Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77446
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳建甫
dc.contributor.authorTzu-Yu Changen
dc.contributor.author張慈友zh_TW
dc.date.accessioned2021-07-10T22:02:21Z-
dc.date.available2021-07-10T22:02:21Z-
dc.date.copyright2018-12-13
dc.date.issued2018
dc.date.submitted2018-12-13
dc.identifier.citation[1] W. D. Nordhaus, 'To slow or not to slow: the economics of the greenhouse effect,' Econ. J. , vol. 101, no. 407, pp. 920-937, 1991.
[2] J. P. Painuly, 'Barriers to renewable energy penetration; a framework for analysis,' Renew. energy, vol. 24, no. 1, pp. 73-89, 2001.
[3] T. I. Lee et al., 'High‐Power Density Piezoelectric Energy Harvesting Using Radially Strained Ultrathin Trigonal Tellurium Nanowire Assembly,' Adv. Mater. , vol. 25, no. 21, pp. 2920-2925, 2013.
[4] G. Zhu et al., 'Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator,' Nano Lett. , vol. 13, no. 2, pp. 847-853, 2013.
[5] J.-J. Feng et al., 'Novel Au− Ag hybrid device for electrochemical Se (R) R spectroscopy in a wide potential and spectral range,' Nano Lett. , vol. 9, no. 1, pp. 298-303, 2008.
[6] J. J. Feng, U. Gernert, P. Hildebrandt, and I. M. Weidinger, 'Induced SER‐Activity in Nanostructured Ag–Silica–Au Supports via Long‐Range Plasmon Coupling,' Adv. Funct. Mater. , vol. 20, no. 12, pp. 1954-1961, 2010.
[7] B. Wiley, Y. Sun, and Y. Xia, 'Synthesis of silver nanostructures with controlled shapes and properties,' Acc. Chem. Res. , vol. 40, no. 10, pp. 1067-1076, 2007.
[8] Y. M. Fang et al., 'Facile electrochemical preparation of Ag nanothorns and their growth mechanism,' Chem. Eur. J. , vol. 16, no. 23, pp. 6766-6770, 2010.
[9] R. Narayanan and M. A. El-Sayed, 'Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution,' Nano letters, vol. 4, no. 7, pp. 1343-1348, 2004.
[10] C. Liu et al., 'Static electricity powered copper oxide nanowire microbicidal electroporation for water disinfection,' Nano Lett. , vol. 14, no. 10, pp. 5603-5608, 2014.
[11] F.-R. Fan, Z.-Q. Tian, and Z. L. Wang, 'Flexible triboelectric generator,' Nano Lett. , vol. 1, no. 2, pp. 328-334, 2012.
[12] G. Zhu, A. C. Wang, Y. Liu, Y. Zhou, and Z. L. Wang, 'Functional electrical stimulation by nanogenerator with 58 V output voltage,' Nano Lett. , vol. 12, no. 6, pp. 3086-3090, 2012.
[13] Y. Feng et al., 'Self-powered electrostatic filter with enhanced photocatalytic degradation of formaldehyde based on built-in triboelectric nanogenerators,' ACS Nano, vol. 11, no. 12, pp. 12411-12418, 2017.
[14] Z. L. Wang, J. Chen, and L. Lin, 'Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors,' Energy Environ. Sci. , vol. 8, no. 8, pp. 2250-2282, 2015.
[15] Z. L. Wang, 'Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors,' ACS Nano, vol. 7, no. 11, pp. 9533-9557, 2013.
[16] S. Wang, L. Lin, Y. Xie, Q. Jing, S. Niu, and Z. L. Wang, 'Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism,' Nano Lett. , vol. 13, no. 5, pp. 2226-2233, 2013.
[17] Y. Yang et al., 'Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system,' ACS 31 Nano, vol. 7, no. 10, pp. 9213-9222, 2013.
[18] H. Baytekin, A. Patashinski, M. Branicki, B. Baytekin, S. Soh, and B. A. Grzybowski, 'The mosaic of surface charge in contact electrification,' Science, vol. 333, no. 6040, pp. 308-312, 2011.
[19] R. G. Horn, D. Smith, and A. Grabbe, 'Contact electrification induced by monolayer modification of a surface and relation to acid–base interactions,' Nature, vol. 366, no. 6454, pp. 442, 1993.
[20] R. G. Horn and D. T. Smith, 'Contact electrification and adhesion between dissimilar materials,' Science, vol. 256, no. 5055, pp. 362-364, 1992.
[21] L. S. McCarty and G. M. Whitesides, 'Electrostatic charging due to separation of ions at interfaces: contact electrification of ionic electrets,' Angew. Chem. , vol. 47, no. 12, pp. 2188-2207, 2008.
[22] S. Wang, L. Lin, and Z. L. Wang, 'Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics,' Nano Lett. , vol. 12, no. 12, pp. 6339-6346, 2012.
[23] S. Niu et al., 'Theoretical study of contact-mode triboelectric nanogenerators as an effective power source,' Energy Environ. Sci. , vol. 6, no. 12, pp. 3576-3583, 2013.
[24] G. Zhu et al., 'Triboelectric-generator-driven pulse electrodeposition for micropatterning,' Nano Lett. , vol. 12, no. 9, pp. 4960-4965, 2012.
[25] X.-S. Zhang et al., 'Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems,' Nano Lett. , vol. 13, no. 3, pp. 1168-1172, 2013.
[26] L. Lin et al., 'Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging,' ACS Nano, vol. 7, no. 9, pp. 8266-8274, 2013.
[27] S. Niu et al., 'Theory of sliding‐mode triboelectric nanogenerators,' Adv. Mater. , vol. 25, no. 43, pp. 6184-6193, 2013.
[28] Y. Xie et al., 'Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy,' ACS Nano, vol. 7, no. 8, pp. 7119-7125, 2013.
[29] Y. Xie et al., 'Multi-layered disk triboelectric nanogenerator for harvesting hydropower,' Nano Energy, vol. 6, pp. 129-136, 2014.
[30] Y. S. Zhou et al., 'Nanometer Resolution Self‐Powered Static and Dynamic Motion Sensor Based on Micro‐Grated Triboelectrification,' Adv. Mater. , vol. 26, no. 11, pp. 1719-1724, 2014.
[31] Q. Jing et al., 'Self-powered triboelectric velocity sensor for dual-mode sensing of rectified linear and rotary motions,' Nano Energy, vol. 10, pp. 305-312, 2014.
[32] G. Zhu et al., 'Linear-grating triboelectric generator based on sliding electrification,' Nano letters, vol. 13, no. 5, pp. 2282-2289, 2013.
[33] Y. Yang et al., 'Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system,' ACS Nano, vol. 7, no. 8, pp. 7342-7351, 2013.
[34] Y. Yang et al., 'Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system,' ACS Nano, vol. 7, no. 10, pp. 9461-9468, 2013.
[35] H. Zhang et al., 'Single-electrode-based rotating triboelectric nanogenerator for 32 harvesting energy from tires,' ACS Nano, vol. 8, no. 1, pp. 680-689, 2013.
[36] Q. Liang et al., 'Highly transparent triboelectric nanogenerator for harvesting water-related energy reinforced by antireflection coating,' Sci. Rep. , vol. 5, pp. 9080, 2015.
[37] P. Bai et al., 'Transparent and flexible barcode based on sliding electrification for self-powered identification systems,' Nano Energy, vol. 12, pp. 278-286, 2015.
[38] Y. Yang, Y. S. Zhou, H. Zhang, Y. Liu, S. Lee, and Z. L. Wang, 'A Single‐Electrode Based Triboelectric Nanogenerator as Self‐Powered Tracking System,' Adv. Mater. , vol. 25, no. 45, pp. 6594-6601, 2013.
[39] T. Ackermann and L. Söder, 'Wind energy technology and current status: a review,' J. Renew. Sustain. Energy rev. , vol. 4, no. 4, pp. 315-374, 2000.
[40] S. Solomon, G.-K. Plattner, R. Knutti, and P. Friedlingstein, 'Irreversible climate change due to carbon dioxide emissions,' Proc. Natl. Acad. Sci. U.S.A. , vol. 106, no. 6, pp. 1704-1709, 2009.
[41] C. Sun, J. Luo, L. Wu, and J. Zhang, 'Self-ordered anodic alumina with continuously tunable pore intervals from 410 to 530 nm,' ACS Appl. Mater. Interfaces, vol. 2, no. 5, pp. 1299-1302, 2010.
[42] Y. Zi, H. Guo, Z. Wen, M.-H. Yeh, C. Hu, and Z. L. Wang, 'Harvesting low-frequency (< 5 Hz) irregular mechanical energy: a possible killer application of triboelectric nanogenerator,' ACS Nano, vol. 10, no. 4, pp. 4797-4805, 2016.
[43] G. Lalor, A. Mullane, and M. O'Malley, 'Frequency control and wind turbine technologies,' IEEE Trans. Power Syst. , vol. 20, no. 4, pp. 1905-1913, 2005.
[44] https://goo.gl/2rgqFW
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77446-
dc.description.abstract本研究中成功開發出結合曲柄連桿結構用於收集風能之摩擦奈米發電機,藉由風力推動結合風車之曲柄連桿,使與其連接之滑塊於滑動軌道上產生前後週期性運動,因而使滑塊上之鍍鋁(Aluminum, Al)摩擦層與軌道上固定於電極上的鐵氟龍(Polytetrafluoroethylene, PTFE)層產生交互橫向滑動,因而產生電能。研究中並將鋁電極製造成光柵形狀來達到一次運動可產生複數個輸出之加乘效果,此外,鐵氟龍層表面也奈米化形成奈米線結構,增加其與鋁電極接觸之表面積來有效增加發電效能。曲柄連桿設計則達到風扇轉軸每轉動一圈,能夠使得鋁摩擦極滑塊於軌道上有風扇兩倍半徑的運動距離,並且矩形柱狀滑塊設計,使其四周能結合矩形滑動軌道,達到一次運動有四個面摩擦輸出電能之效果。
研究乘過證實此奈米發電機能夠產生最大開路電壓 60 V、最大短路電流 7 µA和最大瞬時作功 7 mW,可有效驅動商業用 LED 等小型電子元件。此外,在不同之風速環境下,此奈米發電機會產生不同之輸出電流值(在風速 1.1 m/s 到 10.4 m/s之間可產生 0.25 µA 到 2.2 µA 的電流值),故此裝置亦可做為一般環境下之風速感測器。預期本研究成果將可結合其他環境相關檢測設備,達到戶外自供電檢測站之目的。
zh_TW
dc.description.abstractIn this study, a triboelectric nanogenerator with a crank structure for harvesting wind energy was successfully developed. The wind-driven crank combined windmill is used to cause the slider connected thereto generate periodic motion on the sliding track. Thus, the aluminized friction layer on the slider and the Teflon layer fixed on the electrode on the track alternately slide laterally to generate electricity. In the research, the aluminum electrode is fabricated into a grating shape to achieve a single motion, which can produce multiple outputs. In addition, the surface of the PTFE layer is fabricated to form a nanowire structure, increasing the surface area in contact with the aluminum electrode to effectively increase power generation. The crank design achieves one revolution of the fan shaft, which enables the slider to have double-radius movement distance on the track.
Moreover, the rectangular column slider is designed to be combined with a rectangular sliding track, so single movement of the slider would rub four surfaces to get four times of outputs. The research proves that this nanogenerator can generate maximum open circuit voltage of 60 V, maximum short-circuit current of 7 µA, and maximum instantaneous work of 7 mW, which can effectively drive small electronic components such as commercial LEDs. In addition, the generator will produce different output current (current values of 0.25 µA to 2.2 µA can be generated when wind speeds of 1.1 m/s to 10.4 m/s), so the device can be used as a sensitive wind speed sensor. It is expected that this research can be combined with other environmentally relevant testing equipment and electrical sensors to achieve the purpose of an outdoor self-powered testing station.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T22:02:21Z (GMT). No. of bitstreams: 1
ntu-107-R05543083-1.pdf: 3229444 bytes, checksum: c1773ac0d34b601efc2dacafdc643dc0 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents總目錄
口試委員會審定書
誌謝 ...... i
中文摘要 ...... ii
ABSTRACT ...... iii
總目錄....... iv
表目錄 ...... vi
圖目錄 ...... vii
第一章 緒論...... 1
1.1 研究背景 ...... 1
1.1.1 可再生能源的重要 ...... 1
1.1.2 風力發電 ...... 2
1.1.3 自供電系統 ...... 2
1.1.4 奈米材料 ...... 2
1.1.5 摩擦奈米發電機 ...... 3
1.1.5.1 摩擦奈米發電機的性質 ...... 4
1.1.5.2 摩擦奈米發電機的運作模式 ...... 4
1.2 研究動機與目的 ...... 9
1.2.1 奈米發電機的發展及便利性 ...... 9
1.2.2 可再生能源之開發–風能 ...... 10
第二章 實驗流程與方法 ...... 10
2.1 實驗材料與設備 ...... 11
2.1.1 材料選用 ...... 11
2.1.2 儀器設備. ...... 11
2.2 實驗流程 ...... 12
2.2.1 整體實驗架構. ...... 12
2.2.2 齒輪箱及滑桿的製作. ...... 12
2.2.3 摩擦奈米發電機的製作. ...... 12
2.2.4 陽極氧化鋁及PTFE 奈米線表面結構的製作. ..... 14
2.2.5 摩擦奈米發電機工作機制. ...... 15
第三章 實驗結果與討論 ...... 18
3.1 摩擦奈米發電機之輸出 ...... 18
3.2 選定之實驗參數 ...... 19
3.2.1 柵狀電極之設計可行性 ...... 19
3.2.2 曲柄連桿及齒輪箱之設計 ...... 22
3.2.3 不同頻率之測試 ...... 24
3.3 自供電風速感測器 ...... 27
第四章 結論...... 29
REFERENCE ...... 30
dc.language.isozh-TW
dc.subject風速感測器zh_TW
dc.subject摩擦zh_TW
dc.subject奈米發電機zh_TW
dc.subject風能zh_TW
dc.subject曲柄連桿zh_TW
dc.subject柵狀電極zh_TW
dc.subject自供電zh_TW
dc.subjecttriboelectricen
dc.subjectnanogeneratorsen
dc.subjectcranken
dc.subjectgrating electrodeen
dc.subjectself-powereden
dc.subjectsensoren
dc.title風能驅動之滑桿式摩擦式奈米發電機zh_TW
dc.titleWind Energy Driven Sliding Rod Type triboelectric Nanogeneratorsen
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree碩士
dc.contributor.coadvisor林宗宏
dc.contributor.oralexamcommittee周逸儒,余政儒,蔡欣怡
dc.subject.keyword摩擦,奈米發電機,風能,曲柄連桿,柵狀電極,自供電,風速感測器,zh_TW
dc.subject.keywordtriboelectric,nanogenerators,crank,grating electrode,self-powered,sensor,en
dc.relation.page32
dc.identifier.doi10.6342/NTU201804342
dc.rights.note未授權
dc.date.accepted2018-12-13
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-R05543083-1.pdf
  未授權公開取用
3.15 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved