請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77482
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林淑華 | zh_TW |
dc.contributor.author | 吳芊慧 | zh_TW |
dc.contributor.author | Chien-Hui Wu | en |
dc.date.accessioned | 2021-07-10T22:04:11Z | - |
dc.date.available | 2024-02-28 | - |
dc.date.copyright | 2018-10-09 | - |
dc.date.issued | 2018 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | 1. Marraffini, L.A., CRISPR-Cas immunity in prokaryotes. Nature, 2015. 526(7571): p. 55-61.
2. Danner, E., et al., Control of gene editing by manipulation of DNA repair mechanisms. Mamm Genome, 2017. 3. Ishino, Y., et al., Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol, 1987. 169(12): p. 5429-33. 4. Tang, T.-H., et al., Identification of 86 candidates for small non-messenger RNAs from the archaeon Archaeoglobus fulgidus. Proc Natl Acad Sci U S A., 2002. 99(11): p. 7536-41. 5. Jansen, R., et al., Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol., 2002. 43(6): p. 1565-1575. 6. Bolotin, A., et al., Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology, 2005. 151(Pt 8): p. 2551-61. 7. Mojica, F.J., et al., Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol, 2005. 60(2): p. 174-82. 8. Pourcel, C., et al., CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology, 2005. 151(Pt 3): p. 653-63. 9. Jinek, M., et al., A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science., 2012. 337(6096): p. 816-21. 10. Cong, L., et al., Multiplex genome engineering using CRISPR-Cas systems. Science., 2013. 339(6121): p. 819-23. 11. Mali, P., et al., RNA-guided human genome engineering via Cas9. Science., 2013. 339(6121): p. 823-6. 12. Sander, J.D., et al., CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol, 2014. 32(4): p. 347-55. 13. Barrangou, R., et al., Applications of CRISPR technologies in research and beyond. Nat Biotechnol, 2016. 34(9): p. 933-941. 14. Rath, D., et al., The CRISPR-Cas immune system: biology, mechanisms and applications. Biochimie, 2015. 117: p. 119-28. 15. Mohanraju, P., et al., Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science, 2016. 353(6299): p. aad5147. 16. Deltcheva, E., et al., CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature, 2011. 471(7340): p. 602-7. 17. Mali, P., et al., Cas9 as a versatile tool for engineering biology. Nat Methods, 2013. 10(10): p. 957-63. 18. Sapranauskas, R., et al., The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res, 2011. 39(21): p. 9275-82. 19. Anders, C., et al., Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature, 2014. 513(7519): p. 569-73. 20. Jinek, M., et al., Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science, 2014. 343(6176): p. 1247997. 21. Nishimasu, H., et al., Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell, 2014. 156(5): p. 935-49. 22. Hustedt, N., et al., The control of DNA repair by the cell cycle. Nat Cell Biol, 2016. 19(1): p. 1-9. 23. Addison V. Wright, et al., Structures of the CRISPR genome integration complex Science. , 2017. 357(6356): p. 1118-1118. 24. Limaye, A., et al., Manipulation of mouse embryonic stem cells for knockout mouse production. Curr Protoc Cell Biol, 2009. Chapter 19: p. Unit 19 13 19 13 1-24. 25. Hashimoto, M., et al., Electroporation enables the efficient mRNA delivery into the mouse zygotes and facilitates CRISPR/Cas9-based genome editing. Sci Rep, 2015. 5: p. 11315. 26. Qin, W., et al., Efficient CRISPR/Cas9-Mediated Genome Editing in Mice by Zygote Electroporation of Nuclease. Genetics, 2015. 200(2): p. 423-430. 27. Chen, S., et al., Highly Efficient Mouse Genome Editing by CRISPR Ribonucleoprotein Electroporation of Zygotes. J Biol Chem, 2016. 291(28): p. 14457-67. 28. Wang, W., et al., Delivery of Cas9 Protein into Mouse Zygotes through a Series of Electroporation Dramatically Increases the Efficiency of Model Creation. J Genet Genomics, 2016. 43(5): p. 319-27. 29. Horii, T., et al., Efficient generation of conditional knockout mice via sequential introduction of lox sites. Sci Rep, 2017. 7(1): p. 7891. 30. Troder, S.E., et al., An optimized electroporation approach for efficient CRISPR/Cas9 genome editing in murine zygotes. PLoS One, 2018. 13(5): p. e0196891. 31. Srivastava, M., et al., An inhibitor of nonhomologous end-joining abrogates double-strand break repair and impedes cancer progression. Cell, 2012. 151(7): p. 1474-87. 32. Maruyama, T., et al., Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol, 2015. 33(5): p. 538-42. 33. Chu, V.T., et al., Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol, 2015. 33(5): p. 543-8. 34. Canny, M.D., et al., A genetically encoded inhibitor of 53BP1 to 1 stimulate homology-based gene editingl. Biorxiv, 2016. 35. Jayathilaka, K., et al., A chemical compound that stimulates the human homologous recombination protein RAD51. PNAS, 2008. 105(41): p. 15848-15853. 36. Pinder, J., et al., Nuclear domain 'knock-in' screen for the evaluation and identification of small molecule enhancers of CRISPR-based genome editing. Nucleic Acids Res, 2015. 43(19): p. 9379-92. 37. Song, J., et al., RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency. Nat Commun, 2016. 7: p. 10548. 38. Richardson, C.D., et al., Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat Biotechnol, 2016. 34(3): p. 339-44. 39. Yoshimi, K., et al., ssODN-mediated knock-in with CRISPR-Cas for large genomic regions in zygotes. Nat Commun, 2016. 7: p. 10431. 40. Aird, E.J., et al., Increasing Cas9-mediated homology-directed repair efficiency through covalent tethering of DNA repair template. Communications Biology, 2018. 1(1). 41. Lin, S., et al., Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. Elife, 2014. 3: p. e04766. 42. Howden, S.E., et al., A Cas9 Variant for Efficient Generation of Indel-Free Knockin or Gene-Corrected Human Pluripotent Stem Cells. Stem Cell Reports, 2016. 7(3): p. 508-17. 43. Takeo, T., et al., Methyl-beta-cyclodextrin improves fertilizing ability of C57BL/6 mouse sperm after freezing and thawing by facilitating cholesterol efflux from the cells. Biol Reprod, 2008. 78(3): p. 546-51. 44. Takeo, T., et al., Combination medium of cryoprotective agents containing L-glutamine and methyl-{beta}-cyclodextrin in a preincubation medium yields a high fertilization rate for cryopreserved C57BL/6J mouse sperm. Lab Anim, 2010. 44(2): p. 132-7. 45. Takeo, T., et al., Reduced glutathione enhances fertility of frozen/thawed C57BL/6 mouse sperm after exposure to methyl-beta-cyclodextrin. Biol Reprod, 2011. 85(5): p. 1066-72. 46. Quinn, P., et al., Improved pregnancy rate in human in vitro fertilization with the use of a medium based on the composition of human tubal fluid**Supported in part by a grant from the National Health and Medical Research Council of Australia. Fertility and Sterility, 1985. 44(4): p. 493-498. 47. Nakagawa Y., et al., Application of Oocyte Cryopreservation Technology in TALEN-Mediated Mouse Genome Editing. Exp Anim. , 2014. 63(3): p. 349-355. 48. Nakagawa, Y., et al., Production of knockout mice by DNA microinjection of various CRISPR/Cas9 vectors into freeze-thawed fertilized oocytes. BMC Biotechnol, 2015. 15: p. 33. 49. Nakagawa, Y., et al., Ultra-superovulation for the CRISPR-Cas9-mediated production of gene-knockout, single-amino-acid-substituted, and floxed mice. Biol Open, 2016. 5(8): p. 1142-8. 50. Nakagawa, Y., et al., Culture time of vitrified/warmed zygotes before microinjection affects the production efficiency of CRISPR-Cas9-mediated knock-in mice. Biol Open, 2017. 6(5): p. 706-713. 51. Giunta, S., et al., DNA damage signaling in response to double-strand breaks during mitosis. J Cell Biol, 2010. 190(2): p. 197-207. 52. Liu, W.X., et al., Comparative study between slow freezing and vitrification of mouse embryos using different cryoprotectants. Reprod Domest Anim, 2009. 44(5): p. 788-91. 53. P.W. SHAW, et al., Vitrification of mouse oocytes_ improved rates of survival, fertilization, and development to blastocysts. Mol Reprod Dev., 1991. 29(4): p. 373-8. 54. Vouillot, L., et al., Comparison of T7E1 and surveyor mismatch cleavage assays to detect mutations triggered by engineered nucleases. G3 (Bethesda), 2015. 5(3): p. 407-15 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77482 | - |
dc.description.abstract | CRISPR/Cas9系統源自於原核生物的後天免疫系統,近年來由於其能夠產生DNA雙股斷裂的特性,被發展並廣泛應用於基因編輯。然而,在利用CRISPR產製基因轉殖小鼠時,需利用耗費人力且費時的顯微注射將實驗材料遞送入原核胚。新近發展出了替代方法,例如電穿孔技術可取代技術門檻較高的顯微注射。此外,進行基因轉殖小鼠實驗需要使用大量的受精卵,若進行自然配種,會耗費較多公鼠及人力,且受精時間點不易控制。另外,針對如何提高大片段基因嵌入基因座的效率,仍舊是個待解決的問題。
本研究結合了CRISPR/Cas9系統與電穿孔技術,配合小鼠體外受精、凍卵與解凍技術,建立一套操作時間選擇較有彈性、耗費人力及時間較少且成功率較高的基因嵌入小鼠產製流程及實驗條件。首先,建立小鼠體外受精及受精卵冷凍與解凍系統,得到受精率約80%,解凍存活率約60%。另外,本研究測試利用電穿孔技術將EGFP mRNA送入受精卵中的效率。接著,利用不同電擊次數,決定出最佳的電穿孔實驗條件。同時在不同電擊次數條件下,針對單一切點產生的indel與大片段基因剔除的效率進行分析。最後,利用小片段基因嵌入實驗驗證電穿孔的最佳條件,同時決定最佳的模板濃度與設計策略。本研究也測試一種小片段互補寡去氧核醣核酸的策略,實驗結果顯示此策略可能提升基因嵌入效率的初步證據。綜合以上實驗,本研究已建立一套產製基因嵌入小鼠的最佳製程。 | zh_TW |
dc.description.abstract | The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR associated protein 9 (Cas9) system, which discovered as a bacteria adaptive immune system at first, becomes a widely used genome editing tool owing to its ability to form a site specific DNA double stand break (DSB). However, when generating transgenic mice by CRISPR/Cas9 method, it is necessary to use a laborious and time-consuming microinjection to deliver experimental materials into pronuclear embryos. Recently, an alternative method has been developed. For example, electroporation technology can replace the higher technical threshold of microinjection. In addition, the experiment of transgene mice requires a large number of fertilized eggs. If natural mating is carried out, it will consume more male mouse and manpower, and the time of fertilization is difficult to control. Moreover, how to improve the efficiency of large fragment knock-in to gene locus is still a problem to be solved.
This study combines CRISPR/Cas9 system and electroporation technology, combined with mouse in vitro fertilization, zygote freezing and thawing techniques to establish a set of knock-in mice production process and experimental conditions with flexible operation time, low labor and time, and high success rate. First, a mouse in vitro fertilization and zygote freezing and thawing system was established, and the fertilization rate was about 80%, and the thawing survival rate was about 60%. In addition, test the efficiency of electroporation by delivering EGFP mRNA into fertilized eggs. Next, using different numbers of shocks, to determine the optimal electroporation experimental conditions. At the same time, under the condition of different electric shock times, analyze the efficiency of indel and large segment gene knockout generated by single cutting site. Finally, use small-fragment knock-in experiments to verify the optimal conditions for electroporation, while determining the optimal template concentration and design strategy. This study also test a small fragment complementary ODN strategy. The experimental results show the prima facie evidence that this strategy may improve gene knock-in efficiency. Based on the above experiments, this study has established an optimal process for producing gene knock-in mice. | en |
dc.description.provenance | Made available in DSpace on 2021-07-10T22:04:11Z (GMT). No. of bitstreams: 1 ntu-107-R05424007-1.pdf: 4259441 bytes, checksum: fda927644d626f793b894bf5537c4294 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 論文口試委員會審定書 I
致謝 II 中文摘要 III Abstract IV 縮寫表 VI 目錄 VII 圖目錄 IX 表目錄 X 附錄目錄 XI 第一章 緒論 1 1.1 CRISPR/Cas9系統 1 1.2 核醣核酸雙股斷裂修復機制與基因編輯 2 1.3 CRISPR/Cas9系統與基因轉殖小鼠模型產製方法 2 1.4 提升基因嵌入小鼠模型產製效率之策略 3 1.5 小鼠體外受精與冷凍胚胎技術簡介 3 1.6 研究動機 4 第二章 材料與方法 5 2.1 實驗動物 5 2.2 小鼠體外受精 5 2.3 受精卵冷凍及解凍 5 2.4 核糖核酸(RNA)製備 6 2.5 核糖核蛋白(RNP)及電穿孔實驗混合物製備 6 2.6 電穿孔實驗 6 2.7 囊胚基因型鑑定方法 7 2.8 T7內切酵素(T7E1)試驗 7 2.9 限制性片段長度多態試驗 (RFLP) 7 第三章 實驗結果 8 3.1 研究策略 8 3.2 建立體外受精及冷凍解凍胚胎系統 8 3.3 利用不同濃度EGFP mRNA評估電穿孔傳送效率 8 3.4 利用EGFP mRNA與RNP評估電穿孔最佳電擊次數 9 3.4.1 EGFP表現與電擊次數的關係 9 3.4.2 受精卵生長情形與電擊次數的關係 9 3.5 利用不同時期小鼠受精卵進行電穿孔次數條件測試 10 3.6 利用小鼠受精卵進行小片段基因置入的策略設計及條件測試 11 第四章 討論 13 4.1 結論 13 4.2 冷凍解凍存活率較低之探討 13 4.3 囊胚基因型鑑定的限制 14 4.4 T7E1試驗的限制 14 4.5 電穿孔電擊次數會影響胚胎發育至囊胚的時間 14 4.6 實驗再現性 15 第五章 未來展望 16 參考文獻 17 | - |
dc.language.iso | zh_TW | - |
dc.title | 利用CRISPR/Cas9與電穿孔技術產製基因嵌入小鼠模型 | zh_TW |
dc.title | Generation of gene knock-in mouse model by CRISPR/Cas9 and electroporation | en |
dc.type | Thesis | - |
dc.date.schoolyear | 106-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 吳瑞菁;陳佑宗;游益興 | zh_TW |
dc.contributor.oralexamcommittee | ;; | en |
dc.subject.keyword | CRISPR/Cas9,電穿孔技術,基因剔除嵌入,體外受精,小鼠受精卵冷凍與解凍, | zh_TW |
dc.subject.keyword | CRISPR/Cas9,electroporation,gene insertion/deletion (indel),in vitro fertilization,mouse zygote freezing and thawing, | en |
dc.relation.page | 69 | - |
dc.identifier.doi | 10.6342/NTU201803750 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2018-08-16 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | - |
顯示於系所單位: | 醫學檢驗暨生物技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-2.pdf 目前未授權公開取用 | 4.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。