請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77438完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊家驤 | zh_TW |
| dc.contributor.advisor | Chia-Hsiang Yang | en |
| dc.contributor.author | 王耀斌 | zh_TW |
| dc.contributor.author | Yao-Pin Wang | en |
| dc.date.accessioned | 2021-07-10T22:01:57Z | - |
| dc.date.available | 2024-01-01 | - |
| dc.date.copyright | 2019-01-21 | - |
| dc.date.issued | 2019 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 1 D.-J. Deng, K.-C. Chen and R.-S. Cheng, "IEEE 802.11ax: Next generation wireless local area networks," International Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness, Aug. 2014.
2 B. Bellalta, "IEEE 802.11ax: High-efficiency WLANS," IEEE Wireless Communications, vol. 23, pp. 38-46, March 2016. 3 J.-Y. Lin, J.-C. Chi, C.-F. Liao and Y.-H. Huang, "A 6.4G LLR/s 8×8 64-QAM soft-output MIMO detector with lattice reduction preprocessing," International Symposium on VLSI Design, Automation and Test, June 2017. 4 C. H. Ju, J. Ma, C. Z. Tian and G. H. He, "VLSI Implementation of An 855Mbps High Performance Soft-output K-Best MIMO Detector," IEEE International Symposium on Circuits and Systems, May 2012. 5 M.-T. Shiue, S.-S. Long, C.-K. Jao and S.-K. Lin, "Design and Implementation of Power-Efficient K-Best MIMO Detector for Configurable Antennas," IEEE Transactions on Very Large Scale Integration Systems, pp. 2418-2422, Nov. 2014. 6 I. A. Bello, B. Halak, M. E.-Hajjar and M. Zwolinski, "Hardware Implementation of a Low-Power K-Best MIMO Detector Based on a Hybrid Merge Network," International Symposium on Power and Timing Modeling, Optimization and Simulation, July 2018. 7 M. Tuchler, R. Koetter and A. C. Singer, "Turbo equalization: principles and new results," IEEE Transaction on Communications, vol. 50, pp. 754-767, May 2002. 8 A. Wiesel, Y. C. Eldar and S. Shamai, "Semidefinite relaxation for detection of 16-QAM signaling in MIMO channels," IEEE Signal Processing Letters, vol. 12, pp. 653-656, Sep. 2005. 9 Z.-Q. Luo, W. K. Ma, A. M.-C. So, Y. Ye and S. Zhang, "Semidefinite Relaxation of Quadratic Optimization Problems," IEEE Signal Processing Magazine, vol. 27, pp. 20-34, May 2010. 10 O. Castañeda, T. Goldstein and C. Studer, "Data Detection in Large Multi-Antenna Wireless Systems via Approximate Semidefinite Relaxation," IEEE Transactions on Circuits and Systems I, vol. 63, pp. 2334-2346, Dec. 2016. 11 M.-X. Chang and W.-Y. Chang, "Maximum-Likelihood Detection for MIMO Systems Based on Differential Metrics," IEEE Transactions on Signal Processing, vol. 65, pp. 3718-3732, July 2017. 12 W. Zhang, and X. Ma, "Low-Complexity Soft-Output Decoding with Lattice-Reduction-Aided Detectors," IEEE Transactions on Communications, vol. 58, pp. 2621-2629, Sep. 2010. 13 T.-J. Hsieh and W.-H. Sheen, "A Lattice-Reduction-Aided Max-Log List Demapper for Coded MIMO Receivers," IEEE Transactions on Vehicular Technology, vol. 63, pp. 664-673, Feb. 2014. 14 K. Lenstra, W. Lenstra, Jr., and L. Lovász, "Factoring polynomials with rational coefficients," Math. Ann. Proc, vol. 261, pp. 515-534, Dec. 1982. 15 A. Youssef, M. Shabany, and P. G. Gulak, "VLSI implementation of a hardware-optimized lattice reduction algorithm for WiMAX/LTE MIMO detection," In Proceedings of IEEE International Symposium on Circuits and Systems, June 2010. 16 C.-F. Liao, and Y.-H. Huang, "Power-Saving 4×4 Lattice-Reduction Processor for MIMO Detection With Redundancy Checking," IEEE trans. on circuits and systems II,vol. 58, pp. 95-99, Feb. 2011. 17 W.-Y. Chen, C.-F. Liao, and Y.-H. Huang, "Hardware-Efficient Interpolation-Based QR Decomposition and Lattice Reduction Processor for MIMO-OFDM Receivers," Journal of Signal Processing Systems, Sep. 2016. 18 M. Shabany and P. G. Gulak, "The application of lattice-reduction to the K-best algorithm for near-optimal MIMO detection," IEEE International Symposium on Circuits and Systems, pp. 316–319, May 2008. 19 B. M. Hochward and S. ten Brink, "Achieving near-capacity on a multiple-antenna channel," IEEE Transactions on Communication, vol. 55, pp. 389-399, April 2003. 20 R. Wang and G. B. Giannakis, "Approaching MIMO channel capacity with reduced-complexity soft sphere decoding," IEEE Wireless Communications and Networking Conference, vol. 3, pp. 1620-1625, Mar. 2004. 21 C. Studer, A. Burg and H. Bolcskei, "Soft-output sphere decoding: algorithms and VLSI implementation," IEEE Wireless Communications and Networking Conference, vol. 26, pp. 290-300, Feb. 2008. 22 C. Mehlfuhrer, D. Seethaler, G. Matz, and M. Rupp, "An iterative MIMO-HSDPA receiver based on a K-Best-MAP algorithm," IEEE Global Telecommunication. Conference, pp. 1-5, April 2006. 23 C. Berrou, A. Glavieux and P. Thitimajshima, "Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1," IEEE International Conference on Communications, pp. 1064-1070, May 1993. 24 J. Hagenauer, "The EXIT chart - introduction to extrinsic information transfer in iterative processing," European Signal Processing Conference, pp. 1541-1548, Sep. 2004. 25 M. El-Hajjar and L. Hanzo, "EXIT Charts for System Design and Analysis," IEEE Communications Surveys & Tutorials, vol. 16, pp. 127-153, May 2013. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77438 | - |
| dc.description.abstract | 無線區域網路802.11是一個成功且普及的無線通訊標準,隨著使用需求的提升,新一代的802.11ax提供更高的傳輸速率與效率,但需要支援高達1024-QAM調變。高維度之調變可透過多輸入多輸出偵測器使用晶格簡化搭配K最佳搜尋與Max-log目錄解映射器來實現,但晶格簡化會造成K最佳搜尋所需處理不規則搜尋樹,而每條搜尋路徑又難以快速計算。遞迴式偵測解碼器可藉由偵測器與解碼器之間的外部遞迴,交換軟式資訊來提升錯誤性能,但傳統之外部遞迴需進行完整偵測跟解碼,導致複雜度隨著外部遞迴次數等比例上升,無法滿足低運算延遲需求。本論文提出了文獻中第一個802.11ax相容的遞迴式偵測解碼接收機,可支援高達4x4 1024-QAM 調變的多天線系統。本設計採用硬體可實現之晶格化簡輔助K最佳偵測演算法,並提出一個實際可行的遞迴式偵測解碼器,可進一步改善封包錯誤率效能,且硬體成本與運算延遲不隨外部遞迴次數成正比。在符合802.11ax 所需資料傳輸率與運算延遲要求下,藉由分析錯誤效能、功耗與面積之可能設計進行最佳遞迴偵測解碼器設計。並使用外部資訊轉換圖分析,可節省50%的遞迴偵測解碼內部遞迴次數,但只損失0.05dB的封包錯誤率。本論文提出的遞迴偵測解碼器可支援802.11ax 4x4 MCS-11與160MHz頻寬並且在WLAN B、D、E通道下皆能滿足錯誤率要求,使用40nm CMOS製程設計,比起可實現之最佳無遞迴接收機可提升1dB的錯誤率效能,並且只需28%的晶片面積與30%的功率消耗。 | zh_TW |
| dc.description.abstract | The 802.11 wireless LAN (WLAN) standards have been successful and popular wireless communication solutions. The emerging 802.11ax can provide even higher data rates for increasing traffic demands by supporting up to 1024-QAM, introducing design challenges. Soft-input-soft-output (SISO) MIMO detection is implemented with lattice reduction aided (LRA) K-best search and a max-log list demapper to deal with such a high-order modulation. However, the search tree becomes irregular in the LRA-K-best algorithm, making the paths hard to traverse. The error rate performance can be improved by exchanging soft information between the MIMO detector and the error correction code (ECC) decoder by employing iterative detection and decoding (IDD). However, detection and decoding need to be performed in each outer iteration, resulting in an unacceptable processing time proportionally to the number of outer iterations. This work presents the first 802.11ax compliant IDD receiver that supports up to 4x4 1024-QAM MIMO detection in the open literatures. A hardware-feasible LRA-K-best detection algorithm is adopted to traverse paths efficiently. A practical IDD receiver, for which cost and latency are not proportional to the number of outer iterations, is used to further reduce the complexity and improve the packet-error-rate (PER) performance. Performance, power, and area (PPA) metrics are well evaluated to explore the design space and to identify the optimal 802.11ax compliant IDD receiver architecture. 50% of IDD inner iterations are reduced with only 0.05dB PER performance loss by leveraging the extrinsic information transfer (EXIT) chart. The proposed practical IDD receiver can support 802.11ax 4x4 MCS-11 with 160MHz channel bandwidth, and achieve the requirement PER performance in WLAN B, D and E channels. The proposed IDD receiver is designed in a 40nm CMOS technology. It improves the error performance by 1dB with only 28% chip area and 30% power consumption when compared to a feasible realization of the optimal non-IDD receiver. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T22:01:57Z (GMT). No. of bitstreams: 1 ntu-108-R05943013-1.pdf: 6378395 bytes, checksum: 7ca54eaaea16801c89ff69bf58c82618 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 口試委員會審定書 ii
誌謝 iii 摘要 iv ABSTRACT v Contents vii List of Figures ix List of Tables x Chapter 1 INTRODUCTION 1 Chapter 2 LATTICE-REDUCTION-AIDED LIST DEMAPPER 5 2.1 Lattice-Reduction 6 2.2 Lattice-Reduction-Aided-K-Best Search 8 2.3 Max-Log List Demapper 10 Chapter 3 ITERATIVE DETECTION AND DECODING 12 3.1 Extrinsic Information Transfer Chart 13 3.2 IDD with Varying Inner Iteration Numbers 16 Chapter 4 HARDWARE IMPLEMENTATION AND IDD SYSTEM ANALYSIS 17 4.1 QR-Decomposition Engine 17 4.2 Lattice Reduction Engine 19 4.3 MIMO Detector 20 4.4 LLR Calculator 21 4.5 Processing Time and Level of Parallelism 21 Chapter 5 CONCLUSION 29 References 31 | - |
| dc.language.iso | en | - |
| dc.subject | IEEE 802.11ax | zh_TW |
| dc.subject | 多輸入多輸出偵測 | zh_TW |
| dc.subject | 晶格化簡 | zh_TW |
| dc.subject | K最佳搜尋 | zh_TW |
| dc.subject | 遞迴式偵測解碼 | zh_TW |
| dc.subject | 外部資訊轉換圖 | zh_TW |
| dc.subject | extrinsic information transfer (EXIT) chart | en |
| dc.subject | K-best search | en |
| dc.subject | IEEE 802.11ax | en |
| dc.subject | multi-input-multi-output (MIMO) detection | en |
| dc.subject | lattice-reduction (LR) | en |
| dc.subject | iterative detection and decoding (IDD) | en |
| dc.title | 應用於無線區域網路IEEE 802.11ax 具晶格簡化輔助多輸入多輸出偵測器之遞迴式接收機設計 | zh_TW |
| dc.title | Design of an Iterative Receiver with a Lattice-Reduction-Aided MIMO Detector for IEEE 802.11ax | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 107-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 柳德政;劉宗德 | zh_TW |
| dc.contributor.oralexamcommittee | Der-Zheng Liu;Tsung-Te Liu | en |
| dc.subject.keyword | IEEE 802.11ax,多輸入多輸出偵測,晶格化簡,K最佳搜尋,遞迴式偵測解碼,外部資訊轉換圖, | zh_TW |
| dc.subject.keyword | IEEE 802.11ax,multi-input-multi-output (MIMO) detection,lattice-reduction (LR),K-best search,iterative detection and decoding (IDD),extrinsic information transfer (EXIT) chart, | en |
| dc.relation.page | 33 | - |
| dc.identifier.doi | 10.6342/NTU201900073 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2019-01-18 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電子工程學研究所 | - |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 6.23 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
