Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77461
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林敬哲zh_TW
dc.contributor.advisorJing-Jer Lingen
dc.contributor.author廖竹旋zh_TW
dc.contributor.authorJu-Shiuan Liaoen
dc.date.accessioned2021-07-10T22:03:06Z-
dc.date.available2024-02-28-
dc.date.copyright2018-10-05-
dc.date.issued2018-
dc.date.submitted2002-01-01-
dc.identifier.citation[1] Hayflick, L., and Moorhead, P. S. (1961). The serial cultivation of human diploid cell strains. Experimental cell research, 25(3), 585-621.
[2] Hayflick, L. (1965). The limited in vitro lifetime of human diploid cell strains. Experimental cell research, 37(3), 614-636.
[3] Watson, J. D. (1972). Origin of concatemeric T7DNA. Nature New Biology, 239(94), 197.
[4] Röhme, D. (1981). Evidence for a relationship between longevity of mammalian species and life spans of normal fibroblasts in vitro and erythrocytes in vivo. Proceedings of the National Academy of Sciences, 78(8), 5009-5013.
[5] Harley, C.B., Futcher, A.B., and Greider, C.W. (1990). Telomeres shorten during ageing of human fibroblasts. Nature, 345(6274), 458-460.
[6] Zakian, V. A. (1995). Telomeres: beginning to understand the end. Science, 270(5242), 1601-1607.
[7] Levy, M. Z., Allsopp, R. C., Futcher, A. B., Greider, C. W., and Harley, C. B. (1992). Telomere end-replication problem and cell aging. Journal of molecular biology, 225(4), 951-960.
[8] Harley, C. B., Vaziri, H., Counter, C. M., & Allsopp, R. C. (1992). The telomere hypothesis of cellular aging. Experimental gerontology, 27(4), 375-382.
[9] Bodnar, A. G., Ouellette, M., Frolkis, M., Holt, S. E., Chiu, C. P., Morin, G. B., Harley, C. B., Shay, J. W., Lichtsteiner, S. and Wright, W. E. (1998). Extension of life-span by introduction of telomerase into normal human cells. Science, 279(5349), 349-352.
[10] Chen, Q., Fischer, A., Reagan, J.D., Yan, L.J., and Ames, B.N. (1995). Oxidative DNA damage and senescence of human diploid fibroblast cells. Proceedings of the National Academy of Sciences, 92(10), 4337-4341.
[11] Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D., and Lowe, S. W. (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell, 88(5), 593-602.
[12] Lee, A.C., Fenster, B.E., Ito, H., Takeda, K., Bae, N.S., Hirai, T., Yu, Z.X., Ferrans, V.J., Howard, B.H., and Finkel, T. (1999). Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J Biol Chem, 274(12), 7936-7940.
[13] Di Micco, R., Fumagalli, M., Cicalese, A., Piccinin, S., Gasparini, P., Luise, C., Schurra, C., Garre, M., Nuciforo, P. G., Bensimon, A., Maestro, R. and Pelicci, P. G. (2006). Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature, 444(7119), 638.
[14] Gil, J., and Peters, G. (2006). Regulation of the INK4b-ARF-INK4a tumour suppressor locus: all for one or one for all. Nature reviews Molecular cell biology, 7(9), 667-677.
[15] Baker, D.J., Childs, B.G., Durik, M., Wijers, M.E., Sieben, C.J., Zhong, J., Saltness, R.A., Jeganathan, K.B., Verzosa, G.C., Pezeshki, A., Khazaie, K., Miller, J.D., and van Deursen, J.M. (2016). Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature, 530(7589), 184-189.
[16] Denoyelle, C., Abou-Rjaily, G., Bezrookove, V., Verhaegen, M., Johnson, T. M., Fullen, D. R., Pointer, J. N., Gruber, S. B., Su, L. D., Nikiforov, M. A., Kaufman, R. J., Bastian, B. C., and Soengas, M. S. (2006). Anti-oncogenic role of the endoplasmic reticulum differentially activated by mutations in the MAPK pathway. Nature cell biology, 8(10), 1053.
[17] Leikam, C., Hufnagel, A. L., Otto, C., Murphy, D. J., Mühling, B., Kneitz, S., Nanda, I., Wagner, T. U., Haferkamp, S., Bröcker, E. B., Schartl, M., and Meierjohann, S. (2015). In vitro evidence for senescent multinucleated melanocytes as a source for tumor-initiating cells. Cell death & disease, 6(4), e1711.
[18] Dimri, G.P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E.E., Linskens, M., Rubelj, I., Pereira-Smith, O. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proceedings of the National Academy of Sciences, 92(20), 9363-9367.
[19] Kurz, D. J., Decary, S., Hong, Y., and Erusalimsky, J. D. (2000). Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. Journal of cell science, 113(20), 3613-3622.
[20] Narita, M., Nunez, S., Heard, E., Narita, M., Lin, A.W., Hearn, S.A., Spector, D.L., Hannon, G.J., and Lowe, S.W. (2003). Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell, 113(6), 703-716.
[21] Zhang, R., Poustovoitov, M. V., Ye, X., Santos, H. A., Chen, W., Daganzo, S. M., Erzberger, J. P., Serebriiskii, I. G., Canutescu, A. A., Dunbrack, R. L., Pehrson, J. R., Berger, J. M., Kaufman, P. D., and Adams, P. D. (2005). Formation of MacroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA. Developmental Cell, 8(1), 19-30.
[22] Zhang, R., Chen, W., and Adams, P. D. (2007). Molecular dissection of formation of senescence-associated heterochromatin foci. Molecular and cellular biology, 27(6), 2343-2358.
[23] Kosar, M., Bartkova, J., Hubackova, S., Hodny, Z., Lukas, J., and Bartek, J. (2011). Senescence-associated heterochromatin foci are dispensable for cellular senescence, occur in a cell type-and insult-dependent manner and follow expression of p16ink4a. Cell cycle, 10(3), 457-468.
[24] Freund, A., Orjalo, A. V., Desprez, P. Y., and Campisi, J. (2010). Inflammatory networks during cellular senescence: causes and consequences. Trends in molecular medicine, 16(5), 238-246.
[25] Kuilman, T., and Peeper, D. S. (2009). Senescence-messaging secretome: SMS-ing cellular stress. Nature reviews cancer, 9(2), 81.
[26] Coppé, J. P., Desprez, P. Y., Krtolica, A., and Campisi, J. (2010). The senescence-associated secretory phenotype: the dark side of tumor suppression. Annual Review of Pathological Mechanical Disease, 5, 99-118.
[27] Salama, R., Sadaie, M., Hoare, M., and Narita, M. (2014). Cellular senescence and its effector programs. Genes & development, 28(2), 99-114.
[28] Dou, Z., Ghosh, K., Vizioli, M. G., Zhu, J., Sen, P., Wangensteen, K. J., Simithy, O., Lan, Y., Lin, Y., Zhou, Z., Capell, B. C., Xu, C., Xu, M., Kieckhaefer, J. E., Jiang, T., Shoshkes-Carmel, M., Ahasan Al Tanim, K. M., Barber, G. N., Seykora, J. T., Millar, S. E., Kaestner, K. H., Carcia, B. A., and Peter, D. (2017). Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature, 550(7676), 402.
[29] Glück, S., Guey, B., Gulen, M. F., Wolter, K., Kang, T. W., Schmacke, N. A., Bridgeman, A., Rehwinkel, J., Zender, L., and Ablasser, A. (2017). Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nature cell biology, 19(9), 1061.
[30] Acosta, J. C., Banito, A., Wuestefeld, T., Georgilis, A., Janich, P., Morton, J. P., Athineos, P., Kang, Tae-Won, Lasitschka, F., Andrulis, M., Pascual, G., Morris, K. J., Khan, S., Jin, H., Dharmalingam, G., Snijders, A. P., Carroll, T., Capper, D., Pritchard, C., Inman, G. J., Longerich, T., Sansom, O. J., Benitah, S. A., Zender, L., and Gil, J. (2013). A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nature cell biology, 15(8), 978.
[31] Xue, W., Zender, L., Miething, C., Dickins, R. A., Hernando, E., Krizhanovsky, V., Cordon-Cardo, C., and Lowe, S. W. (2007). Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature, 445(7128), 656.
[32] Muñoz-Espín, D., and Serrano, M. (2014). Cellular senescence: from physiology to pathology. Nature reviews Molecular cell biology, 15(7), 482.
[33] Lopez-Otin, C., Blasco, M.A., Partridge, L., Serrano, M., and Kroemer, G. (2013). The hallmarks of aging. Cell, 153(6), 1194-1217.
[34] van Doorn, W. G., and Woltering, E. J. (2004). Senescence and programmed cell death: substance or semantics?. Journal of Experimental Botany, 55(406), 2147-2153.
[35] Baker, D. J., Childs, B. G., Durik, M., Wijers, M. E., Sieben, C. J., Zhong, J., Saltness, R. A., Jeganathan, K. B., Verzosa, G. C., Pezeshki, A., Khazaie, K., Miller, J. D., and van Deursen, J.M. (2016). Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature, 530(7589), 184-189.
[36] Zhu, Y., Tchkonia, T., Pirtskhalava, T., Gower, A. C., Ding, H., Giorgadze, N., Palmer, A. K., Ikeno, Y., Hubbard, G. B., Lenburg, M., O'Hara, S. P., LaRusso, N. F., Miller, J. D., Roos, C. M., Verzosa, G. C., LeBrasseur, N. K., Wren, J. D., Farr, J. N., Khosla, S., Stout, M. B., McGowan, S. J., Fuhrmann-Stroissnigg, H., Gurkar, A. U., Zhao, J., Colangelo, D., Dorronsoro, A., Ling, Y. Y., Barghouthy, A. S., Navarro, D. C., Sano, T., Robbins, P. D., Niedernhofer, L. J., and Kirkland, J. L. (2015). The Achilles' heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell, 14(4), 644-658.
[37] Zhang, H., Pan, K. H., and Cohen, S. N. (2003). Senescence-specific gene expression fingerprints reveal cell-type-dependent physical clustering of up-regulated chromosomal loci. Proceedings of the National Academy of Sciences, 100(6), 3251-3256.
[38] Chen, H. L., Lu, C. Y., Hsu, Y. H., and Lin, J. J. (2004). Chromosome positional effects of gene expressions after cellular senescence. Biochemical and biophysical research communications, 313(3), 576-586.
[39] Kumar, S., Millis, A. J., and Baglioni, C. (1992). Expression of interleukin 1-inducible genes and production of interleukin 1 by aging human fibroblasts. Proceedings of the National Academy of Sciences, 89(10), 4683-4687.
[40] West, M. D., Shay, J. W., Wright, W. E., and Linskens, M. H. (1996). Altered expression of plasminogen activator and plasminogen activator inhibitor during cellular senescence. Experimental Gerontol, 31(1-2), 175-193.
[41] Zhang, H., Pan, K. H., and Cohen, S. N. (2003). Senescence-specific gene expression fingerprints reveal cell-type-dependent physical clustering of up-regulated chromosomal loci. Proceedings of the National Academy of Science, 100(6), 3251-3256.
[42] Law, R. H., Zhang, Q., McGowan, S., Buckle, A. M., Silverman, G. A., Wong, W., Rosado, C. J., Langendorf, C. G., Pike, R. N., Bird, P. I., and Whisstock, J. C. (2006). An overview of the serpin superfamily. Genome biology, 7(5), 216.
[43] Remold-O'Donnell, E. (1993). The ovalbumin family of serpin proteins. FEBS letters, 315(2), 105-108.
[44] Hilmenyuk, T., Bellinghausen, I., Heydenreich, B., Ilchmann, A., Toda, M., Grabbe, S., and Saloga, J. (2010). Effects of glycation of the model food allergen ovalbumin on antigen uptake and presentation by human dendritic cells. Immunology, 129(3), 437-445.
[45] Benarafa, C., and Remold-O'Donnell, E. (2005). The ovalbumin serpins revisited: perspective from the chicken genome of clade B serpin evolution in vertebrates. Proceedings of the National Academy of Sciences, 102(32), 11367-11372.
[46] Boncela, J., Przygodzka, P., Wyroba, E., Papiewska-Pajak, I., and Cierniewski, C.S. (2013). Secretion of SerpinB2 from endothelial cells activated with inflammatory stimuli. Experimental Cell Research, 319(8), 1213-1219.
[47] Schroder, W. A., Major, L. D., Le, T. T., Gardner, J., Sweet, M. J., Janciauskiene, S., and Suhrbier, A. (2014). Tumor cell-expressed SerpinB2 is present on microparticles and inhibits metastasis. Cancer Medicine, 3(3), 500-513.
[48] Kruithof, E. K., Vassalli, J. D., Schleuning, W. D., Mattaliano, R. J., and Bachmann, F. (1986). Purification and characterization of a plasminogen activator inhibitor from the histiocytic lymphoma cell line U-937. Journal Biological Chemistry, 261(24), 11207-11213.
[49] Thorsen, S., Philips, M., Selmer, J., Lecander, I., and Astedt, B. (1988). Kinetics of inhibition of tissue-type and urokinase-type plasminogen activator by plasminogen-activator inhibitor type 1 and type 2. European Journal of Biochemistry, 175(1), 33-39.
[50] Boncela, J., Przygodzka, P., Papiewska-Pajak, I., Wyroba, E., and Cierniewski, C.S. (2011). Association of plasminogen activator inhibitor type 2 (PAI-2) with proteasome within endothelial cells activated with inflammatory stimuli. Journal Biological Chemistry, 286(50), 43164-43171.
[51] Schroder, W.A., Major, L., and Suhrbier, A. (2011). The role of SerpinB2 in immunity. Critical ReviewsTM Immunology, 31(1), 15-30.
[52] Jensen, P. H., Schüler, E., Woodrow, G., Richardson, M., Goss, N., Højrup, P., Petersen, T. E. and Rasmussen, L. K. (1994). A unique interhelical insertion in plasminogen activator inhibitor-2 contains three glutamines, Gln83, Gln84, Gln86, essential for transglutaminase-mediated cross-linking. Journal of Biological Chemistry, 269(21), 15394-15398.
[53] Cochran, B. J., Gunawardhana, L. P., Vine, K. L., Lee, J. A., Lobov, S., and Ranson, M. (2009). The CD-loop of PAI-2 (SERPINB2) is redundant in the targeting, inhibition and clearance of cell surface uPA activity. BMC biotechnology, 9(1), 43.
[54] Ye, R.D., Ahern, S.M., Le Beau, M.M., Lebo, R.V., and Sadler, J.E. (1989). Structure of the gene for human plasminogen activator inhibitor-2. The nearest mammalian homologue of chicken ovalbumin. Journal of Biological Chemistry, 264(10), 5495-5502.
[55] Wilczynska, M., Fa, M., Ohlsson, P. I., and Ny, T. (1995). The inhibition mechanism of serpins Evidence that the mobile reactive center loop is cleaved in the native protease-inhibitor complex. Journal of Biological Chemistry, 270(50), 29652-29655.
[56] Silverman, G. A., Bird, P. I., Carrell, R. W., Coughlin, P. B., Gettins, P. G., Irving, J. A., Lomas, D. A., Luke, C. J., Moyer, R. W., Pemberton, P. A., Remold-O'Donnell, E., Salvesen, G. S., Travis, J., and Whisstock, J. C. (2001). The serpins are an expanding superfamily of structurally similar but funtionally diverse proteins: Evolution, mechanism of inhibition, novel functions, and a revised nomenclature. Journal of Biological Chemistry.
[57] Jankova, L., Harrop, S. J., Saunders, D. N., Andrews, J. L., Bertram, K. C., Gould, A. R., Baker, M. S., and Curmi, P. M. (2001). Crystal structure of the complex of plasminogen activator inhibitor 2 with a peptide mimicking the reactive center loop. Journal of Biological Chemistry, 276(46), 43374-43382.
[58] Lee, J. A. (2015). Characterisation of SerpinB2 as a stress response modulator.
[59] Croucher, D. R., Saunders, D. N., Lobov, S., and Ranson, M. (2008). Revisiting the biological roles of PAI2 (SERPINB2) in cancer. Nature Reviews Cancer, 8(7), 535-545.
[60] Astedt, B., Lindoff, C., and Lecander, I. (1998). Significance of the plasminogen activator inhibitor of placental type (PAI-2) in pregnancy. Seminars in Thrombosis and Hemostasis, 24(5), 431-435.
[61] Kortlever, R. M., and Bernards, R. (2006). Senescence, wound healing and cancer: the PAI-1 connection. Cell Cycle, 5(23), 2697-2703.
[62] Hitomi, K., Kojima, S., and Fesus, L. (Eds.). (2016). Transglutaminases: Multiple Functional Modifiers and Targets for New Drug Discovery. Springer.
[63] Birckbichler, P. J., Orr, G. R., Patterson, M. K., Conway, E., and Carter, H. A. (1981). Increase in proliferative markers after inhibition of transglutaminase. Proceedings of the National Academy of Sciences, 78(8), 5005-5008.
[64] Park, S. C., Yeo, E. J., Han, J. A., Hwang, Y. C., Choi, J. Y., Park, J. S., Park, Y. H., Kim, K. O., Kim, I. G., Seong, S. C., and Kwak, S. J. (1999). Aging process is accompanied by increase of transglutaminase C. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 54(2), B78-B83.
[65] Lan, L., Holland, J. D., Qi, J., Grosskopf, S., Vogel, R., Györffy, B., Wulf-Goldenberg, A., and Birchmeier, W. (2015). Shp2 signaling suppresses senescence in PyMT‐induced mammary gland cancer in mice. The EMBO journal, e201489004.
[66] Rahmouni, S., Cerignoli, F., Alonso, A., Tsutji, T., Henkens, R., Zhu, C., Louis-dit-Sully, C., Moutschen, M., Jiang, W., and Mustelin, T. (2006). Loss of the VHR dual-specific phosphatase causescell-cycle arrest and senescence. Nature Cell Biology, 8(5), 524.
[67] Najfeld, V., Ballard, S. G., Menninger, J., Ward, D. C., Bouhassira, E. E., Schwartz, R. S., Nagel, R. L. and Rybicki, A. C. (1992). The gene for human erythrocyte protein 4.2 maps to chromosome 15q15. American journal of human genetics, 50(1), 71.
[68] Han, X. Q., and Damodaran, S. (1996). Thermodynamic compatibility of substrate proteins affects their cross-linking by transglutaminase. Journal of Agricultural and Food Chemistry, 44(5), 1211-1217.
[69] Yu, C. H., Chou, C. C., Lee, Y. J., Khoo, K. H., and Chang, G. D. (2015). Uncovering protein polyamination by the spermine-specific antiserum and mass spectrometric analysis. Amino acids, 47(3), 469-481.
[70] Li, P. S., Lee, I. L., Yu, W. L., Sun, J. S., Jane, W. N., and Shen, H. H. (2014). A novel albumin-based tissue scaffold for autogenic tissue engineering applications. Scientific Reports, 4, 5600.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77461-
dc.description.abstractSerpinB2是一種絲胺酸/半胱氨酸蛋白酶抑制劑,廣泛已知它能夠抑制血纖維蛋白溶解酶原的活化過程,進而促進凝血反應。它是藉由與目標蛋白酶催化活性位之間形成共價鍵結的方式,永久性地抑制對方的活性。有趣的是,文獻指出serpinB2是老化的標記蛋白之一,細胞老化的過程serpinB2蛋白表現量也會隨之上升。我們發現在年輕的人類正常纖維母細胞中以腺病毒感染的方式大量表現serpinB2會導致細胞老化;反之,抑制serpinB2的基因表現能夠保護細胞不進入老化的階段。上述結果皆顯示serpinB2在細胞老化的過程中扮演重要的角色。進一步我們也發現serpinB2誘發細胞老化的過程需要TGM2的參與。TGM2是轉麩醯胺酶的一種,廣泛分布存在體內各個組織器官中,它能夠轉移蛋白質上的Glutamine residue的氨基,並與其它蛋白或是多氨化合物之間形成穩定的異肽鍵鍵結,過程中受到鈣離子的濃度所調控。我們發現細胞老化的過程,serpinB2與TGM2之間存在交互作用 (免疫共沉澱的實驗) 並會活化TGM2;同樣地,抑制TGM2的基因表現也能夠保護細胞免於老化的命運。本篇研究中,我發現體外的條件下,serpinB2無法活化TGM2酵素活性,而且它們之間不存在直接的交互作用。因此我們認為細胞老化的條件下應有其他的蛋白幫助serpinB2間接活化TGM2,接著進一步Mass spectrometry分析的結果找出老化過程TGM2特定的目標基質,希望藉此能夠幫助我們進一步探討TGM2參與在serpinB2調控的細胞老化之中所扮演的角色。zh_TW
dc.description.abstractSerpinB2 is a serine protease inhibitor that is also known as plasminogen activator inhibitor type 2 (PAI-2). It covalently binds to urokinase plasminogen activator (uPA) and tissue plasminogen activator (tPA) to inhibit their activities. Interestingly, serpinB2 level is also increased in senescent cells and is considered as a senescence biomarker. Previously, we found elevated protein level of serpinB2 is sufficient to induce normal human fibroblasts into senescence. Moreover, depletion of serpinB2 prevented cells from senescence. These results provide evidence that serpinB2 has a critical role in senescence. We have also found that the serpinB2-mediated cellular senescence is dependent on transglutaminase TGM2. TGM2 is a calcium-dependent transglutaminase, which catalyzes stable isopeptide bond formation between lysine and glutamine residues to crosslink proteins. The transglutaminase activity of TGM2 is increased in senescent cells. Depletion of TGM2 prevents cells from serpinB2-induced senescence. These results support a role of TGM2 in senescence. In this study, I found there is no direct interaction between TGM2 and serpinB2, although the co-immunoprecipitation experiments suggested that serpinB2 interacts with TGM2. I also found that serpinB2 did not greatly affect TGM2 activity, even inhibit it, in contrast to the in vivo finding that serpinB2 activates TGM2 activity. Mass analysis was next conducted to identify senescence-specific TGM2 targets. The identified protein may help resolving the mehanism of how TGM2 is involved in serpinB2-mediated cellular senescence.en
dc.description.provenanceMade available in DSpace on 2021-07-10T22:03:06Z (GMT). No. of bitstreams: 1
ntu-107-R04442003-1.pdf: 5979167 bytes, checksum: 81a9c9c9f1cda578cf055b2f3f67d8ca (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 1
中文摘要 2
Abstract 3
Contents 4
List of Abbreviation Table 7
List of Figures 8
List of Tables 9
Introduction 10
1.1 Cellular Senescence 10
1.2 SerpinB2-induced cellular senescence 12
1.3 Serine Protease Inhibitor, Clade B, Type 2 14
1.4 Transglutaminase 2 in cellular senescence 17
Materials and Method 18
1.1 Cell Lines and Cell Culture 18
1.1.1 細胞株 18
1.1.2 細胞培養液 (Growth Medium) 18
1.1.3 細胞繼代培養 (Subculture of Adherent Cell) 19
1.1.4 細胞計數 (Cell Counting) 19
1.2 Bacterial Strain (Competent Cell) & Bacterial Culture 20
1.2.1 大腸桿菌勝任細胞菌株種類 20
1.2.2 大腸桿菌勝任細胞製備 (Chemically and Electro-competent cell) 20
1.2.3 大腸桿菌勝任細胞轉形作用 (Transformation) 21
1.2.4 細菌培養 22
1.3 Adenovirus Reproduction 22
1.3.1 細胞株 22
1.3.2 腺病毒產量放大 23
1.3.3 腺病毒初步濃縮與純化 23
1.3.4 偵測病毒感染效力 (病毒感染效力) 24
1.3.5 偵測病毒在不同細胞中的感染劑量 (M.O.I) 24
1.4 Lentivirus Production 25
1.4.1 細胞株 25
1.4.2 菌株種類與來源 25
1.4.3 質體純化與限制酶分析 25
1.4.4 轉染 (Transfection) 細胞與收集重組慢病毒 26
1.4.5 偵測病毒相對感染效力 (RIU, Relative Infection Unit) 27
1.4.6 偵測病毒在不同細胞中的感染劑量 (M.O.I) 28
1.5 Western Blot Analysis 28
1.5.1 收集細胞樣品 28
1.5.2 震破細胞取得細胞萃取物 (cell extract) 29
1.5.3 蛋白質濃度測定 (Bradford Protein Assay) 29
1.5.4 聚丙烯醯胺膠體電泳 (SDS PAGE Electrophoresis) 30
1.5.5 轉漬步驟 (Transfer to NC Membrane) 31
1.5.6 免疫轉漬分析 (Immunoblot Analysis) 31
1.6 Protein Purification 32
1.6.1 Plasmid Construction 32
1.6.2 Induction Time Test 33
1.6.3 Protein Purification 33
1.6.4 Coomassie Blue Staining 34
1.7 TGM2 Incorporation Assay 34
1.7.1 Enzyme Reaction 34
1.7.2 Dot Blot Analysis 35
1.7.3 Image Quantification 35
1.8 Mass Spectrometry 35
1.8.1 細胞樣品前處理Pull Down Assay 35
1.8.2 西方墨點法確認蛋白位置 36
1.8.3 上機前樣品前處理 (Gel-assisted digestion for mass spectrometry) 36
Results 38
Discussion 47
References 50
Figure 61
Table 79
-
dc.language.isozh_TW-
dc.title探討TGM2參與在SerpinB2調控的細胞老化中所扮演的角色zh_TW
dc.titleThe role of TGM2 in serpinB2-mediated cellular senescenceen
dc.typeThesis-
dc.date.schoolyear106-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee鄧述諄;吳青錫zh_TW
dc.contributor.oralexamcommitteeShu-Chun Teng;Ching-Shyi Wuen
dc.subject.keywordserpinB2,細胞老化,TGM2,zh_TW
dc.subject.keywordserpinB2,cellular senescence,TGM2,en
dc.relation.page100-
dc.identifier.doi10.6342/NTU201804027-
dc.rights.note未授權-
dc.date.accepted2018-08-20-
dc.contributor.author-college醫學院-
dc.contributor.author-dept生物化學暨分子生物學研究所-
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-106-2.pdf
  目前未授權公開取用
5.84 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved