglycerate dehydrogenase (PHGDH) is crucial for the apoptotic response upon serine starvation. J. Biol. Chem. 290, 457–466 (2015). 63. Mullarky, E. et al. Identification of a small molecule inhibitor of 3-phosphoglycerate dehydrogenase to target serine biosynthesis in cancers. Proc. Natl. Acad. Sci. U. S. A. 113, 1778–83 (2016). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77485 | - |
| dc.description.abstract | 神經母細胞瘤是原發自交感神經系統或腎上腺且好發於兒童時期的常見的惡性腫瘤之一。在本研究中,我們透過分析了神經母細胞瘤患者的基因表現得知磷酸甘油酸脫氫酶(Phosphoglycerate dehydrogenase, PHGDH)與高危險神經母細胞瘤中惡性指標基因MYCN具有高度相關性且發揮關鍵作用。PHGDH是絲胺酸生物合成中關鍵酵素,在合成下游甘胺酸合成代謝中是不可或缺的角色。近年來的研究顯示,癌症中重組代謝體是一種有效且新穎之治療策略。因此,我們好奇已用來治療白血病以及在不同癌症研究指出擁有抗腫瘤能力之化療藥物高三尖杉酯碱 (Homoharringtonine, HHT)是否能有效治療高危險神經母細胞瘤。首先,我們利用分子對接模型(Docking)預測出HHT的連結位以及透過等溫滴定微量熱法 (Isothermal Titration Calorimetry, ITC) 發現PHGDH能夠和HHT結合且比本身受質NAD+有較強的結合力。也透過競爭實驗發現HHT可能會和NAD+競爭同一結合位。進一步利用X-ray結晶學試圖解析以及分析PHGDH和 HHT結合位。此外,我們也透過不同種細胞實驗來研究此抑制劑的作用和分子機制。在細胞實驗中發現,HHT使細胞以及粒線體的氧化壓力產物 (Reactive oxidative species,ROS) 上升而促使細胞凋亡。透過代謝體實驗結果顯示, HHT也能使得細胞中三羧酸循環 (Tricarboxylic acid cycle, TCA cycle) 表現量上升以及絲胺酸/甘胺酸合成路徑表現量下降。綜合以上實驗結果顯示, HHT會透過調節細胞代謝體含量以及氧化壓力產物來達到治療神經母細胞瘤的效果。最後,透過動物實驗得知,此抑制劑之藥效作用可成功的抑制腫瘤生長的能力,並且能夠顯著提升存活能力。因此,我們的研究顯示HHT可能為潛在治療神經母細胞瘤病患的治療藥物。 | zh_TW |
| dc.description.abstract | Neuroblastoma is the most common extracranial childhood tumor of the sympathetic nervous system. To date, only few somatic mutations have been found in neuroblastoma, and tremendous efforts are now being made to identify druggable targets for effective treatment of high-risk disease. A recent study has revealed a non-oncogene dependency of phosphoglycerate dehydrogenase (PHGDH) in MYCN-amplified neuroblastoma. By analyzing independent datasets, we demonstrated that high expression of PHGDH was associated with poor even-free and overall survival in patients with neuroblastoma. We used two neuroblastoma cell lines to demonstrate that PHGDH knockdown significantly reduced proliferation and viability, whereas PHGDH overexpression conferred growth advantage. Homoharringtonine (HHT) is a Chinese traditional medicine that is currently approved for the treatment of chronic myeloid leukemia, and may have broad anticancer effects on various cancer types. Using molecular docking, we first demonstrated that HHT had a high binding affinity to PHGDH. We then performed isothermal titration calorimetry (ITC) assay to confirm the ability of HHT to inhibit the enzymatic activity of PHGDH by competing with its substrate NAD+, and used X-ray crystallography to further ascertain their binding. Treatment of four neuroblastoma cell lines with HHT significantly reduced proliferation and increased apoptosis at nanomolar concentrations. Overexpression of PHGDH conferred resistance to HHT in these neuroblastoma cells, suggesting the drug–target relationship. Given an essential role of PHGDH in cellular and mitochondrial metabolism, we determined whether these pathways are perturbed by HHT treatment. Metabolite analysis revealed that treatment of two neuroblastoma lines with HHT led to a decrease of glycine, but not serine, accompanied with an increase of metabolites of tricarboxylic acid (TCA) cycle. We also observed an increase of cellular and mitochondrial reactive oxygen species (ROS) after HHT treatment in these cells. We then examined the in vivo efficacy of HHT in the neuroblastoma xenograft model, demonstrating that HHT treatment led to reduced tumor growth and improved mouse survival with no apparent toxicity to organs including liver, spleen, and kidney. Taken together, these findings suggest that reprogramming serine/glycine metabolism with a new PHGDH inhibitor might be a powerful therapeutic strategy for different types of neuroblastoma. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T22:04:22Z (GMT). No. of bitstreams: 1 U0001-2212202022390300.pdf: 39164101 bytes, checksum: 029922c7d1c7ead50f2a73b40726fa75 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 謝辭 ........2 Contents ........8 List of Figures ........11 Abbreviation ........13 Chapter 1 Introduction ........15 1.1 Neuroblastoma ........15 1.2 Current therapeutic regimen for high-risk neuroblastoma ........16 1.3 Non-oncogene dependencies in high-risk neuroblastoma ........16 1.4 Phosphoglycerate dehydrogenase (PHGDH) ........17 1.5 Molecular docking ........17 1.6 Homoharringtonine (HHT) ........18 1.7 Motivation ........18 Chapter 2 Materials and Methods ........20 2.1 Kaplan-Meier curves of overall and event-free survival in select patients with neuroblastoma. ........20 2.2 RNA extraction and reverse transcription for tissue samples........20 2.3 Cell culture ........21 2.4 Stable shRNA knockdown of PHGDH ........21 2.5 Western blot ........22 2.6 Plasmids and transfection ........22 2.7 Drug preparation .......23 2.8 Cell viability assay ........23 2.9 Colony formation assay ........24 2.10 Molecular docking ........24 2.11 Bacterial strain and culture ........25 2.12 Isothermal titration calorimetry analysis ........26 2.13 X-ray crystallography ........26 2.14 Cell cycle analysis ........27 2.15 Apoptosis analysis ........28 2.16 Lactate assay ........28 2.17 Mitochondrial superoxide measurement ........28 2.18 Reactive oxygen species analysis ........29 2.19 Cellular metabolite analysis ........29 2.20 Animal model ........31 2.21 Hematoxylin and eosin stain ........32 2.22 Statistical analysis ........32 Chapter 3. Results ........33 3.1 PHGDH dependence in neuroblastoma ........33 3.2 Effects of PHGDH dependence on cell growth in neuroblastoma lines ........33 3.3 Identification of HHT as a potential PHGDH inhibitor ........34 3.4 Effects of HHT on neuroblastoma cell growth ........35 3.5 Metabolite profiling of HHT-treated neuroblastoma cells ........35 3.6 Cellular and mitochondrial ROS levels in HHT-treated neuroblastoma cells ........37 3.7 In vivo effects of HHT in neuroblastoma ........36 Chapter 4 Discussion ........38 Chapter 5 Conclusion ........40 Chapter 6 References ........42 Figures ........49 Appendix ........81 Curriculum Vitae ........84 Publication ........86 | |
| dc.language.iso | en | |
| dc.subject | 分子標靶治療 | zh_TW |
| dc.subject | 絲胺酸甘胺酸代謝體 | zh_TW |
| dc.subject | 神經母細胞瘤 | zh_TW |
| dc.subject | 磷酸甘油酸脫氫酶 | zh_TW |
| dc.subject | 舊藥新用 | zh_TW |
| dc.subject | Molecular target therapy | en |
| dc.subject | Phosphoglycerate dehydrogenase | en |
| dc.subject | Metabolic reprogramming | en |
| dc.title | 探討磷酸甘油酸脫氫酶為藥物標靶於神經母細胞瘤之治療與機制研究 | zh_TW |
| dc.title | Targeting phosphoglycerate dehydrogenase for neuroblastoma therapy and its mechanism study | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 109-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 黃宣誠(Hsuan-Cheng Huang),許文明(Wen-Ming Hsu),黃敏銓(Min-Chuan Huang),鄭貽生(Yi-Sheng Cheng),徐駿森(Chun-Hua Hsu) | |
| dc.subject.keyword | 神經母細胞瘤,舊藥新用,分子標靶治療,絲胺酸甘胺酸代謝體,磷酸甘油酸脫氫酶, | zh_TW |
| dc.subject.keyword | Molecular target therapy,Phosphoglycerate dehydrogenase,Metabolic reprogramming, | en |
| dc.relation.page | 213 | |
| dc.identifier.doi | 10.6342/NTU202004449 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-12-25 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2212202022390300.pdf 未授權公開取用 | 38.25 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
