Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77383
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊文欽zh_TW
dc.contributor.author陳宗彥zh_TW
dc.contributor.authorTzung-Yan Chenen
dc.date.accessioned2021-07-10T21:59:11Z-
dc.date.available2024-06-27-
dc.date.copyright2019-07-01-
dc.date.issued2019-
dc.date.submitted2002-01-01-
dc.identifier.citation1. World Health Organization, Cancer fact sheet. 2014.
2. Hanahan, D. and Weinberg, R.A., The hallmarks of cancer. Cell, 2000. 100(1): p. 57-70.
3. Hanahan, D. and Weinberg, R.A., Hallmarks of cancer: the next generation. Cell, 2011. 144(5): p. 646-674.
4. Krepela, E., Prochazka, J., and Selinger, P., Expression of apoptosome pathway-related transcripts in non-small cell lung cancer. Journal of Cancer Research of Clinical Oncology, 2006. 132(1): p. 57-68.
5. Mueller, M.M. and Fusenig N.E., Friends or foes - bipolar effects of the tumour stroma in cancer. Nature Review of Cancer, 2004. 4(11): p. 839-849.
6. Paget, S., The distribution of secondary growths in cancer of the breast. Cancer Metastasis Review, 1989. 8(2): p. 98-101.
7. Fidler, I.J., The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nature Review of Cancer, 2003. 3(6): p. 453-8.
8. Fidler, I.J. and Poste, G., The "seed and soil" hypothesis revisited. Lancet Oncology, 2008. 9(8): p. 808.
9. Marx, J., Cancer immunology. Cancer's bulwark against immune attack: MDS cells. Science, 2008. 319(5860): p. 154-156.
10. Lindau, D., Gielen, P., and Adema, G. J., The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells. Immunology, 2013. 138(2): p. 105-115.
11. Pachynski, R.K., Scholz, A., and Zabel, B. A. Evaluation of Tumor-infiltrating Leukocyte Subsets in a Subcutaneous Tumor Model. Journal of Visualized Experiments, 2015(98).
12. Bhattacharya, P., Budnick, I., and Prabhakar, B. S., Dual Role of GM-CSF as a Pro-Inflammatory and a Regulatory Cytokine: Implications for Immune Therapy. Journal of Interferon Cytokine Research, 2015. 35(8): p. 585-599.
13. Shrihari, T.G., Dual role of inflammatory mediators in cancer. Ecancer Medical Science, 2017. 11: p. 721.
14. Gabrilovich, D.I. and Nagaraj, S., Myeloid-derived suppressor cells as regulators of the immune system. Nature Review of Immunology, 2009. 9(3): p. 162-174.
15. Galligan, J.J. and Petersen, D.R., The human protein disulfide isomerase gene family. Human Genomics, 2012. 6: p. 6.
16. Norgaard, P., Westphal, V., and Winther, J. R. Functional differences in yeast protein disulfide isomerases. Journal of Cell Biology, 2001. 152(3): p. 553-562.
17. Maattanen, P., Kozlov, G., and Thomas, D. Y., ERp57 and PDI: multifunctional protein disulfide isomerases with similar domain architectures but differing substrate-partner associations. Biochemstry Cell Biology, 2006. 84(6): p. 881-889.
18. Ni, M. and Lee A.S., ER chaperones in mammalian development and human diseases. FEBS Letters, 2007. 581(19): p. 3641-3651.
19. Naguleswaran, A., Alaeddine, F. and Hemphill, A., Neospora caninum protein disulfide isomerase is involved in tachyzoite-host cell interaction. International Journal of Parasitology, 2005. 35(13): p. 1459-1472.
20. Ou, W. and Silver, J., Role of protein disulfide isomerase and other thiol-reactive proteins in HIV-1 envelope protein-mediated fusion. Virology, 2006. 350(2): p. 406-17.
21. Cai, L., Gochin, M., and Liu, K., Biochemistry and biophysics of HIV-1 gp41 - membrane interactions and implications for HIV-1 envelope protein mediated viral-cell fusion and fusion inhibitor design. Current Topics Medicinal of Chemistry, 2011. 11(24): p. 2959-2984.
22. Ellerman, D.A., Myles D.G., and Primakoff P., A role for sperm surface protein disulfide isomerase activity in gamete fusion: evidence for the participation of ERp57. Developmental Cell, 2006. 10(6): p. 831-837.
23. Manukyan, D., von Bruehl, M. L., and Engelmann, B., Protein disulfide isomerase as a trigger for tissue factor-dependent fibrin generation. Thrombsis Research, 2008. 122 (S1): p. S19-22.
24. Reinhardt, C., von Bruhl, M. L., and Engelmann, B., Protein disulfide isomerase acts as an injury response signal that enhances fibrin generation via tissue factor activation. Journal of Clinical Investgation, 2008. 118(3): p. 1110-1122.
25. Garbi, N., Tanaka, S., and Hammerling, G. J., Impaired assembly of the major histocompatibility complex class I peptide-loading complex in mice deficient in the oxidoreductase ERp57. Nature Immunology, 2006. 7(1): p. 93-102.
26. Uehara, T., Nakamura, T., and Lipton, S. A. S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature, 2006. 441(7092): p. 513-517.
27. Perri, E.R., Thomas, C. J., and Atkin, J. D., The Unfolded Protein Response and the Role of Protein Disulfide Isomerase in Neurodegeneration. Frontiers in Cell and Developmental Biology, 2015. 3: p. 80.
28. Li, X.A. and A.S. Lee, Competitive inhibition of a set of endoplasmic reticulum protein genes (GRP78, GRP94, and ERp72) retards cell growth and lowers viability after ionophore treatment. Molecular Cell Biology, 1991. 11(7): p. 3446-3353.
29. Hashida, T., Y. Kotake, and Ohta, S., Protein disulfide isomerase knockdown induced cell death is cell-line-dependent and involves apoptosis in MCF-7 cells. Journal of Toxicology Science, 2011. 36(1): p. 1-7.
30. Tufo, G., Jones, A. W., and Brenner, C., The protein disulfide isomerases PDIA4 and PDIA6 mediate resistance to cisplatin-induced cell death in lung adenocarcinoma. Cell Death and Differentiation, 2014. 21(5): p. 685-695.
31. Kullmann, M., Kalayda, G. V., and Jaehde, U., Assessing the contribution of the two protein disulfide isomerases PDIA1 and PDIA3 to cisplatin resistance. Journal of Inorganic Biochemistry, 2015. 153: p. 247-252.
32. Goplen, D., Wang, J., and Bjerkvig, R., Protein disulfide isomerase expression is related to the invasive properties of malignant glioma. Cancer Research, 2006. 66(20): p. 9895-9902.
33. Chen, Y., et al., WAP four-disulfide core domain protein 2 promotes metastasis of human ovarian cancer by regulation of metastasis-associated genes. Journal of Ovarian Research, 2017. 10(1): p. 40.
34. Tian, F., Zhou, X., and Akyurek, L. M. Protein disulfide isomerase increases in myocardial endothelial cells in mice exposed to chronic hypoxia: a stimulatory role in angiogenesis. American Journal of Pysiology. Heart and Circulatory Physiology, 2009. 297(3): p. H1078-86.

35. Yu, S.J., Yoon, J. H., and Kim, C. Y., Enhancement of hexokinase II inhibitor-induced apoptosis in hepatocellular carcinoma cells via augmenting ER stress and anti-angiogenesis by protein disulfide isomerase inhibition. Journal of Bio energetics and Biomembranes, 2012. 44(1): p. 101-115.
36. Lovat, P.E., Corazzari, M., and Redfern, C. P. Increasing melanoma cell death using inhibitors of protein disulfide isomerases to abrogate survival responses to endoplasmic reticulum stress. Cancer Research, 2008. 68(13): p. 5363-5369.
37. Pawar, H., Kashyap, M. K., and Pandey, A., Quantitative tissue proteomics of esophageal squamous cell carcinoma for novel biomarker discovery. Cancer Biology and Therapy, 2011. 12(6): p. 510-522.
38. Zhu, Y., Xu, H., and Peng, C., Proteomic analysis of solid pseudopapillary tumor of the pancreas reveals dysfunction of the endoplasmic reticulum protein processing pathway. Molecular Cell Proteomics, 2014. 13(10): p. 2593-2603.
39. Xu, S., Sankar S., and Neamati N., Protein disulfide isomerase: a promising target for cancer therapy. Drug Discovery Today, 2014. 19(3): p. 222-240.
40. Zhang, Y., Li, T., and Wang, L., Targeting the functional interplay between endoplasmic reticulum oxidoreductin-1alpha and protein disulfide isomerase suppresses the progression of cervical cancer. EBioMedicine, 2019. 41: p. 408-419.
41. Zwicker, J.I., Schlechter, B. L., and Flaumenhaft, R., Targeting protein disulfide isomerase with the flavonoid isoquercetin to improve hypercoagulability in advanced cancer. Journal of Clinical Investigation Insight, 2019. 4(4).
42. Tang, Y., Wang, Y., and Wang, B., Classification, Treatment Strategy, and Associated Drug Resistance in Breast Cancer. Clinical Breast Cancer, 2016. 16(5): p. 335-343.
43. Tetsu, O., Hangauer, M. J., and McCormick, F., Drug Resistance to EGFR Inhibitors in Lung Cancer. Chemotherapy, 2016. 61(5): p. 223-235.
44. Almeida, S., Zhou L., and Gao F.B., Progranulin, a glycoprotein deficient in frontotemporal dementia, is a novel substrate of several protein disulfide isomerase family proteins. PLoS One, 2011. 6(10): p. e26454.
45. Vatolin, S., Phillips, J. G., and Reu, F. J., Novel Protein Disulfide Isomerase Inhibitor with Anticancer Activity in Multiple Myeloma. Cancer Research, 2016. 76(11): p. 3340-3350.
46. Karala, A.R. and Ruddock L.W., Bacitracin is not a specific inhibitor of protein disulfide isomerase. FEBS Journal, 2010. 277(11): p. 2454-2462.
47. Carbone, D.L., Doorn, J. A., and Petersen, D. R., Cysteine modification by lipid peroxidation products inhibits protein disulfide isomerase. Chemistry Research in Toxicology, 2005. 18(8): p. 1324-1331.
48. Satoh, M., Shimada, A., and Hosokawa, M., Differential cooperative enzymatic activities of protein disulfide isomerase family in protein folding. Cell Stress Chaperones, 2005. 10(3): p. 211-220.
49. Kamada, S., Kikkawa, U., and Hunter, T., Nuclear translocation of caspase-3 is dependent on its proteolytic activation and recognition of a substrate-like protein(s). Journal of Biological Chemistry, 2005. 280(2): p. 857-860.
50. Rodriguez-Hernandez, A., Brea-Calvo, G., and Sanchez-Alcazar, J. A., Nuclear caspase-3 and caspase-7 activation, and poly(ADP-ribose) polymerase cleavage are early events in camptothecin-induced apoptosis. Apoptosis, 2006. 11(1): p. 131-139.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77383-
dc.description.abstract惡性腫瘤是全球十大死因之一,每年造成約960萬人死亡。在腫瘤發展過程中,會獲得數個所需的特徵,包含維持細胞不斷增殖、逃避細胞死亡訊號、忽視生長所受限制、維持遺傳物質複製機制、誘導血管生成和侵襲周邊組織、轉移至遠端器官等能力。由於遺傳變異,讓腫瘤細胞積累這些調控缺陷,而不受正常細胞增殖和體內平衡的調節所控制。

蛋白質雙硫鍵異構酶家族是一群作用於蛋白質雙硫鍵結、幫助蛋白質折疊的酵素,可以改變受質蛋白的雙硫鍵位置,並具有伴隨蛋白的功能。其家族成員分別與病原體的感染過程、受精作用、凝血機制、免疫反應、神經相關疾病發生、細胞生存能力或腫瘤產生有關。近期研究顯示部分成員在腫瘤發展、轉移和血管生成中扮演重要角色。然而,其在腫瘤發展中的分子機制和做為治療目標的潛力尚待研究。解析蛋白質雙硫異構酶家族在腫瘤中的作用有助於治療惡性腫瘤。

本實驗發現蛋白質雙硫鍵異構酶家族中的PX,在腫瘤細胞株和臨床人類肺癌組織中有高度表達。利用干擾RNA減少或利用慢病毒載體過表達腫瘤細胞中PX之實驗顯示,PX藉由降低凋亡蛋白酶3和7的活性,達到促進細胞生長之效果。和體外實驗相符,荷瘤小鼠實驗顯示過表達PX的Lewis肺癌細胞比其親代細胞在小鼠宿主發展更快,造成存活率降低、腫瘤增大、轉移增加以及細胞死亡與凋亡蛋白酶3和7活性降低等現象,而PX基因敲落則導致相反的結果。此外,自發性肝癌模式小鼠實驗結果顯示PX的缺乏顯著減少肝癌發生和囊腫形成,並增加小鼠存活率、腫瘤死亡與凋亡蛋白酶3和7活性。機制探討顯示PX透過用其活性結構CGHC結合並抑制凋亡蛋白酶3和7前驅物的降解和活化,從而減少腫瘤細胞死亡訊號。最後,藥物實驗發現PX的抑製劑DHTT,可以通過增強TS/A乳癌細胞凋亡蛋白酶3和7活化,誘使腫瘤細胞死亡,進而減緩腫瘤之發展。

本實驗還探討了PX在腫瘤微環境中的作用。臨床數據顯示肺癌組織中的PX表達量與患者的存活率呈負相關,且PX在腫瘤基質細胞和腫瘤浸潤白血球中高度表達。此外,實驗發現PX在正常基質細胞中表達較低,但該表達在腫瘤組織的基質細胞中的提高,此高度表達似乎為受到腫瘤細胞的刺激造成。這些發現證實PX是腫瘤發展的正調節因子,並顯示PX是治療惡性腫瘤的潛在目標。
zh_TW
dc.description.abstractCancer is a leading cause of death worldwide, accounting for 9.6 million deaths each year. Cancer may acquire the capabilities to sustain proliferation, resist cell death, evade growth suppression, enable replicative immortality, induce angiogenesis, and activate invasion/metastasis. As a result of genetic alterations, cancer cells can accumulate defects in regulatory circuits that govern normal cell proliferation and homeostasis.

Protein disulfide isomerases (PDIs) are implicated in pathogen infection, fertilization, coagulation, immunity, neuropathy, cell viability and growth of tumors. Emerging evidence suggests that PDI family plays important role in tumor development, metastasis and angiogenesis. However, its molecular mechanism and therapeutic potential in cancer are unclear. Therefore, deciphering the role of PDIs in cancers may help cancer therapy.

Here, we discovered that PX expression was upregulated in a variety of tumor cell lines and human lung adenocarcinoma tissues. Knockdown and overexpression of PX in tumor cells showed that PX facilitated cell growth via the reduction of caspase 3 and 7 activity. Consistently, Lewis lung carcinoma (LLC) cells overexpressing PX grow faster than parental cells did in tumor-bearing mice, as shown by a reduced survival rate, increased tumor size and metastasis, and decreased cell death and caspase 3 and 7 activities. PX knockdown resulted in opposite outcomes. Moreover, results obtained in mice with spontaneous hepatoma indicated that PX deficiency significantly reduced hepatic tumorigenesis and cyst formation and increased mouse survival, tumor death, and caspase 3 and 7 activity. Mechanistic studies illustrated that PX negatively regulated tumor cell death by inhibiting degradation and activation of procaspases 3 and 7 by their mutual interaction in a CGHC-dependent manner. Finally, we found that 1,2-dihydroxytrideca-5,7,9,11-tetrayne (DHTT), a PX inhibitor, reduced tumor development via enhancement of caspase-mediated cell death in TS/A tumor-bearing mice.

We also investigated the impact of PX in tumor microenvironment. We found that PX expression in lung cancer tissues was negatively correlated with survival outcomes of patients. Consistently, PX was highly expressed in cancer stromal cells and tumor infiltrating leukocytes. Moreover, we found PX was expressed at a low level in stromal cells and this expression was upregulated akin to its expression in cancer cells. This upregulation seem to be stimulated by tumor cell-derived stimuli. These findings characterize PX as a positive regulator of cancer development and suggest that PX is a potential therapeutic target for cancer.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:59:11Z (GMT). No. of bitstreams: 1
ntu-108-D02642002-1.pdf: 6140705 bytes, checksum: 1f5c4a4b907c39923332c53f3f150a65 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES ix
Chapter 1 Introduction 1
1.1 Cancer 1
1.1.1 Tumor cells 1
1.1.2 Dysfunction of apoptotic pathways in tumor 2
1.1.3 Stromal cells 2
1.1.4 Tumor infiltrating leukocyte 3
1.2 Protein disulfide isomerases 4
1.2.1 Family of protein disulfide isomerases 4
1.2.2 PDI family members in cancer 5
1.3 Significance 6
Chapter 2 Material and methods 7
2.1 Immunoblotting and compartmental fractionation 7
2.2 Confocal microscopy 7
2.3 Lentivirus production and infection 8
2.4 Analysis of cell growth, cell death, and caspases 3 and 7 8
2.5 Animal studies 9
2.5.1 Tumor-bearing mice model 9
2.5.2 Mouse models of metastasis 10
2.6 IHC staining 10
2.7 Interaction with and inhibition of procaspases by PX 11
2.8 Domain mapping analysis 11
2.9 Models for microenvironment 12
2.9.1 Data processing of the Oncomine database 12
2.9.2 Isolation and flow cytometric analysis of stromal cells 12
2.9.3 Cytokine antibody array 12
2.10 Statistics 13
Chapter 3 Results 14
3.1 Overexpression and distribution of the PX protein in different tumor cells of mouse and human origin 14
3.2 PX in the control of tumor growth in tumor cells and mouse models 14
3.3 Molecular regulation of the cleavage and activation of executioner procaspases 3 and 7 by PX 16
3.4 Characterization of the interaction of PX with executioner procaspases 3 and 7 17
3.5 Pharmacological effect of DHTT, a PX inhibitor, on the cell growth, cell death and activity of caspases 3 and 7 in tumor cells and TS/A tumor-bearing mice 18
3.6 PX expression is upregulated in cancer stroma and inversely associated with survival in patients with lung cancer 19
Chapter 4 Discussion 21
4.1 PX is chosen for this study 21
4.2 PX plays a role in dysfunction of apoptotic pathways in tumor 21
4.3 PX plays a role in tumor stroma in response tumor signaling 22
4.4 PX is a potential therapeutic target and a diagnostic marker of tumors 22
4.5 DHTT is a potential anti-cancer drug 23
4.6 Further investigation for PX-targeted drug applications 24
Chapter 5 Conclusion 25
FIGURES 26
REFERENCES 50
RELEVANT PUBLICATION 53
-
dc.language.isoen-
dc.subject凋亡蛋白?3和7與前驅物zh_TW
dc.subject蛋白質雙硫鍵異構?PXzh_TW
dc.subject腫瘤生成zh_TW
dc.subject腫瘤微環境zh_TW
dc.subjectPX抑製劑DHTTzh_TW
dc.subjecttumorigenesisen
dc.subjectPXen
dc.subject(pro)caspases 3 and 7en
dc.subject2-dihydroxytrideca-5en
dc.subject11- tetrayne (DHTT)en
dc.subjecttumor stromaen
dc.title新多功能蛋白質PX對腫瘤發展之調節zh_TW
dc.titleA novel multifunctional protein, PX, in cancer developmenten
dc.typeThesis-
dc.date.schoolyear107-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee李宣書;林敬哲;葉添順;林炎壽;邱慶豐zh_TW
dc.contributor.oralexamcommittee;;;;en
dc.subject.keyword蛋白質雙硫鍵異構?PX,腫瘤生成,凋亡蛋白?3和7與前驅物,PX抑製劑DHTT,腫瘤微環境,zh_TW
dc.subject.keywordPX,tumorigenesis,(pro)caspases 3 and 7,1,2-dihydroxytrideca-5,7,9,11- tetrayne (DHTT),tumor stroma,en
dc.relation.page66-
dc.identifier.doi10.6342/NTU201901083-
dc.rights.note未授權-
dc.date.accepted2019-06-27-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物科技研究所-
顯示於系所單位:生物科技研究所

文件中的檔案:
檔案 大小格式 
ntu-107-2.pdf
  未授權公開取用
6 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved