Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77480Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 劉霆 | |
| dc.contributor.author | Yu-Fan Chen | en |
| dc.contributor.author | 陳昱帆 | zh_TW |
| dc.date.accessioned | 2021-07-10T22:04:05Z | - |
| dc.date.available | 2021-07-10T22:04:05Z | - |
| dc.date.copyright | 2018-08-21 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-16 | |
| dc.identifier.citation | [1] Kroll, J., Kooy, A., and Seebacher, R. “Land in sight?” In 9th Schaeffler Symposium, 2010.
[2] Seebacher, R., “Mission CO2 Reduction,” In International Congress of Automotive and Transport Engineering, pp. 451-461, October 2016. [3] Albers, A., “Advanced development of dual mass flywheel (DMFW) design-noise control for today's automobiles,” In 5th Luk symposium, pp. 5-41. May 1994. [4] Friedmann, O., “Vibration damping apparatus,” U.S. Patent No. 4,816,006, 1989. [5] Ad, K., Achim, G., Johann, J., and Michael, B., “DMFW-nothing new,” In Proceedings of the 7th LuK Symposium, pp. 5-14, April 2002. [6] Fidlin, A. and Seebacher, R., “DMF simulation techniques,” In 8th LuK symposium, pp. 55-71, 2006. [7] Gupta, K., Choudhary, A., and Bidre, R., “NVH Performance Improvement Study Using a Dual Mass Flywheel (DMF), Inertia Ring Type Tuned Torsional Vibration Damper (TVD) and Single Mass Flywheel (SMF) in a Front Engine and Rear Wheel Driveline Architecture,” SAE Technical Paper, No. 2017-01-1752, 2017. [8] http://schaeffler-events.com/symposium/lecture/t2/index.html#quelle_02 [9] Freitag, J., Gerhardt, F., Hausner, M., and Wittmann, C., “The clutch system of the future,” In 9th Schaeffler Symposium, 2010. [10] Swank, M. and Lindemann, P., “Dynamic absorbers for modern powertrains,” SAE Technical Paper, No. 2011-01-1554, 2011. [11] Chen, Z. Y., Sun, N., and Shi, W., “Dynamic characteristics and parameters analysis of magneto-rheological fluid dual mass flywheel,” SAE Technical Paper, No. 2014-01-2866, 2014. [12] Zu, Q. H., Chen, Z. Y., Shi, W. K., Mao, Y., and Chen, Z. Y., “Torsional vibration semiactive control of drivetrain based on magnetorheological fluid dual mass flywheel,” Mathematical Problems in Engineering, 2015. [13] 松田孝, & 佐藤元宥, “粒子トーショナルダンパの開発: 基本的な構造および性能,”日本機械学会論文集 C 編, Vol. 64(625), pp. 3348-3353, 1998. [14] 佐藤元有, & 松田孝, “粒子トーショナルダンパの開発: 制振性能に及ぼす粒子量の影響,” 日本機械学会論文集 C 編, Vol. 65(640), pp. 4647-4652, 1999. [15] 佐藤元宥, 松田孝, & 今田琢巳, “粒子トーショナルダンパの開発: 制振機構のシミュレーション (機械要素, 潤滑, 工作, 生産管理など),” 日本機械学会論文集 C 編, Vol. 69(680), pp. 1178-1183, 2003. [16] 佐藤元宥, & 松田孝, “粒子トーショナルダンパの開発: 粒子群内の減衰機構,” 日本機械学会論文集 C 編, Vol. 71(705), pp. 1711-1716, 2005. [17] 佐藤元宥, & 松田孝, “粒子トーショナルダンパの開発: 直列4シリンダエンジンのねじり振動低減,” 日本機械学会論文集 C 編, Vol. 72(723), pp. 223-229, 2006. [18] Mohire, S. and Burde, R., “Evaluation of Interdependent Behavior of Dual Mass Flywheel (DMF) and Engine Starting System,” SAE Technical Paper, No. 2010-01-0188, 2010. [19] Camacho, J. M. and Sosa, V., “Alternative method to calculate the magnetic field of permanent magnets with azimuthal symmetry,” Revista mexicana de física E, Vol. 59(1), pp. 8-17, 2013. [20] Du, Y. M., Xia, P. C., and Xiao, L. Y., “Calculating magnetic force of permanent magnet using Maxwell stress method,” IEEE Transactions on Applied Superconductivity, Vol. 10(1), pp. 1392-1394, 2000. [21] Ravaud, R., Lemarquand, G., and Lemarquand, V., “Coils and magnets: 3D analytical models,” Progress in Electromagnetics Research Symposium, pp. 1178-1184, 2011. [22] Addasi, E. S., “Calculations of permanent magnet using distributed-parameters equivalent circuit,” Aust. J. Basic Applied Sci, Vol. 2(4), 2008. [23] Li, Z. and Sandhu, J., “Transmission torque converter arc spring damper dynamic characteristics for driveline torsional vibration evaluation,” SAE International Journal of Passenger Cars-Mechanical Systems, Vol. 6(2013-01-1483), 477-482, 2013. [24] https://www.yumpu.com/en/document/view/5737968/clutch-systems-for-passenger-cars-up-to-800nm-zf- [25] Albers, A., Albrecht, M., Krüger, A., and Lux, R., “New Methodology for Power Train Development in the Automotive Engineering-Integration of Simulation, Design and Testing,” SAE Technical Paper, No. 2001-01-3303, 2001. [26] Schaper, U., Sawodny, O., Mahl, T., and Blessing, U., “Modeling and torque estimation of an automotive Dual Mass Flywheel,” American Control Conference, pp. 1207-1212, June 2009. [27] Mahl, T. and Sawodny, O., “Modelling of an automotive dual mass flywheel,” IFAC Proceedings Volumes, Vol. 43(18), pp. 517-523, 2010. [28] de Metsenaere, C., “Fracture analysis of dual mass flywheel arc springs,” DCT rapporten, 2002. [29] Yamakaji, Y., “Dynamics Modeling of the Arc Spring for Powertrain NVH Prediction,” In The First Japanese Modelica Conferences Linköping University Electronic Press, No. 124, pp. 9-14, May 2016. [30] Zhao, L., Zhou, Y., and Zheng, L., “Modeling and simulation of AMT clutch actuator based on simulation,” International Conference on Computational Intelligence and Software Engineering, pp. 1-5, December 2009. [31] Chen, L., Xi, G., and Yin, C. L., “Model referenced adaptive control to compensate slip-stick transition during clutch engagement,” International Journal of Automotive Technology, Vol. 12(6), pp. 913-920, 2011. [32] Guo, W., Wang, S. H., Su, C. G., Li, W. Y., Xu, X. Y., and Cui, L. Y., “Method for precise controlling of the at shift control system” International Journal of Automotive Technology, Vol. 15(4), pp. 683-698, 2014. [33] Farkas, Z., Jóri, I. J., and Kerényi, G., “The Application and Modelling Possibilities of CVT in Tractor” In Proceedings of the 5th International Conference Multidisciplinary, pp. 23-24, May 2003. [34] Ji, J., Jang, M. J., Kwon, O. E., Chai, M. J., and Kim, H. S., “Power transmission dynamics in micro and macro slip regions for a metal v-belt continuously variable transmission under external vibrations,” International Journal of Automotive Technology, Vol. 15(7), pp. 1119-1128, 2014. [35] Kim, D. M., Kim, S. C., Noh, D. K., and Jang, J. S., “Jerk phenomenon of the hydrostatic transmission through the experiment and analysis,” International Journal of Automotive Technology, Vol. 16(5), pp. 783-790, 2015. [36] Tang, P., Wang, S., Liu, Y., and Xu, X., “Analysis of the oil pressure rule during the shift process of automatic transmission” 2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), , Vol. 1, pp. 109-113, August 2010. [37] Pengxiang, T., Shuhan, W., Xiangyang, X., Wenyong, L., Lin, S., and Guoru, Z., “Notice of Retraction Design of system pressure valve of 8-speed automatic transmission,” International Conference on Computer Application and System Modeling (ICCASM 2010), Vol. 4, pp. V4-443- V4-447, October 2010. [38] Wang, S. H., Xu, X. Y., Liu, Y. F., Dai, Z. K., Tenberge, P., and Qu, W., “Design and dynamic simulation of hydraulic system of a new automatic transmission,” Journal of Central South University of Technology, Vol. 16(4), pp. 697-701, 2009. [39] Bae, J. S., Hwang, J. H., Park, J. S., and Kwag, D. G., “Modeling and experiments on eddy current damping caused by a permanent magnet in a conductive tube,” Journal of Mechanical Science and Technology, Vol. 23(11), pp. 3024-3035, 2009. [40] Dai, Z., Liu, Y., Xu, X., and Wang, S., “The Application of Multi-domain Physical System Simulation Method in the Study of Automatic Transmissions” Proceedings of the 2009 WRI World Congress on Software Engineering, Vol. 2, pp. 504-508, 2009. [41] Belmon, L., Yan, J., and Abel, A., “Modelling and Simulation of DCT Gearshifting for Real-Time and High-Fidelity Analysis,” In Proceedings of the FISITA 2012 World Automotive Congress, pp. 399-411, 2013. [42] Li, W., Abel, A., Todtermuschke, K., and Zhang, T., “Hybrid vehicle power transmission modeling and simulation with simulation,” Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation, pp. 1710-1717, August 2007. [43] Ma, X., Zhang, Y., and Yin, C., “Kinematic Study and Mode Analysis of a New 2-Mode Hybrid Transmission,” In Proceedings of the FISITA 2012 World Automotive Congress, pp. 309-318, 2013. [44] Abel, A., Adir, A., Blochwitz, T., Greenberg, L., and Salman, T., “Development and verification of complex hybrid systems using synthesizable monitors,” In Haifa Verification Conference, pp. 182-198, November 2013. [45] SimulationX 3.5 version User Manual. [46] Zhang, Q., Wang, Y., and Kim, E. S., “Electromagnetic energy harvester with flexible coils and magnetic spring for 1–10 Hz resonance,” Journal of Microelectromechanical Systems, Vol. 24(4), pp. 1193-1206, 2015. [47] Bae, J. S., Hwang, J. H., Park, J. S., and Kwag, D. G., “Modeling and experiments on eddy current damping caused by a permanent magnet in a conductive tube,” Journal of mechanical science and technology, Vol. 23(11), pp. 3024-3035, 2009. [48] Irvine, B., Kemnetz, M., Gangopadhyaya, A., and Ruubel, T., “Magnet traveling through a conducting pipe: A variation on the analytical approach” American Journal of Physics, Vol. 82(4), pp. 273-279, 2014. [49] Goldner, R. B., Zerigian, P., and Hull, J. R., “A preliminary study of energy recovery in vehicles by using regenerative magnetic shock absorbers,” SAE Technical Paper, No. 2001-01-2071, 2001. [50] Wang, Z. L., “On Maxwell's displacement current for energy and sensors: the origin of nanogenerators,” Materials Today, Vol. 20(2), pp. 74-82, 2017. [51] Mitcheson, P. D., Yeatman, E. M., Rao, G. K., Holmes, A. S., and Green, T. C., “Energy harvesting from human and machine motion for wireless electronic devices” Proceedings of the IEEE, Vol. 96(9), pp. 1457-1486, 2008. [52] Choi, Y. M., Lee, M. G., and Jeon, Y., “Wearable Biomechanical Energy Harvesting Technologies” Energies, Vol. 10(10), 1483, 2017. [53] Donelan, J. M., Li, Q., Naing, V., Hoffer, J. A., Weber, D. J., and Kuo, A. D., “Biomechanical energy harvesting: generating electricity during walking with minimal user effort” Science, Vol. 319(5864), pp. 807-810, 2008. [54] Riemer, R. and Shapiro, A., “Biomechanical energy harvesting from human motion: theory, state of the art, design guidelines, and future directions,” Journal of neuroengineering and rehabilitation, Vol. 8(1), 22, 2011. [55] Jhalani, D. and Chaudhary, H., “Optimal design of gearbox for application in knee mounted biomechanical energy harvester,” International Journal of Scientific & Engineering Research, Vol. 3(10), pp. 1071-1075, 2012. [56] Li, Z., Brindak, Z., and Zuo, L., “Modeling of an electromagnetic vibration energy harvester with motion magnification” In ASME 2011 International Mechanical Engineering Congress and Exposition, pp. 285-293, January 2011. [57] Li, Z., Zuo, L., Kuang, J., and Luhrs, G., “Energy-harvesting shock absorber with a mechanical motion rectifier” Smart Materials and Structures, Vol. 22(2), 025008, 2012. [58] Li, Z., Zuo, L., Luhrs, G., Lin, L., and Qin, Y. X., “Electromagnetic energy-harvesting shock absorbers: design, modeling, and road tests,” IEEE Transactions on Vehicular Technology, Vol. 62(3), pp. 1065-1074, 2013. [59] https://sites.suffolk.edu/kdshepard/2013/03/07/faradays-law/ [60] Saha, C. R., O’donnell, T., Wang, N., and McCloskey, P., “Electromagnetic generator for harvesting energy from human motion,” Sensors and Actuators A: Physical, Vol. 147(1), pp. 248-253, 2008. [61] Walter, A., Kiencke, U., Jones, S., and Winkler, T., “Misfire detection for vehicles with Dual Mass Flywheel (DMF) based on reconstructed engine torque,” SAE Technical Paper, No. 2007-01-3544, 2007. [62] Walter, A., Lingenfelser, C., Kiencke, U., Jones, S., and Winkler, T., “Cylinder balancing based on reconstructed engine torque for vehicles fitted with a dual mass flywheel (DMF),” SAE International Journal of Passenger Cars-Mechanical Systems, Vol. 1(2008-01-1019), pp. 810-819, 2008. [63] Orban, D. and Moernaut, G. J. K., “The basics of patch antennas, updated,” RF Globalnet (www. rfglobalnet. com) newsletter, 2009. [64] Chen, Y. F., Chen, I., Chang, J., and Liu, T., “Design and Analysis of a New Torque Vectoring System with a Ravigneaux Gearset for Vehicle Applications” Energies, Vol. 10(12), 2157, 2017. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77480 | - |
| dc.description.abstract | 為了解決在車輛傳動系統中產生的扭轉振動,目前市面上普遍使用扭力彈簧或雙質量飛輪作為減振器,其大部分是以線性彈簧或弧形螺旋彈簧作為彈性元件,達到隔絕振動與降低噪音的目的。本論文提出一種利用磁鐵間同極相斥力量作為彈性元件的構想,以磁鐵取代雙質量飛輪中的彈簧,解決因離心力導致彈簧摩擦而產生磨耗的問題,並同時具有減振之效,本論文將其命名為永磁式雙質量飛輪。首先,將磁鐵互斥作用力類比為彈性元件,建立力學模型,並透過實驗量測找出磁鐵之等效彈簧常數,以公式推導驗證磁鐵斥力與彈簧一樣具有緩衝與傳遞扭力的效果。接著,利用磁鐵在金屬圓管中移動所產生的渦電流阻力作為阻尼元件,並透過實驗量測找出磁鐵與金屬圓管間的等效阻尼常數,帶入系統矩陣方程式後,對永磁式雙質量飛輪元件進行靜態、動態、敏感度以及頻率響應等分析。此外,本論文研究還設計了獵能線圈模組,可與磁鐵進行相對運動以產生電磁感應,並能感測雙質量飛輪之相對轉速。本論文透過實驗量測找出相對速度與感應電壓的關係,計算雙質量飛輪於運轉中能夠擷取多少能量。最後,利用模擬軟體建立負載平台來測試永磁式雙質量飛輪之整體特性,並驗證此元件能夠裝載於車輛上。本論文所設計之永磁式雙質量飛輪具有隔絕引擎扭轉振動之功效,可應用於車輛傳動系統中,且有潛力使車輪轉速更為平順。 | zh_TW |
| dc.description.abstract | In order to solve the torsional vibration problems in vehicle powertrain systems, conventional dual mass flywheels (DMFs) use linear or arc springs as elastic elements to isolate vibration and noise. In this dissertation, a new concept of using the magnetic repulsive force as anti-vibrating units to replace DMF springs is proposed. Therefore, wear of springs due to frictions will be no more consideration and it also has the effectiveness of vibration isolation, and the new device is named magnetic dual mass flywheel (MDMF). First, a mathematical model of magnetic repulsive forces has been established and the effective stiffness constant is measured to prove the magnet pairs have the same abilities of the transmission of force compared to springs. Second, a moving magnet in a conductive tube induces an eddy current effect as a damping unit, which the corresponding damping coefficient of the MDMF matrix form is measured for static, dynamic, sensitivity, and frequency analyses. In addition, an energy harvesting unit is designed that an electromagnetic induction can be induced through the relative motions between a magnet and a coil, which can be applied to sense the relative rotational speed of the flywheels. By measuring the relation between the relative speed and the induced voltage, the energy harvesting power can be calculated while the MDMF is rotating. Finally, through this way, the MDMF device is simulated to verify its function of vibration isolation by means of connecting to an external loading or being equipped on a vehicle. This new design of MDMF has a potential for vibration isolation and noise reduction in the powertrain systems. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T22:04:05Z (GMT). No. of bitstreams: 1 ntu-107-D00522024-1.pdf: 16191062 bytes, checksum: 8d02c2d0aa7821a77c6ae80173304adf (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 論文口試委員審定書 i
誌謝 ii 中文摘要 iii ABSTRACT iv 目錄 v 圖目錄 viii 表目錄 xvi Chapter 1 文獻回顧與研究動機 1 1.1 前言 1 1.2 扭力彈簧型扭轉減振器 8 1.3 離心擺片式扭轉減振器 9 1.4 其他形式之扭轉減振器 10 1.5 研究動機與論文架構 12 Chapter 2 傳統雙質量飛輪之基礎理論 15 2.1 傳統雙質量飛輪之元件結構 15 2.2 傳統雙質量飛輪之彈簧模型 18 2.3 傳統雙質量飛輪之模型建立 24 2.3.1 SimulationX軟體簡介 24 2.3.2 傳統雙質量飛輪模型 26 Chapter 3 永磁式雙質量飛輪之減振元件 31 3.1 磁鐵-質量系統之理論模型 31 3.2 磁鐵-質量系統之實驗量測 33 3.3 永磁式雙質量飛輪減振元件之設計概念 38 3.3.1 磁力近似模型 38 3.3.2 線性近似模型 41 3.3.3 旋轉近似模型 43 3.4 永磁式雙質量飛輪減振元件之模擬分析 47 3.4.1 磁力模型分析 47 3.4.2 線性模型分析 52 3.4.3 旋轉模型分析 63 Chapter 4 永磁式雙質量飛輪之阻尼元件 66 4.1 渦電流阻尼之理論模型 66 4.2 渦電流阻尼之實驗量測 68 4.3 永磁式雙質量飛輪阻尼元件之設計概念 71 4.4 永磁式雙質量飛輪阻尼元件之模擬分析 72 4.4.1 靜態模型分析 74 4.4.2 動態模型分析 75 4.4.3 敏感度分析 76 4.4.4 頻率響應分析 79 Chapter 5 永磁式雙質量飛輪之獵能元件 80 5.1 振動獵能與能量擷取 80 5.1.1 原理機制 80 5.1.2 應用領域 82 5.2 振動與磁能轉換之理論模型 84 5.3 振動與磁能轉換之實驗量測 86 5.3.1 感應發光 86 5.3.2 整流儲能 87 5.3.3 速度感測 89 5.3.4 阻抗匹配 94 5.4 永磁式雙質量飛輪獵能元件之設計概念 96 5.5 永磁式雙質量飛輪獵能元件之模擬分析 97 Chapter 6 永磁式雙質量飛輪之系統評估 99 6.1 扭轉振動測試 99 6.2 車輛傳動系統 109 6.3 問題討論 112 6.4 改良方案 113 Chapter 7 結論 115 REFERENCES 116 BIOGRAPHY 122 PUBLICATIONS 123 | |
| dc.language.iso | zh-TW | |
| dc.subject | 雙質量飛輪 | zh_TW |
| dc.subject | 獵能元件 | zh_TW |
| dc.subject | 減振元件 | zh_TW |
| dc.subject | 阻尼元件 | zh_TW |
| dc.subject | 磁鐵互斥力 | zh_TW |
| dc.subject | dual mass flywheel | en |
| dc.subject | energy harvesting unit | en |
| dc.subject | damping unit | en |
| dc.subject | anti-vibrating unit | en |
| dc.subject | magnetic force | en |
| dc.title | 具減振、阻尼、獵能功能之永磁式雙質量飛輪設計與分析 | zh_TW |
| dc.title | Design and Analysis of a Novel Magnetic Dual Mass Flywheel with Anti-Vibrating, Damping, and Energy Harvesting Functions | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 林陽泰,鍾添東,柴昌維,蘇偉? | |
| dc.subject.keyword | 雙質量飛輪,磁鐵互斥力,減振元件,阻尼元件,獵能元件, | zh_TW |
| dc.subject.keyword | dual mass flywheel,magnetic force,anti-vibrating unit,damping unit,energy harvesting unit, | en |
| dc.relation.page | 123 | |
| dc.identifier.doi | 10.6342/NTU201803775 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2018-08-17 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| Appears in Collections: | 機械工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-107-D00522024-1.pdf Restricted Access | 15.81 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
